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R-THEORY FOR MARKOYV CHAINS ON A GENERAL STATE
SPACE II: r-SUBINVARIANT MEASURES
FOR r~-TRANSIENT CHAINS

BY RICHARD L. TWEEDIE
The Australian National University, Canberra

This paper is a sequel to a previous paper of similar title. The struc-
ture of r-subinvariant measures for a Markov chain {X,} on a general state
space (27, &) is investigated in the r-transient case, and a Martin boundary
representation is found. Under certain continuity assumptions on the tran-
sition law of {X,,} the elements of the Martin boundary are identified when
& is countably generated, and a necessary and sufficient condition for an
r-invariant measure for {X,} to exist is found. This generalizes the Harris-
Veech conditions for countable 2%,

7. Introduction. This paper is a sequel to Tweedie (1974), which we refer to
as I, and whose notation and numbering is continued here. The object of the
paper is to give a representation of the Martin boundary type for r-subinvariant
measures (solutions of I (3.3)) when the Markov chain {X,} on (&, &) is r-
transient. This is achieved in Theorems 9 and 10. Under a certain equicon-
tinuity condition on the transition probabilities of {X,} it is shown that the
elements of this representation are all o-finite measures on .57, and further that
if & is countably generated it is possible to identify the points in the Martin
boundary as limits of ratios of transition probabilities (Theorem 11). This enables
us toderive a necessary and sufficient condition for the existence of an r-invariant
measure for {X,} in Theorem 12 analogous to that of Harris (1957) and Veech
(1963) for r = 1 and 27 = Z.

8. Preliminaries and potentials. Throughout this paper we shall assume
AssuMPTION 1. {X,} is r-transient: that is
G.(x, A) = o, PY(x, A)r* < oo
for some x e &2 and A e & *;
ASSUMPTION 2. D is a fixed r-transient set in & *;

AsSUMPTION 3. An r-subinvariant measure Q for {X,} is a solution of Q > rQP
(cf. I (3.3)) which also satisfies Q(D) = 1.

Because of Proposition 3.1 and Theorem 4 of I, the r-transient case is the
only one that needs to be studied: hence our Assumption 1. Neither Assumption
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2 nor Assumption 3 in any sense restricts our results, and are mainly for nota-
tional convenience. We use also the notation

(8.1) Z = (D(m, j),m,j=1,2, -
where D(m, j) is defined by (1.5), and put
D,={yeZ: Gy, D) = oo} .

Condition I (I Section 1) ensures that & is a partition of .2, and Theorem 1
implies that M(D,,) = 0, since {X,} is r-transient, and also that every element of
Z is an r-transient set.

PROPOSITION 8.1. Let A be any element of 7. There is a real number 8,, 0 <
Bas < oo, such that for every r-subinvariant measure Q for {X,},

(8-2) 0(8) < Bs -
ProoF. Suppose A = D(m, j) for some m, j. Since Q is r-subinvariant,
1 = Q(D) Z ™ §50n.s, Q(dx)P"(x, D)
= [r/(j + DIRD(m. ) ;
thus we can choose 8, = (j + 1)/r". [
For any r-subinvariant measure Q for {X,}, the sequence
(8.3) ™\, Q(dx)P™(x, A)

is non-increasing with n for any 4 ¢ & for 4 e .5, (8.3) is finite, from (8.2).
We shall call a o-finite measure Q a potential if Q is r-subinvariant and (8.3)
tends to zero for every A € & (and hence for every A€ % ) as n — oo.

PROPOSITION 8.2. Let Q be r-subinvariant for {X,}. Then Q can be decomposed
uniquely as
(8.4) 0(+) = Qp(+) + Qu(*)
where
(i) either Qp(+) = 0, or Qp(+)/Qx(D) is a potential
(i) either Q,(+) = 0, or Q,(+)/Q (D) is r-invariant for {X,}.
Proor. Since (8.3) is monotone decreasing,
(8.5) 0,(4) = lim,_,, r* { , Q(dx)P"(x, A)
exists for each 4 ¢ 5. A basic theorem (cf. Ganssler (1971) 1.10) then ensures
that Q, is a measure on each of the g-fields &, A € &Z. There is then a unique
extension of Q, to a measure on &, given by Q,(4) = Y e @i(4 N A), Ae 7.
For any 4 ¢ % _,, the monotonicity and finiteness of the limit (8.5) shows

(8.6) QUA) = lim,_, r§ . [ § . Q(dx)P*"X(x, dy)|P(y, A)
=1 §2 QUd)P(y; 4)
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and since (8.6) extends by definition to arbitrary 4 e &, either Q, is identi-
cally zero or Q,(+)/Q,(D) is r-invariant. Define Qp(+) = Q(+) — Q,(+). Either
Q4(+) = 0; or, from (8.6) and the r-subinvariance of Q, Q,(+)/Qx(D) is r-sub-
invariant; in the latter case, (8.5) ensures that Q,(.)/Q,(D) is a potential.
The decomposition is unique; for suppose Q = Q,’ + @/, with 0,/ and Q,’
satisfying (i) and (ii). Then
Q/(4) = lim, .. 1 § .. Q/(dy)P*(y, 4)

= lim,_, r* § > Q(dy)P"(y, 4)

= 0,(4)
forall Ae & []

In the next section we shall derive an integral representation for potentials,
and in the following sections an integral representation for r-invariant measures.
From Proposition 8.2, this suffices to give a representation for arbitrary r-sub-
invariant measures for {X,}.

9. The representation of potentials. Write, for x ¢ 2,
K, (x, A) = 3¢ PY(x, A)yr* = d(x, A) + G(x, A) ;

from r-transience, K, (x, A) < oo for x¢ D,,, Ae F .

For x¢ D, put
9.1) M (A) = K, (x, A)/K(x, D) ;

note that the dependence of M, on r and D has been suppressed. As in Proposi-
tion 3.2, M, is r-subinvariant, x ¢ D_; moreover, since

" § o M(dy)P(y, A) = 17 r"P™(x, A)[K,(x, D),
M, is a potential for x¢ D,,.

THEOREM 9. A o-finite measure Q is a potential for {X,} if and only if thereisa
probability measure 2 on & with A(D,,) = 0, such that '

(9.2) 0(A) = §, M, (A)A(dx) Ae 7.

Proof. Our proof follows Moy (1967). Suppose Q is a potential, and put,
for Ae &7,

9.3) H(A) = Q(A) — 1§, Qdx)P(x, 4);
for Ae F,,0 < H(A) < Q(A) < oo, and
§ » H(dx)K,(x, A) = lim,_,, SZ,‘ H(dx) 35 P*(x, A)r*
9.4) = Q(4) — lim,_,, § . Q(dx)P"**(x, A)r¥+
= Q(A) .
Since Q(D) = 1, (9.4) implies H(D,,) = 0; and as D, < D,, (cf. the proof of
Proposition 2.1) (9.4) further implies that

(9.5) QD) =0.
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Define, for each 4 ¢ &
(9.6) X(A) = §, H@w)K(w, D) ;
from the above remark 2 is a measure on & with A(D,) = 0, and 2 satisfies
(9.2) by virtue of (9.4); finally, since Q(D) = 1, (9.4) with 4 = D shows that 2
is a probability measure on &,

Conversely, if 1 is a probability measure on &% with 2(D,) = 0 and Q is
defined by (9.2), Q is r-subinvariant since each M, is r-subinvariant; and for
any Ae.¥

" § o QUENPY(y, A) = § o [1" 2 Mo(dY)P™(y, A)]A(dX) ,
which tends to zero by monotone convergence, since each M,, x¢ D,,, is a
potential. Hence Q is a potential. [J
Write, for x¢ D_,
9.7) N,(+) = G(x, +)/G(x, D) .
From Proposition 3.2, N,(.) is r-subinvariant for x¢ D, and as with M,(.),

N,(+) is a potential. The next result follows easily from Theorem 9, and we
omit the proof.

ProrosiTiON 9.1. If Q is a potential, then there is a probability measure p on
& with (D) = 0 such that
(0-8) 1. Q@R A)[r e AY)P(y, D) = § o No(Ap(dx),  Ae F.
Conversely, if p is a probability measure with p(D,,) = 0, there is a potential Q such
that (9.8) holds. [T

If Q is a potential, so is r§ . Q(dy)P(y, +)/r§ .. Q(dy)P(y, D); we shall show
that any r-invariant measure which is null on D,, can be approximated by such
“second-order” potentials, and for this reason we give the representation (9.8).

10. Approximation by potentials and related results.

ProrosiTioN 10.1. If Q is any r-invariant measure for {X,} with Q(D.) = 0,
then there is a sequence of measures Q, on & such that

(i) Q, is a potential for each n;
(ii) foreach Ae &, asn— oo, Q,(A) — Q(A);

(iii) as n— oo, for each Ae &,

(10.1) P30 Qu@PGsA) _, oy,
1§+ Qu(dy)P(y, D)

Proor. Let Q be r-invariant with Q(D,,) = 0, and write D, for the union of
those elements of &2 which are Q-null. Let {D,, D,, - - -} be an ordering of the
remaining elements of 7. From Proposition 8.1, Q is finite on each D;. Define
a set function 4, on .5, by setting

A(A) = 27iQ(A)/Q(D;), AC D;, Ae F,j=1,2,...
2g(4) =0, AC D, Ae &,
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and extend 2, to & by setting, for A€ &, 25(4) = Y, 2o(4 n D;). Thus de-
fined, 4, is a probability measure on &, and 24(D,) = Q(D,,) = 0. Utilising
the converse statement of Theorem 9, construct a potential by setting

(10.2) w(A) = § o M (A)2y(dx) , Ae 7.

Suppose p(A4) = 0; since M, (A) = o(x, A)/k,(x, D) > 0, x e 4, (10.2) shows that
2¢(A) = 0, and so Q(4) = 0. Hence p > Q; write ¢(-) for a density of Q with
respect to p¢, and define

4.(x) = min (q(x), ) » xeZ.

Put, forany 4e & andn = 1, p(A) = §,9.(y)u(dy). If B(n) ={y: q.(y) = n},
B(q) = 2°\B(n), then we have, for 4e¢ . % ;,,,
() = np(A) 2 1§ o [np(dy)1P(y, A)

2 7§ 1 @)P(y; 4)

whilst for 4e . 5,,,
() = Q(A) = r§ . Q(dy)P(y, 4)

Z 1Yo ta(d)P(y, 4) -

Thus Q,(+) = p.(+)/¢.(D) is r-subinvariant; and Q, is a potential since

" § 2 Qu(@)P™(y, A) = nr™ § o p(dy)P™(y, A)/pa(D)

a potential. Moreover, g,(x) 1 g(x) as n — oo; it follows by monotone conver-
gence that for all 4,

(10.3) 1a(4) 1 Q(4) , n— oo
and so, since P(., A) is bounded,
(10.4) 1§ o ta(dp)P(y, A) 11§, Q(dy)P(y, 4), n—oo.

Since Q(D) = 1, (ii) follows from (10.3), and because Q is r-invariant, (iii) fol-
lows from (10.4). []

The assumption that Q(D.) = 0 in this proposition is necessary as well as
sufficient, since from (9.5), all potentials allot zero probability to D,,. However,
in the following two cases any r-invariant measure Q satisfies Q(D,,) = 0:

(i) r= 1 and {X,} is 1-transient; Theorem 1 in I proves that D, is empty in
this case;

(i) R=r=1 and {X,} satisfies Condition I’ of I, Section 1; as remarked
after Lemma 3.3 in I, Condition I’ ensures that all r-invariant measures are
equivalent to M, and M(D,) = 0 from Theorem 1.

If Q is r-invariant and Q(D..) > 0, write Q'(4) = Q(4), A< D.*, Q'(D,,) = O:
it is easy to check that Q' is r-subinvariant for {X,}. From Proposition 8.2 we
can decompose Q' into a linear combination of a potential and an r-invariant
measure, both of which are zero on D,,, and so as a corollary to Proposition 10.1
we have
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PropPOsITION 10.2. If Q is r-invariant, then there exist nonnegative constants a, 3
with « 4+ B = 1 and potentials Q,, Q,, - - - such that

Q(4) = aQy(4) + Blim,_,, 0,(4)

_ lim. V2 Qu(@)P(y, A)
Qu(A) o+ B limye 2 Q.(dy)P(y, D)

forevery Ae & with A < D,°.

To show that the condition Q(D,,) is not trivial under Condition I (and thus
to show that r-invariant measures need not be equivalent to M), use Example 1
with {Y,}an r-transient chain, » > 1,and « = r~*,and P{0, 4} = [1 — r1]P{l, 4}
rather than (1, 4). Since P*(0, D) = r—"+"P™(1, D)[1 — r7'], D, = {0} # @.
Define Q by

0(4) = G(1, 4)/G(1, D) A< Z2\(0}.

=[(1 — rG (1, D)]? A = {0}:

thus Q(D.,) > 0, and it is easily checked that Q is r-invariant for {X,}. In this
case Q restricted to D,° = {1, 2, - ..} is a pure potential.

We conclude this section by proving two results stated without proof in I.

ProrosiTioN 10.3. Suppose {X,} is r-transient and Q is an r-subinvariant measure
for{X,}. Then any Ac & such that Q(A) < oo is r-transient.

Proor. If 4 € D, then M(A4) = 0, and from Condition I, G,(x, 4) = 0 for
allx¢ D, and A s trivially r-transient. Suppose ACD_°, A &, and 0(A4) < 0.
Let @, p and Q,, Q,, - - - be as in Proposition 10.2. If a > 0, then for some
probability measure 2, on .2~

00 > Qy(d) = § . M(A)A(dy)
= o [K.(x, A)/K,(x, D)]A(dx)

and so for some x ¢ 2, G,(x, A) < oo, and A is r-transient. Similarly, if 8 > 0,
for some sequence {2,} of probability measures

oo > lim, ., § . M, (A)4,(dx),
and again G,(x, 4) < oo for 1,-almost all xe 2. [J

CoroLLARY. If {X,} is R-recurrent, and Q is the unique R-invariant measure (cf.
Theorem 4) then any set A such that Q(A) < oo is an R-recurrent set.

Proor. For any r < R, Q is r-subinvariant; hence Q(4) < oo implies 4 is -
transient for all » < R, which is the definition of an R-recurrent set. []

This proposition and its corollary extend the result of Sidék (1967), mentioned
at the end of I, Section 2. The corollary gives us a constructive proof that an
R-recurrent chain partitions the space into R-recurrent sets; previously (I, Propo-
sition 2.2) only a non-constructive proof was given.
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ProrosiTION 10.4. If U is an r-subinvariant measure for {X,} not necessarily
Jfinite on D, and h is an r-superinvariant function for {X,} then \ . h(x)U(dx) is diver-
gent when {X,} is r-transient.

Proor. The definition of r-superinvariance (I (4.10)) is that, for almost all
xeZ

(10.5) 0 < A(x) < 1§, P(x,dy)h(y) .
Iterating (10.5) implies that for all » = 1 and almost all x
(10.6) " § o PP0x, dy)h(y) < 1§ o PYT(x, dy)h(y) 5

summing (10.6) for » > 1 and adding (10.5) gives

h(x) + § o G(x, dy)h(y) = § .. G.(x, dy)h(y) ,
and so for almost all x,

(10.7) .0 G.(x, dy)h(y) = oo .
Let N be the M-null set on which (10.7) fails, and put N' = N U N; if U is r-
subinvariant, so is U'(«) = U(+) on 22°\N’, U'(N") = 0. As in the preceding
proof, Proposition 10.2 and the potential representation, together with (10.7),
imply

§ o H(x)U'(dx) = oo,

and the proposition follows. []

This result was stated in I, Proposition 4.3. The proof of (10.7) is due, when
&£ = Z, to Vere-Jones (1967), who uses a different method of showing that it
implies the result of the proposition in the countable case.

11. The representation of r-invariant measures. In the light of the previous
section, we shall assume from now on that D, is empty, or equivalently that we
alter our state space to 2°\D,,. Proposition 10.2 shows that this does not alter
our results significantly, and it follows from (10.1), (9.8) and (9.7) that if Q is
r-invariant for {X,}, there is a sequence of probability measures {¢,} on . such
that

(11.1) Q(4) = lim,_, §{.,. N (A)p,(dx), Ae 5

where N, is defined by (9.7) for every x € 22°. The purpose of this section is to
derive from (11.1) an integral representation for r-invariant measures analogous
to the classical Martin boundary representation: for -2° = Z this is derived by
Moy (1967) for general r, following Doob (1959) for r = 1.

Let Q be a fixed r-invariant measure for the remainder of this section, and
let A be an element of 7. Let 8, be the bound corresponding to A in Proposi-
tion 8.1. We shall write Q, for the space of measures @ on ., satisfying
w(4) < B,; from Proposition 8.1, any r-subinvariant measure belongs to Q,, and
so in particular Q € Q, and for every x e 2, N, e Q,.
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Now define the product space Q,’ by
(11.2) Q" =10, B]72.

Write 7,: Q," — [0, 8,], A€ & ,, for the projection map which takes o’ € Q,’
to its ‘Ath’ coordinate. There is then a natural embedding of Q, in Q, given
by v — o' where 7,0’ = w(A).

Further, define the measure space Q_ and the product space Q_’ by

(11.3) Q, ={w: w isameasure on &, and w restricted to &,
isin Q,, forall Ae Z}

(114) Qg, = [lies QA, = [lses [0’ ABA]JrA s
and @: Q_ — Q_' by ®(0) = o’ where 7 ,(0') = w(A4) forall 4e & . The map
® is an embedding of Q_ in Q_'.

With this notation, we can define a map N: 27— Q_' by setting, for each
xe 2,

(11.5) N(x) = O(N,(+)) -

Because N, is r-subinvariant, N, is in Q_, and so (11.5) is well defined. Let <~
be the product s-field on Q_'. Since each of the functions x — N, (4), 4e &,
is measurable, the function N defined by (11.5) is measurable with respect to
Z*. Unless N, = N, implies x = y, N will not embed -2” in Q_/, but rather
will embed the set of equivalence classes of points in .27, equivalent under the
relationship x ~ y when N, = N,. Since the only functions we shall consider
on N(Z°) are those which are constant on such equivalence classes, this does
not affect our analysis.

Write .7 for the product topology on Q_’; by Tychonoff’s Theorem, Q_' is
compact under .7, and hence the image N(2”) of 22 is relatively compact as
a subset of Q_’. Write &2 for the .Z~closure of N(:2°) in Q_/, and & for the
a-field

F ={B:B=AnZ, Ac Z7}.
Any measure 2 on % induces a measure {on & by
A(B) = A(N-YB)), Be 7

thus from (11.1) we can find a sequence of probability measures 4, on & such
that

(11.6) 0(4) = lim, . §.2 N (A)1,(dx) , Ade 7.

For x e N(Z°), N,(A) = = ,(x), where =, is the projection map at 4; so we can
write (11.6) as

(11.7) Q(A) = lim,_, § & 7 ,(0)4,(dw)  AeF .

For each fixed 4 € &, m,(+) is a continuous function on Q_’ in the product
topology; and 27 is closed, and hence compact, in the product topology.
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Since 1,(Z) = 1 forn = 1,2, - .- and &2 is compact, {1,} contains a subnet
{4,} which converges weakly to a probability measure Aon & that is, for all
continuous functions # from .Z to the real line,

(11.8) lim, §z h(0)4, (do) = §# h(0)i(do) .
Since =, is continuous for every 4 e .~ , applying (11.8) to (11.7) shows that
(11.9) Q(A) = § ¢ 7 y(w)A(dw) . .

If w € &7, then o is a set function on %, (put o(4) = m,(»), A€ . ,) and
whilst @ may not be g-additive on each of the o-fields Gy, Ae T, it is easy to
see that @ must be a finitely additive set function on each &, since Z is the
closure of N(Z"). We summarise the results of this section in

THEOREM 10. Let Q be an r-invariant measure for {X,}. Then there is a proba-
bility measure 1 on (2%, Z ) such that, for any Ae &,

Q(A) = §.# o(+)A(dw)
where w(-) is a finitely additive set function on &, for each w € Z.

12. Equicontinuity and an r-invariant representation. We wish to find condi-
tions on {X,} which will enable us to assert that the closure & of N(Z°) in the
product topology .7~ on Q_/ defined by (11.4) lies in Q_ defined by (11.3). For
each A ¢ Z, let N,: 27— Q,’ be given by

NA('X) = O,(N,(+))

where @, is the natural embedding of Q, in Q,’; let .77, be the product topology
on Q. Clearly, Z < Q, if and only if the .77,-closure of N,(Z) in Q,’ is
contained in Q, for every A ¢ &Z. The latter is equivalent to asking that {N,(+),
x € 27} be relatively compact in Q, for all A e &, when each Q, is equipped
with the topology of setwise convergence on the sets of .%7,. This topology on
measure spaces has been studied by Topsge (1970), who called this the s-topology
on Q,, and Ginssler (1971), who called it the .7 -topology.

Now let A be a fixed set in &Z; from Proposition 8.1 sup,. .. N,(A) < B, < oo.
We shall say that {N,, x € 227} is equicontinuous on A (cf. Ginssler (1971) 1.7) if,
for any sequence of sets {4}, 4, € & ,, such that 4, | @,

(12.1) lim; ., sup,. » No(4;) = 0.

The next result is a direct application of Génssler (1971), Theorem 2.6, to
the set {N,, x e Z}.

THEOREM G. The following assertions are equivalent:
(i) the T ,-closure of N(Z) in Q' is a subset of Q;;
(ii) every sequence {w,} of measures in N,(Z°) contains a subsequence {o,,}
which converges in the 7 ,-topology to a measure w € Q,; that is

lim, ., o, (4) = o(4), Ae Fy;

(iii) {N,, x € 27} is equicontinuous on A.
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We shall say that {N,, x e 27} is Z-equicontinuous if {N,} is equicontinuous
on each A e Z.

THEOREM 11. Let {N,, x € 27} be D-equicontinuous. If Q is r-invariant for
{X,}, then there is a probability measure 1 on (2, Z ) such that

(12.2) G(A) = (& co(A)Z(dw)
for every Ae &, where for each w ¢ ?ﬂ

(i) () is a measure on &, for each A ¢ 7 (and hence can be extended as
usual to a measure on F");

(i) if & is countably generated, for each w e Z there is a sequence {&,
€(2), - - -} of points in 22 such that

(12.3) o(A) = lim,_, Ny, (A)
forevery Ae & .

Proor. Both (12.2) and (i) are consequences of Theorem 10 and the equiva-
lence between (i) and (iii) of Theorem G. Suppose that .& is generated by the
countable collection of sets & ° = (F,, F,, ---) and write & ,° = [F, n A,
Fyn A, ...} for Ae . The set of measures N,(:Z") < Q, is equicontinuous
on A, and from Génssler ((1971) 1.11) for this equicontinuous set the topology
7", of setwise convergence on ., is equivalent to the topology .77,° of setwise
convergence on the sets of & ,°; and .77,° is metrizable. (One can set, for
example,

d(oy, 0)) = 33; 277|0y(F; 1 A) — y(F; 0 A)|
for @, ®, € Ny(2°).) Thus the elements of .2, the .,-closure of N,(2" ), are
limits of sequences of points in N,(2"); a diagonal argument over A ¢ Z leads
to (12.3).

When r = 1, results similar to (12.2) have been proved when -2 and {X,}
satisfy various topological considerations by, for example, Kunita and Watanabe
(1967). However, the identification of points in .2 for arbitrary separable &~
with limits of measures N ;, when the equicontinuity condition is satisfied ap-
pears to be new for uncountable 2, even for r = 1.

Since identifying & may not always be possible, the assumption of Z-equi-
continuity may seem difficult to check. However, if " is an arbitrary partition
for which {N,} is “~equicontinuous (equicontinuous on every K e.%"), then
{N.} is also Z’-equicontinuous, where 2’ = [K n A, Ke 57, A € &}, and the
conclusions of the theorem continue to hold with &’ in place of . We con-
clude this section with a sufficient condition for 2’-equicontinuity, in terms of
the one-step transition probabilities P(., «), whose corollary can be checked for
an arbitrary partition .97

We define the measures N,(+) by

(12.4) N,9(4) = P(x, )|P(x, Ay, Ae Ty, xeZ
for each A’ € 2, where (12.4) is taken to be zero if P(x, A’) = 0.
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ProrosiTION 12.1. If {N,%, x €¢ 27} is 2"-equicontinuous, then {N., xeZ}is
'-equicontinuous.

PROOF. Let A’ be an element of 2, and let {4}, 4, | @, be-a sequence of
sets in .&,,. Put

(12.5) & = SUp,. . N,V(4,);
by hypothesis, ¢, | 0. Write
(12.6) N,™(A) = Xt Pi(x, A)ri| 1 Pi(x, A'yré Ae F,,

where as in (12.4), N,"(4) = 0 if the denominator of (12.6) is zero. Assume
inductively that

(12.7) SUP,ep N, (A4,) S 6, 5
LT Pi(x, AP = rP(x, Ay) + 1§, P(x, dy) 37 Pi(y, A)r
= rP(x, A) + 1§ o P(x, dy)N,™(4,) Tt Pi(y, A)ri
= rP(x, 4,) + ¢, 35 Pi(x, A ré
< & BiPI(x, AP
from (12.5) and (12.7); hence (12.7) holds for all n. Since
lim, ., N,®(4) = 5 Pi(x, A)ri| 52 Pi(x, A"yri
= N./(4)
for each 4 e &, and x € 27, there exists n(j) (depending on x) such that
N/(4;) < &5 + N %9(4)) < 2, ;
No(4;) = N/ (4))[G (x, A)[G(x, D)]
= 2,8,
since A’ < A for some A e Z. Hence {N,} is 2"-equicontinuous. []
CoROLLARY. If & is separable and Condition I' holds, let P(x, y) be the density
of P(x, «) with respect to M. If there is a partition % of 2° and, for each K e 57,
a real number v(K) such that for all x ¢ 27
SUpyex P(¥: y) < w(K) inf,. x p(X, y) ,
then {N,} is 2'-equicontinuous.
Proor. FixA’' = Kn A, Ke 5% A ¢ Z,andlet 4, | @, A, € F,,;and assume

M(4’) > 0 (otherwise {N,™} is trivially equicontinuous on A’). Then for any
xeZ
P(x, 4,) = § 4, P(x Y)M(dy)
SUPy e, P(X; Y)M(4,)
v(K) infye pr p(x, y)M(4,)
w(K)P(x, A M(A")] 7 M(A,)
and so sup, P(x, 4,)/P(x, A') < w(K)[M(A)]"M(4,) | 0, 4, | @. [

A A TIA
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It is easy to construct examples of Markov chains on uncountable state spaces
which satisfy the conditions of the corollary, and hence for which Theorem 11
holds (with &2 in place of 7). The sufficient condition for Z’-equicontinuity
of Proposition 12.1 seems to me to be considerably stronger than necessary,
and I )

CoNJECTURE. A necessary and sufficient condition for {N,, x € 227} to be &Z'-
equicontinuous for some refinement 2’ of & is that {P(x, +), xe Z°} be 7~
equicontinuous for some partition 7%~ of 2°.

13. A generalization of the Harris-Veech condition. In this section we shall
assume that & = (A(j)) is such that

B(i) {N,, xe 27} is Z-equicontinuous
B(ii) & is countably generated
B(iii) for each Ae &, if Ae & ,*

(13.1) G A)<1 forall Ced.

From Proposition 4.1 in I, if <& satisfies B(i) then there is a refinement Z’ of

Z satisfying B(i), B(iii), and we could carry out the analysis above with 2" in

place of : thus the third assumption is trivial, and is merely to save notation.
Under these conditions we have

LeEMMA 13.1. A necessary and sufficient condition for the existence of an r-invariant
measure for {X,} is the existence of a point w € 2 such that () is r-invariant for

{Xa}-

Proor. Choose o € 2 from B(i), w(+) is a measure and from B(ii) w(+) is
given by (12.3) for some sequence {{(j)} of points in 27, and since N, is r-
subinvariant, x € 2%, () is r-subinvariant (use Fatou’s lemma). Write 22, for
the set of r-invariant measures in .2, Suppose Q is r-invariant: from Theorem
11 there exists 4 such that (12.2) holds. It is easy to show that i(2°\:Z;) = 0,
and so 22", is not empty, since A(2°) = 1. This proves necessity, and sufficiency
is trivial. []

Using this lemma, we prove a generalization of the celebrated theorem of
Harris (1957) and Veech (1963) for 1-transient chains on 27 = Z. This was
extended to r-transient chains on £ by Pruitt (1964), and the sufficiency part of
the theorem was proved by Yang (1971) for 22 a g-compact metric space and
r = 1 under fairly weak continuity conditions on P. The direct connection be-
tween the Martin boundary construction and the Harris-Veech result, as con-
tained in Lemma 13.1, seems to have been first noticed for 227 = Z by Moy
(1967).

THEOREM 12. Under the conditions of this section, a necessary and sufficient con-
dition for the existence of an r-invariant measure for {X,} is the existence of a sequence
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{€(1), £(2), - - -} of states in Z° such that
(13.2)  lim_.lim, . [PC(K), 4) + §assy 4G (C(K)> dy)P(y> A))/G(C(K), D) = O
for every Ae &, where A*(j) = U,z; A(n).

Proor. Let o be a point in £, and let {{(k)} be a sequence of points in 2~

such that (12.3) holds. We show that (13.2) is necessary and sufficient for ()
to be r-invariant, and the theorem then follows from Lemma 13.1.

Define A,(j) = Un<; A(n), so that 227= A*(j) U A,(j). For j =1, (12.3)
implies that
o(A) = lim,_,, Nea(4)

for every A € & ,,,; this is equivaient to

(13.3) §5 Neao(dn)h(y) — §5 o(dy)h(y)

for any Be #,,;, and any measurable bounded function # on B. (Génssler
(1971) 2.15). We shall use this equivalence twice.

Let A be a fixed set in &, and suppose J is such that 4 = A (J). Forj > J,
a last exit decomposition gives

G,(C(k), A) = rPE(k), A) + r§ . G.(C(k), dy)P(p, A)
= rP((k), 4) + 1§ G.(L(K), dy)P(y, A)
+ 7 Sari) [4G(C(K), dy) + 4 G,(E(K), dx) 4G (x, dy)IP(y, A);
dividing through by G ,({(k), D), we get

Newo(A) = [rPE(k), A) +  § 505y 4G(E(K), dy)P(y, A)]/G,(L(k), D)
(13.4) + 7 $a,i) Newr (@) P(y, A)
+ 7§54 Neo(dX) S anisy 4G (x; dy)P(y, A) .

Since P(-, A) is a bounded function on A,(j), the second term in (13.4) tends
as k — oo to
I §auir @(dy)P(y, A)
from (13.3); this in turn tends as j — oo to r§_ w(dy)P(y, A). For xe A, the
function
Sarciy 4G(%; A)P(ys A) S §a0 4G (%, dy)P(y, A)
= 4G (x, 4)
<1

from B(iii); hence again by (13.3), the third term in (13.4) tends with k to
(13.5) F §.0 0(d%) §asisy 4G, (%, )P(y, A) .
But again by Biii),

F§.4 0(d%) § 10 4G.(%: dY)P(y, A) < re(d) < oo,
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and so as j — oo, (13.5) tends to zero. Taking limits with k andj in (13.4) thus
shows that

o(d) = 1§, o(dy)P(y, 4)
if and only if (13.2) holds for 4, and so  is r-invariant if and only if (13.2)
holds for all Ae & . []
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