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ON THE CONVERGENCE OF SEQUENCES OF
BRANCHING PROCESSES

By ANDERS GRIMVALL
Linkdping University

It is shown that there is a close relationship between the convergence
of a sequence of normalized Galton-Watson processes and the convergence
of the rowsums of a certain triangular array of independent identically
distributed random variables. Using this result some limit theorems by
Jirina and Lamperti are strengthened.

1. Introduction. Let{Z;}7_, denote the random variables of a Galton-Watson
branching process with off-spring generating function g. If Z, = k, it is a well-
known fact that the generating function of Z, is given by

(1.1) k() = [909(- - - 9GN],
where there are n iterations on the right-hand side of (1.1). However, for large
ne N, it is in general difficult to perform the iterations and obtain an explicit
expression for 4,. We are therefore interested in various approximations of #,
and the corresponding probability distribution. The pioneering works in this
area are due to Feller [2] and Lamperti [8] and [9].

In order to give our approximation theorems an appropriate form, we shall
consider a sequence of Galton-Watson processes. The random variables of the
nth process are denoted by {Z;™}7_, and the corresponding generating function
by g,. Let us also define the continuous time processes

ZEZ:] _ bn s

n

(1.2) Y, () = te[0, o),
where ¢, > 0 and b, € R are normalizing constants and Z,™ = a, — co.

If we disregard translations of the whole process when we study the limiting
behavior of {Y,(7); t € [0, o)} as n — oo, it is enough to consider the following
two cases (cf. 9):

(A) b,=0forall neN and a,/c, >d > 0 as n — co. (For simplicity we
shall always assume that a, = b, for all ne N)
B) a,=0b,forallneN, b,/c, — oo as n — oo and inf, ., c, > 0.

The plan for the present paper is a$ follows: In Section 2 we make some
preliminary remarks on Laplace transforms and generating functions. Section
3 is devoted to Case A above. We shall prove that under general conditions the
sequence {Y,(7); 7 € [0, o)}, y converges to some limit process {¥(¢); ¢ € [0, o)},
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1028 ANDERS GRIMVALL

if and only if the rowsums in a certain triangular array of independent random
variables converge. We shall also derive a simple differential equation for the
generating function of Y(#). These two results are then used to prove the Feller—
Jirina limit theorem under slightly weaker conditions than those of Jirina [7] or
Lindvall [10]. In fact we can give both necessary and sufficient conditions for
convergence to a certain diffusion process. Furthermore, we can prove that
convergence of the finite-dimensional distributions of {Y,(#); t € [0, 1]} to a non-
degenerate limit implies convergence in the function space D[0, 1] of the corre-
sponding sequence of random elements. In Section 4 we examine Case B and
give convergence criteria similar to those of Section 3.

2. Some preliminary remarks on Laplace transforms and probability gener-
ating functions. Laplace transforms and (probability) generating functions are
usually defined only for probability distributions concentrated on [0, c0). We
shall make the following extended definition.

DErFINITION 2.1. For a probability measure # on (—oo, co) we define its
Laplace transform L by
L(Q2) = §>, e~* p(dx) ,

for all 2 = O such that the integral is finite. The generating function of y is
defined by

9(s) = L(—logs),

for all s e (0, 1] such that the right hand side is defined.

The well-known continuity theorem for Laplace transforms of measures on
[0, o) (see [3] page 431) cannot without restrictions be extended to the gener-
alized Laplace transforms in Definition 2.1. Here we shall only consider a special
case which will cover the situation we are interested in.

LemMa 2.1. Let{Z,,, Z,,, - -+, Z, ,}, be a triangular array of random variables
such that

(i) foreachn, Z,,,Z,,, ---, Z, , arei.i.d.
) Z,;,z—-1,j=1,2,...,n,n=1,2, ....

With S, = Y%, Z, ; we then have
SUP, e x,2e00,a1 E(€Xp(—4S,)) < oo, forall d >0,
provided sup,, .y P(]S,| > ¢) —» 0 as ¢ - co.

Proor. Let
T,(X) = x for |x| <
= & for |x| ==
and put Z, ; = v(Z,;), Z}; = Z, ; — Z, ;. Then, by [3] page 308 both

2.1 {nE(Z, )hew  and  (nE(Z,;)")}nen
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are bounded sequences for all sufficiently large s. Since the |Z, ;| are bounded
by s, there exists a constant K = K(d) such that

lexp(—2Z2,;) — 1 + 22, ;| < K(Z,;)* 1¢[0,4d]
and .
E(exp(—2Z,;) < 1 + A|E(Z,, ;)| + KE((Z,,,;)")
< exp(dE(Z;,,)]) + KE((Z,5)") » 2¢[0,d].
If S, = 3%, Z, ; it now follows from 2.1 that
SUP,, ¢ v,1¢00,01 E(€Xp(—485,")) < oo .
Observing that Z], ; > 0 for s > 1 we have proved the lemma. []

REMARK. Lemma 2.1 can easily be extended to triangular arrays {Z, ,, Z, ,,- - -,
Z, 1 }u» where {k,}, is a sequence of integers tending to infinity.

THEOREM 2.1. Let {¢,}, .~ be a sequence of probability measures and {k,}, ., a
sequence of integers tending to infinity, such that

(i) foreachne N, p,(—o0, —1) =0
(ii) there exists a probability measure p such that

(ta)**n —y -

Then the Laplace transforms L, and L of (u,)**» and p, respectively, exist and, for
every real number d > 0 and compact set C < (0, co), it holds that

(a) L,(2) — L(2) > 0as n— oo, uniformly in 2 € [0, d]
(b) sUpP,ey,zec La'(A) < oo

Proor. Let S, and S be random variables with probability laws (s,)**» and
u, respectively. Then, for all a € R,

IL,(2) — L(2)| < |E(exp(—2 max (S,, a))) — E(exp(—2 max (S, a)))|
+ E(exp(—ZSn)I[snSa]) + E(exp(—A8)is5<q)) -

By the usual continuity theorem for Laplace transforms the first term on the
right-hand side of the inequality tends to zero as n — co, and the convergence
is uniform in 1 ¢ [0, d] for all ae R. But for every &4 > 0

E(exp(—4S,)]s,5a1) < exp(ah)E(exp(—(2 + h)S,) .

Hence, Lemma 2.1 implies that
SUp, ey E(exp(—lSn)I[sns“]') —0 as a— —oo,

uniformly in 2 €[0, d]. Finally, by the Helly-Bray lemma (see [11] page 180),
E(exp(—28)isga)) < lim,_,, E(exp(—2S,) /s, <a1) >

for every a e R such that P(S = a) = 0, and we can easily complete the proof of
the first assertion in Theorem 2.1. The assertion on the derivatives L.’ follows
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similarly by straight-forward estimations of
(575 exp(— (2 + ), 4a(dx) — §75 exp(— ), *Ha(d))

= §2% —xexp(—A4x) exp(—hx) — 1 X en(dx) . [
: —hx
3. Convergence of sequences of normalized, non-centered Galton-Watson
processes. Let Z,™, p,™ and g, have the same meaning as in the introduction
and define random elements Y, in D[O0, 1] by

(3.0) Y, (t) = Wl te[0,1], neN,
where Z,™ = ¢, are integers tending to infinity. Let also y, denote the proba-
bility measure giving mass p,™ to the point (k — 1)/c,.

THEOREM 3.1. Assume that there exists a probability measure p. such that

(#)*"n—, 1, as n— oo .
Then it holds that:

(@) The finite-dimensional distributions of {Y,(1); t € [0, 1]} converge, as n tends
to infinity, to those of some possibly infinite process {Y(t); t € [0, 1]}, which is a
continuous-state branching process to which we have added the absorbing state + oo,

(b) The function B(s, f) = —log F(s, t), where {F(s, t); s, t € [0, 1]} for fixed t
denotes the generating function of Y(1), is for every s e (0, 1) the unique solution of
the differential equation

‘1% — _log L(B(s, ©));  B(s,0) = —logs,
if {L(2); 2 > 0} denotes the Laplace trasform of ..

() Forallt > 0, P(Y(t) = +o0) > 0 if and only if

di

* <VigIm log L(z)

for all sufficiently small 6 > 0. In particular Y(t) is almost surely finite if the ex-
pectation of p is finite.
In order to simplify the proof of Theorem 3.1, we start by proving three lemmas.

LemMA 3.1. Let F,(s, 1) denote the generating function of Y, (¢), 0 < s, t < 1.
Then F,(s, t) is a monotone function of t for fixed s.

Proor. Let g, , denote the function g, iterated k times. Then
k 1/c, c,
F, (s, o = [9, k(sYn)]° .

In order to complete the proof of the lemma, we need only show that g, ,(#) is
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monotone as a function of k. But g, ,(«) is non-decreasing for # < ¢, and non-
increasing for # > ¢,, if ¢, denotes the smallest nonnegative root of the equation

gu(s) = 5. 0
LEMMA 3.2. Let {H(x); x € (0, 1)} be a function satisfying a Lipschitz condition
|H(x) — H(y)| = Kclx — | x,yeC,
for each compact set C C (0, 1). Then the integral equation
A(t) = ¢ + i A(u)H(A(u)) du , te[0,T],
has at most one solution.
Proor. The integral equation is equivalent to the differential equation
A1) = P(A@), A0)=c,
where P(x) = xH(x) is also locally Lipschitz. Hence, A(f) = c if P(c) = 0, while

fao dy — ¢

P(y)
if P(c) =0 [T

LeMMA 3.3. For every fixed s € (0, 1),
inf, .5 F,(s,1) > 0 and SUp,ex Fu(s, 1) < 1.

Proor. Denote the generating function of (g,)***» by G,(s), s € (0, 1]. Then

G (s) = l: RG] ]m:” .

sY/%n

Applying Theorem 2.1 we find that ¢ has a finite and continuous generating

function G(s), s € (0, 1]. Furthermore, for every d > 0, .

(3.1) G,(s) = [Qns(f/‘%:l““ - G(s) as n— oo,
uniformly in s e [d, 1]. Let us now define f,(s) by

3.2) f(s) = Fu s, %) — (G.(Mn)) = (G ()" .

The branching process property then yields the identity
k

(3.3) Fy (3, -) = fulfal - Sl »
n

where there are k iterations on the right-hand side. By (3.2) and (3.3) we get

(3.4) F,\(s, %) —F, (s, J= 1)

n

(e () -
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and

09 n(ot) e man (e () -
= 5+ §i/" Fo(s, )n((Gu(Fo(s, )™ — 1) dt .

First we examine the identity (3.4). By (3.1) there exists a real number d, € (0, 1)
such that

1<G,(s) <2, neN, se[l —dy,1].

Hence there exists an integer n, such that

| Fn<S, —L) ——F,,(s, Q)l_S_F“(s, J = 1>210g2 < 2log2 ’
n n

n n - n

(3.6)

provided n = n, and F,(s,(j — 1)/n) = 1 — d,. Observing that F,(s,0) = s,

(3.6) yields
F, (s, _f.l_> — s

for every se (1 — dy, 1]. In particular

U T A

(3.8) lim,_;, SUPy</nss —1/=0.

(3.7) lim,_, SUPy<j/nzs =0,

4

Recalling that F,’(u, j/n) is a non-decreasing function of u € [0, 1], (3.8) and the
mean value theorem show that

3.9) lim inf,_, SUPy<j/nss Fr' (1 — %0 R L) >1.
n

Furthermore,

4
4 ’ i ’ j
gy{si_do/.F,, (u, L)du—s: R, ( —{l-)}

Cfen(=d D) n (-4 D)3 )

which by 3.7 implies that

0 ’ P
(3.10)  lim, o SUPoz;mes F, (1 -2, _fl_> —F, (1 - %, ’f?) —0.

But the second derivatives F,”(u, j/n) are also non-decreasing. Hence 3.10 can
be strengthened to

. d, | j d
lim,_o SUPy;/nss Fn' <1 - z"_ , %) — F,’ (u, _ﬁ_) =0, u eI:O, 1 — z‘l:l
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and, by (3.9), we can choose d, so small that

F, <u, L) >1  forall ue[0,1] and jjn < 3,.
n

In view of (3.3) this implies that we can write F,(s, 1) on the form

Fn(s’ 1) = gm(gm-l(' o gl(s))) ’
where m < 1/, + 1 and g,(s) = 5/2,j = 1,2, - - -, m, and, consequently,
inf, .y F(s, 1) > 0, s€(0,1).

Similar arguments show that there exists a real number 6, > 0 such that
F, (s, _j_> < s_—_}-__l ,
"\"n/T 2
for all se[0, 1]and j/n < 9,. But this inequality implies that

SupneN Fn(s’ 1) < 1 £l
for each s¢ (0, 1). [

Proor oF THEOREM 3.1. Recalling that F,(s, f) is a monotone function of
te[0, 1] and F,(s, 0) = s, Lemma 3.3 can be strengthened to

inf, oy yeroy Fa(s, £) > 0,
for every se (0, 1). Hence,

SUP e, teron [M((GalFu(s, NV — 1) = K(s) < o0,
and by (3.5)

(3.11) C|\Fy(s, u) — Fo(s, )] < K(s)(ju — 1| + 2/n) .

Since F,(s, t) is a non-decreasing function of s, we can select a subsequence
{n'} C Nsuch that lim,, ., F,.(s, t) = F(s, t) exists for all s € (0, 1) and all rational
te[0, 1]. But then (3.11) implies that

lim,,_,, F,.(s, ) = F(s, t) exists for all se(0,1), ¢e[0,1].

n’ —00

Passing to the limit in (3.5) we obtain
(3.12) F(s, t) = s + \§ F(s, u) log G(F(s, u)) du , te[0,1], se(0, 1),

where 0 < F(s, f) < 1 and G is the strictly positive continuous function defined
in (3.1). '

By the convergence theorem for Laplace transforms, F(s, ) is, for each t¢
[0, 1], the generating function of some possibly defective probability distribution.
Furthermore, Theorem 2.1 and Lemma 3.2 shows that the integral equation (3.12)
determines this distribution uniquely. Applying Helly’s selection theorem we can
then see that {Y,()},.y, for each ¢ € [0, 1], converges weakly to some possibly
infinite random variable. The convergence of the finite-dimensional distributions
of {Y,(#); t€[0, 1]}, .y to those of some continuous-state branching process to
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which we have added the absorbing state 4 oo is due to Lamperti and can be
proved as in [9] page 280. This completes the proof of the first part of Theorem
3.1. The second part follows by differentiation of (3.12). In order to prove the
last part of Theorem 3.1 we recall (3.1). It shows that either G(s) = 1 in the
whole interval (0, 1) or G(s) < 1 in some left-neighborhood of 1. In the first
case F(s, ) = F(s, 0) = s and obviously.

lim, , F(s, ) =1, tef0,1].

8—1

In the second case we notice that A(7) = lim,_, F(s, #) satisfies the integral equation
A() = 1 + §4 A(u) log G(A(u)) du te[0,1],

which can be transformed into the differential equation
(3.13) a—g(Tt)“ — —log G(exp(—B(t))) = —log L(B(?)) , te[0,1],

where B(f) = —log A(t) and L is the Laplace transform of p. However, by
assumption —log L(2) = 0 in some interval [0, ¢] and —log L(0) = 0. Hence
(3.13) has a unique solution B(f) = 0 through the origin, if

g

7 = , for all sufficiently small o > 0.
“TlogL(y y >

If the integral is convergent for some 8 > 0, there is a solution B(?), t€[0, 1],
which is strictly positive in the interval (0, 1] and obviously

lim, , F(s, ) < A() < 1. O

Theorem 3.1 can be interpreted as an invariance principle. The weak limit of
{Y.(t); t € [0, 1]}, y depends on the sequence of reproduction laws only through
the measure . We shall apply this invariance principle to the Feller-Jirina limit
theorem and prove it under slightly weaker conditions than those of Jirina.
Actually the conditions below are the weakest possible as will be shown after
Theorem 3.3. The same result can also be obtained by solving the differential
equation in Theorem 3.1.

TaEOREM 3.2. Let, for each ne N, {Z;™};_, be a Galton-Watson process with
off-spring generating function g,(s) = X pi'™s* and define stochastic processes
{Y.(); 1[0, 1]} by
Zian

Y, () ==t

te[0,1], neN and Z/” =n.

Assume that

(i) m, = Niokp'™ =1+ a,/n, where a, — a as n — o,
(i) 0, = Dok — m)p,™ — B> 0asn— oo,
(il)) Yisen k2™ — 0 as n — oo, for all t > 0.

Then the finite-dimensional distributions of {Y,(#); t € [0, 1]} converge to those of a
process {Y(t); t€ [0, 1]}, which is a nonnegative diffusion process with drift x — ax
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and diffusion coefficient x — fx. The Laplace transform of Y(t) is given by
E(exp(—2Y(1))) = exp(—¢«4)) »

where
leat

if a=+0.
"B (1 e
2a

Proor. Let y, be the measure giving mass p,™ to the point (k — 1)/n. Then
a’ﬂ
m,’ = § xp,(dx) = =
gl
2

(@) = § (x — m, Y (dx) = ~

1§ se X2, (dx) — 0 as n—oco, forall +t>0.

By the central limit theorem for triangular arrays, (p,)*" tends weakly to a
normal law with mean a and variance 8. Applying Theorem 3.1 we find that
the finite-dimensional distributions of {Y,(¢); 1 € [0, 1]} converge to those of a
continuous-state branching process. It remains to prove that {Y,(¢)}, has the
desired limit. By the invariance principle above it is even enough to find one
particular sequence of distributions {p,}, such that (i), (i) and (iii) are satisfied
and {Y,()}, has the desired limit. For simplicity we shall only consider the case
t =1and a« = 0. We shall choose

Pk(m:bncﬂk_l, k:1’2’ 3
Po(n) — 1 _le) _Pz(n) —_— e,
Then Y, (1) has the generating function (f,(s*"))", where (see [6] page 9)

2
m"(l—s")s
m" — s,

(3.14) fuls) =1 —m“( 1 —% )4
m" — s, 1_<m"—1)s
m" — s,
b 1 -5, —c¢
=f'(1)= ——» and = n 7
" f”( ) (1 —cn)z ‘ " K c'n(l —C'n)

The geometric distributions {p,'™}, have variance ¢* = [b,(1 — ¢,*) — 5,7]/(1 —
c,)t. If we choose m = exp(a/n)and ¢, = B/(2 + B), we can easily show that
the conditions (i), (ii) and (iii) are satisfied. Furthermore

and from this the limit theorem will follow by (3.14) and some simple calculus. []
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LeMMA 3.4. Let {Z;™)5.,, {Y,(2); t €[O0, 1]} and p,, be defined as in the beginning
of this section. If Y, (1) converges in distribution to some random variable Y, which
is not identically zero, then {(p,,)*"*s},  y is a tight family of probability distributions.

Proor. Differentiating (3.3) with respect to s we obtain

£ (s £) = s (R (s L))
n n
Since f,’(s) is a non-decreasing function of se¢ [0, 1), Lemma 3.1 implies that,
fork=0,1,2,...,n,

(3.15) (£ (min (s, Fu(s, DI S F (5, 5) < (£ /(max s, Fugs, D)

However, the continuity theorem for Laplace transforms shows that

F,(s, 1) — F(s) ' as n— oo
and
F,'(s, 1) - F'(s) as n— oo,

where F(s) is the generating function of Y. In particular, since the convergence
to F(s) is uniform on [0, 1].

(3.16) inf,

en Fu(s, 1) > 1 as s— 1.

Obviously it is no restriction to assume that F,(s, 1) is not identically 1 for any
ne N. Then the convergence of the Laplace transforms also implies that

sup,.y Fu(s, 1) < 1, 5€(0,1)
inf, .y F,'(s, 1) > 0, se(0,1).

Recalling that f,’(s) is non-decreasing in s, (3.15) yields
inf, ., (f,) ()" = inf, .y F,'(3,1) > 0,
for all s > max (§, sup, .y F,(3, 1)). By (3.15) and (3.16) this implies that

(3.17) inf, .y ocusn Fo' (s, i) —Ks)= K1 —3)>0
n

for some 6 >0 and all se[1 —4,1]. But Lemma 3.1 and the mean-value

theorem show that
F, (s, k+ 1) —F, (s, i)
n n

= z;;an-(fn(s)’ %) — F, (s, %)I

2 n|fu(s) — s|f(min (s, inf, ¢y fu(5))) -
Furthermore, by (3.16) and Lemma 3,1,

IF,”(S, 1) - Sl = 2;3

inf, v f,(s)=1—0,
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for all s sufficiently close to 1. Hence, by (3.16) again,
(3.18) n(f,(s) — 5)—0 as s—1,

uniformly in ne N. If g,(s) as before denotes the generating function of the
reproduction law of the nth Galton-Watson process, (3.18) can be rewritten as

n((g,(sY»))n — 5) — 0 as s— 1.
Hence
n{[g”(sl/c”) cn—l}——>0 as s—1,
Sl/c”

uniformly in n e N. Finally some simple culculus yields

(3.19) G.(s) = [MT” 1 as s—1,

sl/c,n

uniformly in n e N. Here G,(s) is the generating function of the measure v, =
(#,)*"». By (3.19) it follows immediately that

(3.20) Y,(—oc0, —2) —>0 as 1— oo,
uniformly in n € N. But G,(s) can also be written on the form
Gu(s) = L5 9055 + Lia0 4557 = A(5) + B,(5) -

Differentiating with respect to s we find that A4,'(s) is non-decreasing in the
interval (0, 1). It remains to prove that

(3.21) v, (4, 00) —» 0 as 1 — oo, uniformly in neN.
Assume that the converse holds true. Then there exists an ¢ > 0 such that
lim,_, sup, .y {B,(1) — B,(1 — 9)} > ¢.
By (3.19) we also obtain
(3.22) lim, o SUP, o {A,(1 — 8) — A,(1)} > <.
But A,'(s) is increasing. Hence,
A1 — kd) — A,(1) Z k(A1 — 8) — A,(1)
and by (3.22)
lim,_,sup, . {4,(1 — 0) — A,(1)} > ke

for every k € N, which contradicts (3.19). But this means that (3.21) must hold
true and {v,},., must be tight. [ :

THEOREM 3.3. Let, for each n € N, {Z;™}5_, denote a Galton-Watson process with
reproduction law {p,™},. Define continuous-time processes {Y,(t); t € [0, 1]} by
Ziwn

c

Y,ﬂ(t) = Z"™=c,,

n
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where ¢, — oo as n — oo, and let p,, be the measure giving mass p,™ to the point
(k — 1)/c,. Assume that

(i) {Y.(t)}nen converges weakly to some random variable Y(t) for every t € [0, 1]
(i) P(Y(1) > 0) > 0.
Then the sequence {(t,)*"n},.y converges weakly to some probability measure p,
which is uniquely determined by the probability laws of Y(t).

Proor. Let v, and v, be two limit distributions of {(s,)*"}, and denote their
Laplace transforms by L,(2) and L,(2). The differential equation in Theorem 3.1
then shows that L, and L, must coincide. Hence, the tight sequence {(¢,)*"*»}, ¢y
has only one limit distribution, and it must be convergent. The uniqueness of
u is obvious. []

REMARK. Let us return to the Feller-Jirina case treated in Theorem 3.2. In
the proof of that theorem we found that a sufficient condition for the sequence
{Y,(?); te[0, 1]}, to converge to the specified diffusion is that {(x,)*"},cxy
converges weakly to a normal law with mean « anp variance 8. By Theorem
3.3 this condition is also necessary. Hence condition (iii) in Theorem 3.2 is
necessary for the convergence, if (i) and (ii) hold.

Let us now turn to a discussion of weak convergence in the function space
D[0, 1] of a sequence of normalized Galton-Watson processes. By a famous
theorem due to Prohorov a sequence {Y,}, of random elements in D[0, 1] is
weakly convergent, if {Y,}, is tight in D[0, 1] and the finite-dimensional distri-
butions of {Y,(#); ¢ € [0, 1]} converge weakly as n — co. In view of the previous
discussions in this section it is enough to consider tightness of {Y,},. The main
tool in proving tightness will be Theorem 2.2’ in [5], which we state as a lemma.

LEMMA 3.5. Let for eachne N{X, 0, X, 1, -+, X, .} be a real-valued Markov
chain with X, , = O and transition probabilities p™(a, +) satisfying
P(Xn,k+l € El Xn,k = a) = P(m(a’ E)

for all aeR and all Borel sets E. Let also v,'™ denote a measure defined by
v.™(E) = p™(a, a + E) for all Borel sets E, and let Y, denote a random element
in D[O, 1] defined by

k41
Y1) = X, » _’;_§:< ‘n"
=X t=1.

Then the sequence {Y,}, is tight in D[O, 1], if

(i) P(supssesi | Ya(?)] > 2) — 0 as 2 — oo, uniformly inne N
(i) {(Ya™)*"}ace,nen IS tight for every compact subset C of the real line.

If Y,(¢) and g, are defined as in the beginning of this section, it is obvious that

v, = (ﬂn)*“” , a-c,=0, 1,2, ....
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Therefore, condition (ii) in Lemma 3.5 is equivalent to

(i) {(#£)*"}, ey is tight.
Let us now show that condition (i) is automatically fulfilled, if the assumptions
of Theorem 3.3 hold true. We start by proving a simple lemma.

LeMMA 3.6. For any given ¢ > 0 and a > O there exists an integer n, such that
P Y;za) >4

for any sequence of nonnegative independent random variables Y,, Y,, - - - satisfying

P(Y, >¢)>c¢, i=1,2,3,....

Proor. Obviously E(Y;) > ¢*. Furthermore, it is no restriction to assume
that P(Y, < 1) = 1 so that Var (¥,) < 1. A simple application of Chebyshev’s
inequality then yields

P(IZ?=1 Yi_ Zf:lE(Yi)l>k§)§k_§’ k= 1,2, 3, MR
The remaining part of the proof is trivial. []

In Lemma 3.3 we proved that

supneN Fn(s: 1) < 1 ) S (0, 1) N
which in view of Lemma 3.1 can be extended to
SUP, e w,ter0,11 F,(s,0) < I, se (0, 1) .

In terms of the distribution of Y,(7) this means that there exists an ¢ > 0 such
that

P(Y, () >¢e) > ¢ neN, te[0,1].
The branching process character of {Y,(7); ¢ € [0, 1]} and Lemma 3.6 then implies
that, for any a > 0, there exists a real number 5 > 0 such that
PY, ()= a|Y,(t)=¢c)> 3

forallne N, te[0, 1] and all ¢ > b. Applying the (strong) Markov property
we obtain
(3.23) P(Y,(1) = a) = 4P(Supyg;<, Y, (1) = D).
However, the left-hand side of (3.23) tends to zero as a tends to infinity, uni-
formly in ne N. Hence,

P(supyc,<; Y,(f) > ) —0 as 14— oo, uniformlyin neN.

In other words we have now proved that convergence of the one-dimensional
distributions of {Y,(¢); 1[0, 1]} to a non-degenerate limit implies weak con-
vergence in D[0, 1]. '

We shall end this discussion by summarizing all convergence results of this
section.’
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THuEOREM 3.4. Let, for each ne N, {Z;™}5_, denote a Galton-Watson process
with reproduction law {p,™},. Define random elements Y, in D[0, 1] by
Zian ,
c

Y, (1) = te[0,1],neN,

n

where Z,™ = c, are positive integers tending to infinity. Let p, be the probability
measure giving mass p,™ to the point (k — 1)/c,. Then the following statements
are equivalent.

(i) There exists a probability measure p such that

(a) (p,)*¥"n —, p asn— co.
(b) §3 dA/log L(2) is not negative and finite for any 6 > 0, if L denotes the
Laplace transform of p.

(ii) The one-dimensional distributions of {Y,(1); t € [0, 1]} converge to those of
an almost surely finite process {Y(t); t € [0, 1]} with P(Y(1) > 0) > 0
(iii) {Y,}.cy converges weakly in D[0, 1] to a continuous-state branching process.

4. Convergence of sequences of normalized and centered Galton-Watson
processes. Let {Z;}7,, {p."}» 9.(s) and p, have the same meaning as in
Section 3. Define random elements Y, in D[0, 1] by

ZE:%] - bn ,
C

Y,.() = 0tl,

n
where Z,™ = b,, b,/c, — oo as n — oo and inf, . y ¢, > 0. We shall now, exactly
as in Section 3, prove that the convergence of the sequence {Y,(f); t € [0, 1]}, is
closely related to the convergence of the rowsums of a certain triangular array
of independent random variables.

THEOREM 4.1. Assume that there exists a probability measure p such that
(#,)*¥™n —, o as n— oo.

Then the finite-dimensional distributions of {Y,(1); t € [0, 1]} converge to those of a
stochastic process {Y(1); t € [0, 11} with independent increments. Furthermore, Y(t)
has the generating function (G(s))', where G(s) is the generating function of p.

Proor. Let G, and F,(-, f) denote the generating function of (y,)*"*» and
Y,(7), respectively. Then

_ gn Sl/c,n nb,
(4.1) G,,‘(S) - §1/¢” )
and
k _ . 1/c b, «—b,/c
(4.2) Fy(5-0) = (0,000 - Guls/om))Psses

where there are k iterations on the right-hand side of (4.2). In order to simplify
(4.1) and (4.2) we introduce the notation

[a(5) = [9a(8V0)]n = G ()"
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and let f, , and g, , denote the kth iterates of f, and g,, respectively. Obviously
the branching process property yields

Solfap=s(8)) = fui(8) = [Ga,u(s¥")]

which, in turn, implies that

Fy (5 5) = [fus(o)wonssorn

fn’k(s) = sF, (s, ﬁ)cn/bn )
n

Now we can easily see that

Py (5 5 D) — B (5 5) = smownl (s — fus9P]

n n

(4.3) = [L)" (6, fu s — 1

_ Fn (s, _k_) [Gn (sF” (s, k)on/bn>1/n _ 1] .
n n

Summing up the equations in (4.3) with respect to k we obtain

(4.4)  F, <s, i) — 1 4 §¥/n Fo(s, Dn[G,(sF.(s, fywsy» — 1]dt .
n

or, equiualently,

By Theorem 2.1 G, converges uniformly on compact subsets of (0, 1] to the
continuous strictly positive function G. Hence, for all d ¢ (0, 1],

4.5) SUP,craatmen B|G ()Y — 1] = M(d) < oo .
However, (4.3) shows that

() ()
1 n

provided F,(s, k/n) = s*»/°s». Furthermore, F,(s, t) is a monotone function of
te[0, 1], since Lemma 3.1 holds also in this case. If F,(s, ¢) is increasing,

(Y2051 2 <1 o ) (),

and, by induction,

(4.6)

2r (o k) 0.

n

(4.7) F,,<s,£><exp< M(s“‘)) k=0,1,2,--,nn=1,2,-.
n

If F,(s, t) is decreasing

(D) 1 () (1 M) 2 1 o ) (209,

provided n is larger than some n(s) and F,(s, k/n) = s*»°». Recalling that
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b,[c, — oo, induction gives

(4.8) F,,<s, _:_>exp<_2_]‘%ﬁ>, k=0,1,2,--,n,

for all n larger than some n,(s). Hence, by (4.5), (4.7) and (4.8)
SUP; croa1men Fu(Ss NG, (SF,(s, £)°n/bu)/m — 1| = K(5) < o0
for all se (0, 1]. Applying (4.4) we obtain
[Fu(s, 1) — Fu(s, 0)] = (It — u| + 2/m)K(s) -

Exactly as in the proof of Theorem 3.1 we can then select a subsequence {n'} C N
such that

lim,,_, F,.(s, t) = F(s, t) exists for all se(0,1], te[O0,1].
Passing to the limit in (4.4) we obtain

F(s, 1) = 1 4 \§ F(s, u) log G(s) du
i.e.
F(s, 1) = G(s)t, 5€(0,1], te[0, 1].

In particular the limit is independent of the sequence {r’}, which proves that
4.9) lim,_,, F,(s, ) = G(s)*, se(0,1],te]0, 1].

We shall now prove that the convergence of the generating functions F,(s, f)
implies weak convergence of the random variables Y, () to the desired limit.
Theorem 2.1 shows that M(d) — 1 as d — 1, which in view of (4.6) implies that

F,(s, 1) — 1 as s— 1, uniformlyin neN.

Employing the same technique as in the proof of Lemma 3.4, we can easily see

that {Y,(9)},.y must be tight for each ¢ [0, 1]. Furthermore, Y,(f) can be

written on the form

(4.10) Yo(t) = e, X = 1
c

n

where X;™(f) is the number of individuals in the [nf]th “generation” of the nth
Galton-Watson process, who are “descended” from the jth “ancestor.” Hence,
if {n'} C N is a subsequence such that Y,.(f) converges in distribution to some
random variable Y(f), Theorem 2.1 and (4.9) imply that F(s, f) = G(s) is the
generating function of Y(#). The uniqueness theorem for Laplace transforms,
which holds true also for measures on (— oo, + o0), if the transforms are finite,
then shows that the tight sequence {Y,(¢)}, has only one limit distribution.
Therefore, {Y,(7)}, must converge weakly to some random variable Y(¢), neces-
sarily having G(s)’ as its generating function. As for the convergence of the
finite-dimensional distributions and the character of the limit process we refer
to Lamperti (see [9] page 283). []
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Proceeding in the same spirit as in Section 3 we can also prove a converse of
Theorem 4.1.

THEOREM 4.2. Let {Z;™}5.,, {p™), and p, be defined as in Section 3. Put

Y,n(t) = ZE:;] _ b‘n , f€ [0, 1] s

n

where Z™ = b,, b,/c, — c0 as n— oo and inf, ¢, > 0. Assume that Y, (1)
converges weakly to some random variable Y(f) for every te[0,1]. Then, the
sequence {(t,)*"*n},, .y converges weakly to the probability law of Y(1).

PROOF. As usual we let F,(s, f) and F(s, ) denote the generating functions of
Y,(¢) and Y(r), respectively. Writing Y, (7) as in (4.10), Theorem 2.1 yields

F,(s,t) > F(s,t) > 0 as n— oo, se(0,1], 1[0, 17,
and the convergence is uniform in s ¢ [d, 1] for every d e (0, 1). In particular
(4.11) F,(s, 1) —1 as s— 1, uniformlyin neN.

With the same kind of arguments as in the proof of Lemma 3.1 we can show that
F,(s, f) is a monotone function of # € [0, 1]. Hence (4.11) can be strengthened to

(4.12) SUP,en teron) [Fu(ss ) — 1| >0 as s—1.

However, the monotonicity of F,(s, #) also implies that the integrand in (4.4)
must have the same sign for all + > 0. By (4.12) and (4.4) again

SUp,cy $o #|G(sF, (s, t)n/*n)/* — 1| dt — 0 as s—1.

For any given ¢ > 0 we can then choose s, < 1 arbitrarily close to 1 and such
that
inf, 1017 1|G (80 F oSy 1)/Pa)m — 1] < &

for all ne N. But at least for all n larger than some n(s,)

Sol(2 — 50) £ 8o F (89, 1) < (1 4 50)/2, tef0,1].
Hence,
(4'13) infae[so/(z—so),(1+30)/2] lnGn(S)l/” - 1[ < €, n g ”(so) ’
which implies that
(4.14) SUP, ¢ [0/ 3-s9), (1+ag/21 Tu(8) > €7

for all sufficiently large n ¢ N. Next we observe that G,(s) can be written on the
form

Gu(s) = 2538 q2js™m 4+ Lo g, W87 = A,(s) + B,(s)

where the 4, are non-increasing and convex, while the B, are non-decreasing
and uniformly bounded. Then by (4.13)

SuPneN An(SO/(z - so)) < oo,
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which in view of the convexity of 4, implies that
(4.15) SUp, ey |4, (1 —d) — 4,(1)] -0 as d—0.

But s, in (4.14) could be chosen arbitrarily close to 1. Hence, combining (4.14)
and (4.15), we get

SUD, ¢ [4y/a-sg), (142721 Ba(8) = By((1 + 50)/2) > e~
for all sufficiently large n € N, which shows that
(4.16) " B,(s)—>1 as s— 1, uniformlyin neN.
Finally, (4.15) and (4.16) implies that
G,(s) — 1 as s— 1, uniformlyin neN.
But the methods from the proof of Lemma 3.4 will then show that the sequence

{(#n)**s},en is tight.

Furthermore, every limit distribution of this sequence must have F(s, 1) as its
generating function according to Theorem 4.1. Therefore, a reference to the
uniqueness theorem for Laplace transforms will complete the proof of Theorem
4.2. [T

Let us now prove that {Y,},. is also convergent in the function space D[O0, 1],
if the assumptions of Theorem 4.1 hold true. Since F,(s, ) is a monotone func-
tion of 7 ¢ [0, 1], the convergence of F,(s, t) to F(s, f) shows that

(4.17) SUP,en,teron Faul(s 1) < o0, se(0,1].
Interpreting (4.17) and (4.12) in terms of the distribution of Y, (7) we get
(4.18) SUP,e v, seton P Ya(D)] > 2) -0 as 21— 0.
By the branching process property there exist measures v, , such that /

Vit(E) = P(Y,(1) € E)
and
P(Y,(1)eE|Y,(s) = a) = ’,’:,(:f’.'ﬂ”)(E)

for all Borel sets E. Furthermore, by (4.18)

» ..
{v¥}lenteron 1S tight.

The proof is then completed in the same way as the corresponding proof in
Section 3. [T

We summarize all convergence results of this section in the following theorem.

THEOREM 4.3. Let {Z;™}7_,, Y,(¢) and p, have the same meaning as in Theorem
4.1. Then the following three statements are equivalent.

(i) The one-dimensional distributions of {Y,(t); t € [0, 1]} converge weakly to
those of some stochastic process {Y(1); t € [0, 1]}.
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(ii) There exists a probability measure y such that
(a)*™n —, pt ’ as n— oo
(iii) {Y,},.x converges weakly in the function space D[0, 1].

Furthermore, the limit process {Y(t); t € [0, 1]} is always a process with homogeneous
independent increments such that p coincides with the probability law of Y(1).

We shall complete this discussion on limit theorems for sequences of Galton-
Watson processes by stating an analogue of the Feller-Jirina limit theorem in
the case of centered Galton-Watson processes. The proof of that theorem is an
obvious consequence of Theorem 4.3 and the central limit theorem for triangular
arrays.

THEOREM 4.4. Let {Z;™}5_,, {p,'™}, and Y, be defined as in the beginning of this
section. Assume that

i m, = Yr.kp™ =1+ a,c,/nb,, where a,, — a as n — oo,
(i) ¢, = Xpo (kK — m,)’p,'™ = B,c,?[nb,, where B, — 8 > 0 asn— oo,
(iii) (nb,/c,’) Xiste, K'pi™ — 0 as n — oo, for every t > 0.

Then, {Y,},.y converges weakly in D[0, 1] to a Brownian motion {B(t); t ¢ [0, 1]}
with drift a and Var (B(1)) = B. Furthermore, condition (iii) is necessary for the
convergence to {B(t); t € [0, 11}, if (i) and (ii) hold true.
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