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ON THE DISTRIBUTION OF THE NUMBER OF
SUCCESSES IN INDEPENDENT TRIALS!

By LeEoN JAY GLESER
Purdue University

Let S be the number of successes in # independent Bernoulli trials,
where p; is the probability of success on the jth trial. Let p = (p1, p2, «- -,
Pn), and for any integer ¢, 0 < ¢ < n, let H(c|p) = P{S < c}. Let p® be
one possible choice of p for which E(S) = 2. For any # x n doubly stoch-
astic matrix II, let p® = pMII. Then in the present paper it is shown
that H(c|p?) < H(c|p®) for 0 < ¢ < [2 — 2], and H(c|pY’) = H(c|p®)
for [2 + 2] < ¢ < n. These results provide a refinement of inequalities for
H(c | p) obtained by Hoeffding [3]. Their derivation is achieved by apply-
ing consequences of the partial ordering of majorization.

1. Introduction and summary. Let S be the number of successes in n

independent Bernoulli trials, where p; is the probability of success on the jth
trial, 0 < p; < 1. Let

(1.1 P=(Ppi " sPa)s
and for any integer ¢, 0 < ¢ < n, let
(1.2) H(c|p) = P{S < ¢}

For fixed c, we are interested in the relationship between H(c|p) and H(c|p'®),
where p® and p® each belong to the region

(1.3) Dzz{pi()épiél,i:1,2,~~-,n;z;‘=lpi=2}.

That is, p®* and p'® are sequences of probabilities for the independent Bernoulli
trials each of which result in an expected number of successes, E(S), equal to 4.
Hoeffding ([3] Theorem 4) has shown that for all p € D,,

(1.4) 0 < H(c|p) < H(c|n*(4, 4, - -+, 2)) if 0Zc<g[4A—2],
(1.5) H(c|n™%4, 2, ---,2) < H(c|p) £ 1 if [A4+2]Zc<n,
where

(1.6) H(c[n {4, 4, + -+, 2)) = Yoo (’;) (%)k(l - i>"_k,

n

and [x] denotes the greatest integer < x. Hoeffding ([3] Theorem 4) also
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obtained bounds on H(c|p) for ¢ = [2 — 1], [4], and [2 + 1]. These will be
discussed at the end of Section 3.
To motivate the major result of the present paper, let

1.7) p*(A) =nY4, 4, -+, 2)
and
(1.8) pA)=(,1,...,1,2—[4],0,0, ---,0),

where in f(2) there are [4] ones and n — [A] — 1 zeroes. Note that both p*(2)
and f(2) are elements of D,. We have already noted the role p*(4) plays in
Hoeffding’s bounds (1.4) and (1.5), giving the upper bound to H(c|p) for 0 <
¢ <[4 — 2]in (1.4) and the lower bound to H(c|p) for [2 4+ 2] < ¢ < nin(1.5).
On the other hand, we have H(c|p(2)) = 0for 0 < ¢ < [4 — 2] and H(c|P(2)) =
1 for [2 + 2] < ¢ < n; these, of course, are the lower and upper bounds to
H(c|p) in (1.4) and (1.5) respectively.
Now note that for any p € D,;, we can write

(1.9) p*(i) = pII*,

where II* is an n X n doubly stochastic matrix, all of whose elements are n~'.
Also, for any p € D,;, we can write

(1.10) p = B(A)IL(p),

where II(p) is an n X n doubly stochastic matrix. [This fact follows directly
from Lemma 2.1 of Section 2.] It is thus apparent that proof of the following
theorem would yield Hoeffding’s inequalities (1.4) and (1.5) as corollaries, and
would provide a more detailed picture of the behavior of H(c|p) as a function
of p.

THEOREM 1.1. Let p¥ € D, and suppose that there exists a doubly stochastic
n X n matrix Il for which

(1.11) p?® = p@II.

Then p® € D, and

(1.12) H(c|p?®) < H(c|p?) if 0gsc=<[2—-2],
and

(1.13) H(c|p®) = H(c|p?®) if [A+2]Zc<n.

In Section 2, we apply Ostrowski’s ('[1] Theorem 15) fundamental theorem
on majorization to the problem of ordering, over various choices of p e D,
the expected values Eg(S) of any function g(k) on 0, 1,2 ..., n. The results
obtained in Section 2 are then used in Section 3 to prove Theorem 1.1.

2. Majorization. A 1 x n vector x is said to majorize a 1 x n vector y if

-1 -1 —
Xpy Z Yo X+ X = Y+ Yo s LIS X 2 D5 e and X, X =
Y. Yy Where the x;,;’s and y;;’s are the components of x and y, respectively,
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Yur's). The relation of majorization to doubly stochastic matrices is given by
the following result of Hardy, Littlewood, and Pélya ([2] page 49). (Note: In
[1] this result is incorrectly attributed to Karamata.)

arranged in descending order (x;; = xy;; = -+ = xq,;, and similarly for the

LeEMMA 2.1. The vector X majorizes the vector y if and only if there exists an
n X wdoubly stochastic matrix Il such that y = xII.

The following result, originally due to Ostrowski (see [1] pages 30-33), relates
majorization to the ordering of the values of functions F(z) over regions of n-
dimensional Euclidean space.

LemMA 2.2. Let F(z) be a permutation-symmetric function defined on n-dimension-
al vectors z = (2, 2y, - -+, 2,). Foranyi,j, i+ j, and all z in a permutation-sym-
metric region D, suppose that

oF oF
2.1 =z, ( - ~> >0.
@.1) @= ) (5~ 5) 2
If x, ye D, and if X majorizes 'y, then
2.2) F(x) 2 F(y).

A permutation-symmetric function satisfying (2.1) over a region D is said to
satisfy a Schur condition on D. It should be remarked that the condition that F

be permutation-symmetric (i.e. F(z,, z,, - - -, 2,) = F(Z,0ys Zy@y> = *» Zomy) for all
permutations ¢, all z, ---, z,) is incorrectly omitted from the statement of

Ostrowski’s lemma in [1].
Let g(k) be any function on 0, 1, - - ., n, and let S be the number of successes

in n independent Bernoulli trials, where p; is the probability of success on the
jth trial. Let
(2.3) h(p) = Eg(S)
for p = (p1, pas - - +» pa). Then A(p) is a permutation-symmetric function defined
over the region
D={z:0=5z<1,i=12,...,n}.
LEMMA 2.3. For any two components p, and p;, i < j, of p,

@4 (= p) (ThRL_ POV) o, — pyy TSk P9)AIK)

p: 9p;
where for any function s(k) defined on the nonnegative integers
(2.5) As(k) = s(k + 2) — 2s(k + 1) + s(k)

is the second difference of s(k), where p*/ is the 1 x (n — 2) vector formed by
deleting the ith and jth components of p, and where

(2.6) f(k|p¥9) = probability of k successes in the n — 2 trials
other than trials i and j;

fork=0,1,...,n— 2,
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Proor. We adopt the convention that f(k |p*)) = 0 for k < Oor k >n — 2.

Under this convention,
2.7) PSS =k} = (1 = p)(1 — p)f(k|p9) + (pi + p; — 2pips) f(k — 1] DY)
o i f(k—2]pY).
Using (2.7), we find that the left-hand side of (2.4) is
oh oh ‘i
@8  (p—py) (2O IO 3y gh sk — 210%)
s op;
It is now easily shown that the right-hand sides of (2.4) and (2.8) are equal. []

As a corollary of Lemma 2.3, we can prove a result earlier obtained by Karlin
and Novikoff [3].

CoROLLARY 2.1. Suppose that g(k) is convex on 0,1, ..., n — 2, in the sense
that Ag(k) =2 0,k =0,1, ...,n — 2. If p e D; and if p® = pVII, where II is
any n X n doubly stochastic matrix, then p® € D, and
(2.9) h(p(l)) é h(p(2)) .

ProoF. Since Ag(k) =0,k =0,1,...,n— 2, —h(p) satisfies a Schur con-

dition, as can be seen from (2.4). Hence, Lemmas 2.1 and 2.2 imply that
—h(P?®) = —h(p?®), from which (2.9) immediately follows. []

Karlin and Novikoff [5] proved Corollary 2.1 in a somewhat different way.
Their proof, however, embodies the ideas underlying the usual proof of Lemma
2.2.

From Corollary 2.1 and the arguments in Section 1 relating any p € D, by
doubly stochastic matrices to p*(2) and p(4), it follows that for any g(k) convex
on0,1,...,n— 2, and any pe D,,

(2.10) (1 — d)g([4]D + 99([4 + 1]) = K(p) = Eg(S)
" n\ [ A\ ANk
< o0 () (2 (1 1)
where 6 = 2 — [4].

The result (2.10) implies that E|S — b|%, for any a = 1 and any real number
b, is highest over D, when S has a binomial distribution with parameters »n and
n~'4 (i.e., p = p*(4)), and lowest when

S=[2+1], with probability 4,
=[1], with probability 1 — 4
(i.e., p = p(2)). The upper bound in (2.10) was first obtained (using a different
method) by Hoeffding [3]. The lower bound in (2.10) can also be obtained by
the methods in Hoeffding’s [3] paper.

3. Proof of Theorem 1.1. For fixed integer ¢, 0 < ¢ < n, let

(3.1 gy =1 if 0<k<c
=0 if c+1<Zk<n,
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Then

(3.2) H(c|p) = E(9,(5)) -

Note that g (k) is not convex on 0,1, ..., n — 2 when ¢ < n — 1, so that we
cannot directly use Corollary 2.1 to prove Theorem 2.1. Instead, we make use

of Lemmas 2.1 to 2.3.
First note that forc < n — 1

Age(k):l’ k:C,
(3.3) =—1, k=c—1,

=0, otherwise.
Thus, from Lemma 2.3,

3.4 . — P, <3H(6lp) _ aH(CIp))
64 - (7, .
= —(p — pP(f(c|P¥) = flc = 1|p¥)) .

Now, Samuels [7] has shown (using a well-known inequality attributed to
Newton) that if f(k) is the probability of k successes in m independent Bernoulli
trials, and if Y7, kf(k) = =, then f(k) is increasing in k for k < [r] and
decreasing in k for k = [r + 1]. Hence, using the characterization of f(k|p*)
given in (2.6), and noting that Y32 kf(k|p*) = 2 — p, — p;, we have that
(3.4) is nonnegative for ¢ = [4 — p, — p; + 2] and nonpositive for ¢ < [2 —
p: — p;]- Since 0 < p, + p; < 2, all i = j, this result means that for all p € D,
(3.4)is < 0forc < [2 — 2]and = O for ¢ = [4 + 2]. Thus, the bounds (1.12)
and (1.13) in Theorem 1.1 follow by a direct application of Lemmas 2.1 and
2.2. 01

ReMARk 1. Hoeffding ([3] Theorem 4) also showed that for all p e D,,

(3.5) 0 < H([A — 1]|p) < H(A — 1]|n7Y(4, 4, -+, 1),
and
(3.6) H(A + 11|07, 4, -+, ) < H(2 + 1][p) < 1.

It might be thought that more detailed results for the cases ¢ = [4 — 1], ¢ =
[2 + 1], similar to the results in Theorem 1.1, can be obtained. That is, we
might suspect that p® € D,, p® = p™II for doubly stochastic II, implies that

(3.7) H([2 —1][p®) = H([2 — 1][p®),
(3.8) H([2 + 1][p®) =2 H([2 + 1][p™) .

The inequalities (3.7) and (3.8) do not, however, always hold. Inequality (3.7)
holds if p® is restricted to belong to the subset

DY ={p:peDy[A—1]<[A—p, —p]<[A+1] all ij}

of D,, as can be seen from the proof of Theorem 1.1. (Note: if p*’ € D,’ and
p® = p®II, II doubly stochastic, then p® e D,.) Similarly, inequality (3.8)



SUCCESSES IN INDEPENDENT TRIALS 187

holds if p is restricted to the subset
D} ={p:pe DAl =[A—p—pl=[2+1] all i#]}
of D,.
That (3.7) does not hold in general can be seen by letting n = 4, p*¥ = (1, §,
1, 1), and

110 0
1 1 0 0
12 2

(3.9) m=(22 0 0
0001

Here, 1 =2, p® = (%a %a %’ %)’ ['2 - 1] =1, and
H([2A — 1]|p?®) = & > £% = H(2 — 1]|p?) .

That (3.8) does not hold in general can be seen by letting n = 4, p* = (4, 0,

3,3),and Il beasin (3.9). Here 2 =171, p® = (%, %, %, 3), [A + 1] =2 and
H(A + 1]|p®) = 55 < 8838 = H([2 + 1]|p?).

Since when 2 is not an integer, Theorem 4 of [3] does not even show that
H([2]|p) is bounded by the values of H([4]|p) for p = p*(4) and p = P(2), it is
unlikely that an ordering between H([4]|p®") and H([4]|p®), for p*® = p¥II
that always goes in the same direction for all p € D,, all doubly stochastic II,
can be demonstrated. Indeed, it is easy to find examples in which H([2]|p?) <
H([2]|p®) for one choice of p® € D; and a doubly-stochastic matrix II, and in
which H([2]|p®) > H([4]|p®) for another choice of Il and p”’ € D,. The case
when 2 is an integer is more interesting, since in this case Theorem 4 of [3]
states that

HG | n7(2, 2, -+, 4) < H@A|p) < 1
for all pe D,. Thus, for any p® € D, it is possible to find a doubly stochastic
matrix I mapping p® into p® = n%(4, 4, - - -, 4) for which
H(Z|p®) = HA[p™),
and unless p® = n~%(%, 2, - -, 2), this inequality will be strict (see [3]). On
the other hand, even in this special case it is unfortunately true that we can
find a p® ¢ D, and a doubly stochastic matrix II such that

H(2|p™I) > H([p®) .
For example, let p® = (4,0, %,%), n =4, and Il be given by (3.9). Then
A= 2a p(Z) = (%a i’a %a %)a and

H2|p¥) = 48 > 384 = H2[p®).
REMARK 2. Hoeffding ([3] Theorem 5) also showed thatif 0 < b <1< c<n,
then for all p e D,,
H(c|p*(2)) — H(b — 1|p*(2))

(3.10) S Pb<S<c}=H(c|p)— Hb—1]|p)

<1.
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Correspondingly, as a corollary to Theorem 1.1, we can establish the following
result.

THEOREM 3.1. Suppose 0 < b < [2— 1] and [A +2]< c < n. Let pYeD,
and let p» = p®II, where Il is an n X n doubly stochastic matrix. Then

(3.11) H(c|p®) — H(b — 1|p®) < H(c|p®) — H(b — 1]|pW).

REeMARK 3. For the possible statistical applications of the results obtained in
this paper, the reader is urged to read Section 5 of [3], and also the comments
in [4] and [7].
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