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THE EXTENT OF DISCRETE DISTRIBUTIONS

By R. M. MEYER

University of Rochester

The extent & of a probability distribution is defined to be the range
of its probability measure, thus, it represents the set of possible probabilities
of events. The structure of & is examined for discrete distributions with
(countably) infinite support. An application is considered.

1. Introduction. For any random variable X with cdf F it is clear that as B
varies over the class <% of Borel sets, P(B) = {, dF varies within [0, 1]. The
range & of P is termed the extent of the corresponding distribution. Although
& = [0, 1] if F is continuous, the nature of & is not so clear in other cases. &
is the set of possible probabilities of events. Here we investigate & in case the
distribution is discrete with infinite support.

2. Preliminary results. We begin with the basic

DEerINITION. Let {a,}, be a sequence of real numbers such that 3 |a,| < oo,
and let S = {s} be the family of all subsets of {0, 1, 2, ...}. The extent & of
{a,} is the set of real numbers {}, ., a,; s S}.

For purposes of investigating the extent of discrete distributions with countab-
ly infinite support, there is no loss of generality in assuming that the support is
{0, 1,2, --.} and each term is positive. For such distributions {a,},, & is a
subset of [0, 1], symmetric about 4 and including 0 and 1. The (geometric)
distribution a, = (3)"** has full extent & = [0, 1] whereas the distribution
{¥%> 1% s a5, - - -} has not since any ¢ satisfying 3, < § < 4 or 8, <6< &%
fails to belong to &

By using a Cantor Diagonalization argument on any subsequence {a, } of {a,}
satisfying: 0 <a, <34, a, <(a,_)"*, m_,<n (i=12,...) it can be
proved that the extent of {a, } hence of {a,} is uncountable.

The set &, which is dense in itself, is closed and hence perfect. For, let {4,}
be a sequence in & converging to (some) . (0, = X,0,,a;;0;,, = 0,1; n =1,
2, -...) First let {0,”} be any subsequence of {d,} chosen so that 4 = d,* =
lim inf,, d,,; thus 6, = 6,*a, + X}, 0% a;,(n = 1,2, --.). Nextlet {0,"} be any
subsequence of {d,*} chosen so that 6{) = 6,* = lim,, inf 6}); thus 9, = d,*a, +
0*a, + 3, 00a; (n=1,2, ...) and so on. Since the common limit of all of
these (sub) sequences is &, it follows that § = 3}, 0,*a, and so é ¢ &.

Upon examining relationships among the extents &, of {a,},* (m =0, 1,
2, .- -) we obtain the following: '

THEOREM 1. For a distribution {a,} define T, = a, + a,,, + ---. If for all n
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sufficiently large a, > T,,, and, as n — oo, 2" T, — O then the measure of the extent
& of {a,} is zero.

Proof consists of showing that the conditions guarantee that the measure of
the set of points in [0, 1] not belonging to & is one.

From Theorem 1 follows that the Geometric distribution a, — p(1 — p)* has
extent of measure zeroif § < p < 1 (in fact, for p = 3, & is the Cantor Ternary
set) and the Poisson distribution a, = e~*2"/n! has extent of measure zero for
any 4 > 0.

3. Additional results. For any distribution of the type being considered and
any ¢ € [0, 1] define a bounded, non-decreasing sequence {P,}o> as follows:

Py=a,, if g, <€, P,=P,,+a,, if P,_,+a, <€
=0, if a>¢, =P, ,, if P,_,4+a,>¢ (n>0).
Now P, 1 P < &and clearly if P = £ then £ € &. Furthermore, if P,_, =P, for

some n then § — P,_, < a, so that if P,_, = P, for infinitely many n, P, — &
and £ ¢ &. Thus we have

THEOREM 2. For a distribution {a,} define T, = a, + ay,; + - - -. Ifa,< T,
(n=0,1,...)then & = [0, 1]; ifa, < T,,, (n = N) then & has positive measure.

For the first part, the hypotheses guarantee that for any £ € (0, 1), P,_, = P,
for infinitely many n, hence & € & and & is full. The second part follows by
considering &, the extent of {a,}y~. Thus, for example, the Geometric distri-
bution has full extent for 0 < p<i

Alternate conditions determining the measure of & are based upon the asymp-
totic behavior of the familiar ratios a, s/a,. Thus we have

THEOREM 3. For the distribution {a,} define A = liminf,a,, ,/a, and A =
limsup, a,,,/a,. If A < L then & has measure zero; if A > % then & has positive
measure (with no conclusion if A < } < A).

The above theorem follows since the conditions 4 < 3 and 4 > § imply the
conditions (respectively) of Theorem 1 and Theorem 2.
From Theorem 3 follows that

(a) log-convex distributions (a,’>a,_,a, +n=1,2,...)for whicha,,,/a, | A
always exists have full extent if 4 > % and measure zero extent if 4 < 1.

(b) log-concave distributions (a2 < a, ,a,,, n= 1,2, -..) for which
a,.1/a, 1 A always exists have extent of measure zero if A4 < % and positive
measure if 4 > . The Logarithmic series distribution a, = af™n + 1 (0K
¢ < 1) is log-concave, for example, with 4 = 4.

4. Continuation. Let S be a subset of [0, 1]. An open interval I C [0, 1]\S
is called a gap interval of S. The supremum g of the lengths of all gap intervals
of S is called the gap of S. Clearly if S, C &, then g, > g, where g, is the gap
of §; (i =1,2). If § = &, the extent of a distribution {a,}, then g is called the
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gap of the distribution (or its extent). Clearly, g = 0 if & is full whereas the
Geometric distribution, for example, has gapg=2p—1fori<p<l.

THEOREM 4. For a distribution {a,} with extent & the gap of the distribution
satisfies: g < max, a,.

The proof follows since S = {T,, T}, - --} C & and the gap of S is max, a,.

For a distribution such as the Poisson (1), g is small even for 2 > 1 (g — 0
as 4 — oo); however for 2 < 1 g is surprisingly large. Specifically, we have the
following values for (1, g): (.20, .62), (.40, .34), (.60, .19), (.80, .15), (1.00,
.10). Thus, for example, with 2 = .20 there is an interval of length .62 in
which the probability of no event can fall.

Possible improvement of probability inequalities could result using the knowl-
edge of extent and gap. Suppose 4 is an event (subset of 0, 1, 2, .. .) such that
P(A) < ais known. If « lies in a gap interval / = (a,, a,) of the distribution
we can automatically improve the inequality to P(4) < a,. Similarly for reverse
inequalities. Maximum improvement is g, the gap of &.

5. Concluding remarks. Further properties related to extent have been con-
sidered and will be presented later. Thanks to M. C. Trivedi who determined
gaps for the Poisson distribution.
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