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APPLICATIONS OF SPACE-TIME HARMONIC FUNCTIONS
TO BRANCHING PROCESSES

By TuoMas H. SAvITSs
University of Pittsburgh

In attempting to determine the growth properties of a branching pro-
cess (b.p.), a standard method of attack is to look for the appropriate
martingale. Here we show that for many b.p., this really corresponds to
looking for the harmonic functions associated with the space-time process.
As a particular application of the above we show that in the case of the
classical Galton-Watson continuous time process with m < oo there exists
constants ¢(f) such that Zi/c(t) converges w.p.1 to a nontrivial random
variable.

0. Introduction. In the study of branching processes, one problem of particu-
lar interest is the growth behavior of the population. Martingales have proven
themselves to be an extremely useful tool in the study of this problem. The
reason they are so useful is because of the known convergence theorems in the
general theory of martingales. Consequently if one succeeds in finding a martin-
gale, it is usually relatively easy to show convergence. Of course it is generally
more difficult to show that the limit random variable is nontrivial. Thus one
wants not only to find martingales, but one needs to find the “appropriate”
martingale.

The purpose of this paper is to delineate a systematic approach to the problem
of finding martingales. The approach is in a sense not new since it is well known
that harmonic functions of Markov processes yield martingales, but this method
seems to have been overlooked in the theory of branching processes. Further-
more, the “correct” harmonic functions to be used in studying the growth be-
havior of branching processes are not the ones associated with the branching
process itself, but rather those associated with the space-time branching process.
This paper will be an attempt to illustrate the utility of this method.

1. General theory. Let X = (X,, P,) be a Markov process with state space S.
We shall always assume that X has right-continuous paths and that  is a “nice”
topological space; i.e., a locally compact second countable Hausdorff topological
space. The associated infinitesimal generator is denoted by 4 and its domain by
Z(A), in either the strong or weak sense (cf. Dykin [2]). It follows that if
fe 2(A), then '

(1.1) M, = f(X,) — f(X) — §i Af(X,) du
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62 THOMAS H. SAVITS

is a martingale (with respect to each P,). In particular, if Af = 0, then f(X,) is
itself a martingale. Functions 4 € Z/(A4) such that Ak = 0 are said to be har-
monic (or A4-harmonic) functions. Consequently harmonic functions give rise
to martingales.

(1.2) REMARK. One could also talk about sub (super)-harmonic functions.
These in turn give rise to sub (super)-martingales.

Consider now the associated space-time Markov process Y = (Y,, P, ,)on E =
S x [0, o). This is nothing more than the direct product of the given process
X and an independent uniform motion process on the half-line [0, co) moving
to the right with constant speed one. In particular then, Y, = (X,, t 4 ) a.s.
P The infinitesimal generator B for Y is

9
1.3 B=244.
(1.3) =+

The associated B-harmonic functions will be called space-time harmonic func-
tions of X; i.e., they are those H € ZZ(B) satisfying the backward heat equation
BH = 0. Note that H is a function of two variables, space and time.

(1.4) REMARK. One may also consider discrete time Markov processes X =
(X;, P,) on S. In this case the role of the infinitesimal operator is played by
(1.5) Af(x) = E[f(X)] — f(x) -

Thus it is easily seen that any function % such that the right-hand side of (1.5)
makes sense pointwise and satisfies 44 = 0 gives rise to a discrete time martingale
h(X;). As in the continuous time case we can analogously consider the corre-
sponding space-time functions. They are those functions H defined on E = S x
{0, 1,2, ...} for which the right-hand side of (1.6) makes sense and vanishes
pointwise.

(1.6) BH(x,]) = E, ,[H(X,, 1)] — H(x, j)
= E[H(X,,] + 1)] — H(x,]) -

Let us now consider the case of a branching Markov process (bmp). Accord-
ing to Ikeda, Nagasawa and Watanabe [4], a bmp on S is a Markov process
X = (X,, P,) on S having the branching property

(th S = th
for all f e B(S) with sup {|f(x)|: xe S} < 1. Here S = (J_, S", where S° = {9},
0 being an isolated point, $* is the quotient topological space of the n-fold

Cartesian product by the equivalence relation of permutation, § = S U {A} is
the one-point compactification of S, T, is the induced semigroup of X and

fix) =1 if x=29
1.7 = f(x1) f(x3) - -« f(*x2) if x=1[x,...,x,]es"

We shall also assume that X is right-continuous and strong Markov.
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The space-time harmonic functions for X are those functions H e Z(B)

satisfying BH = 0 where
(1.8) B=§;+A on §x [0, o).
There are two problems to be contended with here. The first has to do with A.
Although A is a linear (in general unbounded) operator on S, its form is rather
complicated. This is true even in the case when X is a (T,%, K, #) process, or
more particularly an [ X, k, z] process (cf. [4] III, page 99; see also Remark (1.16)
for an intuitive description). Most bmp of interest belong to the above classes
and we shall only consider these types here. It turns out, however, that A re-
duces when restricted to two special classes of functions. Fortunately, these
two classes seem to be rich enough for applications. More will be said about
these in a short time.

The second problem has to do with Z(B) or Z(A). Again it seems to be a
formidable task to describe <Z(A) even in the case when X is a (7%, K, w) pro-
cess. Under some regularity assumptions Ikeda, Nagasawa and Watanabe were
able to describe two subclasses of Z(A) for an [ X, k, =] process ([4] III). Again,
these subclasses have to do with the two special classes of functions mentioned
above.

Rather than concern ourselves directly with these technical problems, we shall
adopt the following point of view. In most cases of interest, one can write down
the formal generator with relative ease, at least in the case of the so called A-
and V-harmonic functions (see (1.10) and (1.13)). Next one looks for formal
solutions of the equation BH = 0. Then one either shows directly that H(Y,)
is a martingale or that H ¢ Z(B).

Let us now discuss the two special classes of functions. The first class consists
of those measurable functions H on S x [0, co) satisfying

(1.9) a,5=*H,

where H,(x) = H(x, t). Note that we only need know H, on S to know it on all
of S. Consequently, if we set &, = H,|S, then H, = k,.

(1.10) DEerFINITION. The formal solutions % of the equation BA = 0 will be
called the A-space-time harmonic functions of X, or more briefly the A-harmonic
functions.

In the case when X is an [X, k, 7] procéss, the A-harmonic functions 4 are
solutions of the equation

(1.11) %’t_l+Ah+k[F(.;ht)—h]=0 on S x [0, o)

where A is the infinitesimal generator of X and F is the operator given by

F(x; f) = §sa(x, dy)f(y) -
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The second class consists of those measurable functions H on $ x [0, oo)
satisfying
~—
(1.12) H,|S = H,
where
fx)=0 if x=9 or A
= f(x) + -+ + f(x,) if x=1[x,...,x,]es".
If we set h, = H,|S, then H, = h,.

(1.13) DErFINITION. The formal solutions % of the equation Bk = 0 will be
called the V-space-time harmonic functions of X, or more briefly the V-harmonic
functions.

In the case when X is an [ X, k, ] process, the V-harmonic functions are solu-
tions of the equation

(1.14) %’+Ah—|—k[G(-;ht)—h]=0 on S x [0, o)

where A is the infinitesimal generator of X and G is the operator given by
G(x; 9) = §s 7(x, dy)J(y) -
(1.15). REMARK. Note that (1.11) is non-linear whereas (1.14) is linear.

It should be mentioned that not all processes of interest can be represented as
an [X, k, ] process; in particular, the age dependent process with general lifetime
distribution cannot. This process is, however, a (T, K, 7) process.

(1.16) ReEMARK. Intuitively a (T, K, z) process can be described as follows.
Let X° = (X%, P,° (") be a given Markov process on S with lifetime {° and let
n(x, dy) be a given stochastic kernel on § x §. If X is the associated bmp, then
a “parent object” behaves like X° on S up to time {°. At that time this parent
object dies. If it dies at position z ¢ S, it is replaced with n “newborn progeny”
starting at position y = [y, - - -, y,] with probability z(z, dy). Each newborn
object behaves independently of the others and in the same fashion as its ancester.
Here T, is the induced semigroup of X and K is a stochastic kernel describing
the joint distribution of time and position of parental death. Thus for small

values of ¢, we formally have
T, f(x) = E[/(X)] = E[f(X); t < {1+ E[f(X,); t = ]
= T'f(x) + P < 1) Y3 7 (x, dy)f(y) + o(t)
for xe S. Since P,°({* > t) = T,°1(x) and A = lim, , [T, — I] we see that
Af(x) = Af(x) — L1(x) - F(x; f)

where F is as in (1.11). This formal derivation can be made rigorous provided
1 e Z(A4°) and f is sufficiently nice. (A4° is the infinitesimal generator of 7,°.)
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Similarly we see that
Ag(x) = A°%g(x) — A°1(x) - G(x; f)

where G is as in (1.14).

If X° is obtained from a conservative Markov process X on S by “killing” it
with a nonnegative function k we call the corresponding bmp X an [X, k, x]
process. By this we mean that if U is an exponentially distributed random
variable independent of the process X and having mean one, we set X,° = X, for
t < {° where {* = inf {t = 0; {{k(X,)du > U}. In this case A1 = 0 and it is
not hard to see that 4° = 4 — kI, where A is the infinitesimal generator of X.

2. Examples. Recall that every space-time harmonic function H gives rise
to a martingale H(Y,) with respect to each probability measure P, ,. In the
following, we shall only be concerned with x €S and ¢ = 0. Consequently,
H(X,, ) is a martingale with respect to each P,, x ¢ S.

A. Galton-Watson process-discrete time. In this case since S consists of a
single point we identify S with {0,1,2, ---} U {oo} and interpret X; as the
number of particles at time j. We shall write the A- and V-harmonic functions
as h(j) instead of A(x,j), xe S. Let =, be the probability of producing n off-
spring,n =0, 1, 2, - .-, withz; = 0. (It is not necessary to assume r, = 0, but
we do so to be consistent with the INW set-up.) The generating function f is
given by f(s) = 27, m,s" |s| = 1.

(i) V-harmonic functions. These harmonic functions satisfy

(2.1) h(j) = GIA(j + )] = Zaoonm,h(j + 1) = mh(j + 1)

forj=0,1,..., where m = > °_, nrm, is the mean number of new-born progeny.
Note that if m = 0 or co, there are no nontrivial solutions of (2.1). If 0<m< oo,
then we have 4(j) = h(0)m~7. There is no loss of generality in assuming A(0) = 1.
Consequently we obtain the classical result that H(X;, ) = Ii(Xj, J) = m™X; is
a nonnegative martingale and hence converges w.p. 1 to a random variable .
It isknown that W is nontrivial iff m > 1 and }}3_, (nlog n)x, = E,(X log X,) < oo

(cf. [5])-
(ii) A-harmonic functions. In this case 4 satisfies
(22) h(j) = FIh(j + )] = 3w + 1) = fTh(j + 1)].

If m, # 1, then f(s) is a strictly increasing function on0 < s < 1. Let f~'be its
inverse. Consequently one solution of (2.2) is given recursively by

h(j + 1) = f7Th())] J=01,...
where we take 4(0) = ¢, ¢ < ¢ < 1 with ¢ being the extinction probability. So
H(X;,j) = [A(j)]*i is a martingale and being nonnegative it converges w.p. 1 to
a random variable W. Thus, X; log A(j) — log W w.p. 1. This result is fairly
recent and is due to Seneta [6] and Heyde [3]; furthermore, they show that W
is nondegenerate if 1 < m < oo.
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In the case m = oo, Seneta [7] has shown that there are no normalizing con-
stants ¢, such that ¢,~*X, converge in distribution to a nondegenerate limit.

B. Multi-type process-discrete time. Here S = {a,, - - -, ay} consists of a finite
number of types. We identify S with the nonnegative integer lattice in N-di-
mensions. Particle “i” splits according to the generating function f(s,, - - -, sy).
We assume that the associated stochastic kernel r satisfies z(i, §) = 0, all i.

(i) V-harmonic functions. # satisfies the equation

h(i, j) = G[i; A(+,j + 1)] for i=1,..-,N,j=0,1, ...
In vector form, we have
(2.3) k(j) = MK (j + 1)

where h(j) = (k(1,j), - - -, K(N, j)), “’” denotes transpose and M is the N X N
matrix of first moments with entries

ore
My = L1, 1) 1<pgsN.
q

We shall assume that all the m,, are finite.
If M is invertible, then the only finite solutions of (2.3) are given by
H(j) = M=3H(0) j=0,1,
and A(0) may be arbitrary. Thus,
H(X;,j) = X; - h(j) = X; M=K (0)
is a martingale, where X; = (X}, - - -, X;") with X, being the number of par-
ticles of type “i” at time j.

Solutions of (2.3) exist also in the case when M is not invertible. Let 4 be
any nonzero eigenvalue of M and ¢ an associated right-eigenvector. Then A(j) =
A-9¢ satisfies (2.3) and

H(X;J) = 27X, &
is a martingale. If we assume that M is positively regular, then from the
Frobenius theory it follows that there is a largest eigenvalue p which is simple,
real and positive; furthermore there are positive right and left eigenvectors v
and u respectively associated to p which we take to be normalized such that their
inner product u - v = 1. The nonnegative martingale p=9X; - v thus converges
w.p. 1 to a random variable W. Clearly W is trivial if p < 1 since extinction
occurs w.p. 1 in this case. Kesten and Stigum [5] proved the beautiful result
that W is nondegenerate iff p > 1 and E,[X;*log X;}*] < o0, 1 < i, kK < N; more-
over, they showed that
o X; > Wu w.p.l.
(ii) A-harmonic functions. % now satisfies
h(i, j) = Flis h(+,j + 1)] i=1,.--,N;j=0,1, -
= fTA(LJ + 1), -5 BN, j + D]
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In vector form,
(24 h(j) = fTh(G + 1)] .
C. Galton-Watson process-continuous time. We have the same set-up as in

Example A except now each particle waits according to an exponential distri-
bution with parameter 4 and then splits according to the generating function

f(S) = Z::O n'”s'”,

(i) V-harmonic functions. Here we have the differential equation
dh
(2:5) - (0 = 0lh(t) — G(h(9)]
= b[h(t) — mh(1)] .
We assume that m is finite. Then
h(t) = h(0) exp{—b(m — 1)1}

is the solution. Choosing 4(0) = 1 and settinga = b(m — 1) we get the classical
result that
H(X,, t) = e=*X,
is a nonnegative martingale and hence converges w.p. 1 to a random variable
W. Asbefore W is nontrivial iff m > 1 and E,(X,log X,) = Y7 ,7,(nlogn) < oo
(see Athreya [1]).
(ii) A-harmonic functions. In this case, 4 is a solution of

% = b[A(t) — F(h(1))]

(2.6) = bh(t) — b X 5, h"(t)
= blA(r) — f(h(1))] -
Let m > 1 and g < ¢ < 1, g being the extinction probability; then A(r) defined
implicitly by the relation
Sf(t) d& - bt
=1
satisfies (2.6). Furthermore 0 < 4 < 1. Consequently
H(X,» 1) = [A(O)]
is a nonnegative bounded martingale which therefore converges w.p.1 to a
random variable W. Taking logarithms,
X, log h(t) — log W w.p. 1.

This is the continuous time analogue of Seneta’s result and seems to be new.
By applying Seneta’s result to a discrete skeleton for X, we deduce that W is
nondegenerate; i.e., fix some #, > 0. Then defining Y, = X, , we see that Y =
(Y,) is a discrete time bmp with generating function ¢(s, ¢,) = E,[§(Y,)]. Letting
h(t) denote the solution of (2.6) with initial condition #(0) = ¢, ¢ < ¢ < 1, one
can show that A(nt,) is a solution of (2.1) for the Y process. One way to do this



68 THOMAS H. SAVITS

is to consider the function A(s) = ¢[A(s + ¢), s]. It follows that 4’(s) = 0, which
implies that 4(s) = 4(0). Consequently,

o[h(s + 1), 5] = h(¢) and so
h(nty) = $[A((n + 1)t), ] -

By Seneta’s result [A(nt,)]¥» = [h(nt;))]*=t, converges to a nontrivial random
variable, which must be W.

D. Multi-type process-continuous time. We modify Example B by letting
particle “i” wait on exponential time with parameter b, before splitting according
to the generating function fi(s,, - - -, sy).

(i) V-harmonic functions. We are now interested in solutions of

dn’
2.7 = B(I — M)#K'
@7 o =B(— M)

(written in vector form), where B is a diagonal matrix with entries 5, and M is
the matrix of first moments as before. Letting C = B(M — I) we have that

k(1) = e “H'(0) .
Consequently,
H(X,, ) = X, - k(t) = X,e~*h(0)

is a martingale for any choice #(0). In particular, if we choose 4(0) to be a right-
eigenvector £ of C with associated eigenvalue 2 (i.e., £ satisfies C§" = 2¢’), then
e*X, . € is a martingale. From this K. Athreya [1] shows under the assump-
tion of positive regularity and non-singularity that X, - e=** — Wu w.p. 1 where
W is a nonnegative random variable, p is the maximum (real) eigenvalue of C
and u is an appropriately normalized left-eigenvector associated with p. As in
the discrete-time case, W is nondegenerate iff p > 1 and E[X,* log X;*] < oo all
1<i, k<N.
(ii) A-harmonic functions. In this case we have the system of equations

'Zh Lh() — i), - - -5 hy(1))] i=1,...,N.

(2.8)

The solutions of (2.4) and (2.8) will be investigated in the future. It is believed
that these solutions will provide the analogous Seneta-Heyde results for the
multitype process. One can also consider the space-time harmonic functions
for an age-dependent process. Some initial work has been undertaken in this
direction and the results will be published in a future paper.
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