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RANDOM WALKS IN A RANDOM ENVIRONMENT

By FReED SoLoMON

Swarthmore College

Let {ax} be a sequence of independent, identically distributed random
variables with 0 < a, = 1 for all n. The random walk in a random envi-
ronment on the integers is the sequence {X,} where Xo = 0 and inductively
X1 = Xu + 1, (Xu — 1), with probability @x,, (1 — ax,). In this paper
we consider limit theorems for the random walk in a random environment.
We show that ‘‘randomizing the environment’’ in some sense ‘‘slows down’’
the random walk in Section One. The remaining sections are concerned
with features of this ‘‘slowing down’’ in some simple models.

0. Introduction. Let {a,}>., be a fixed sequence of numbers between 0 and
I; we can define a random walk on the integers Z with transition matrix
M(n,n + 1) = a,, M(n,n — 1) = 8, =1 — a,. Suppose now that {a,} is a
sequence of random variables wtih 0 < a, < 1. We can still perform a random
walk by first choosing a particular fixed sequence {a,’} in accordance with the
distribution of {a,} and then using the transition matrix M(n,n + 1) = a,’,
M(n, n — 1) = 8,’. The difficulty is in trying to say something about the'random
walk without knowing which particular “environment” {a,’} has been chosen.
If X, denotes the position of the random walk at time n, then {X,} is not, in
general, a Markov chain. To see that the future, given the present, is not in-
dependent of the past, consider that each time we hit and leave a given integer
J increases our certainty in the value of a; until by the law of large numbers

a;=PX, =]+ 1|X,_, =], Xyegy = Ip_gs -+, Xy = i; environment {a,})

is completely determined as the number of hits at j approaches infinity. The
complexity is somewhat alleviated by assuming the environment {a,} to be a
sequence of independent, identically distributed random variables.

We construct the process on the Cartesian product of the set of environments
and the set of paths. ILe., if N={0, 1,2, ...}, then we define a probability
measure on ([0, 11?7 x Z¥, &), where a = {a,} € [0, 1]” and w € Z" correspond
respectively to an environment and to a path, and & is the o-field generated
by the cylinder sets. A natural way to define a probability on this space is to
specify the probability law governing the set of paths given a fixed environment.
Thus, let M, be the Markov chain measure on Z¥ determined by setting w, = 0
and the transition matrix M,(n, n + 1) = a,, M (n,n — 1) = 8, = 1 — a, where
a@ = {a,} is an environment. On the environments [0, 1]7 let Q be a product
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2 FRED SOLOMON

measure so that {a,} is independent, identically distributed. Now for 4 C
environments [0, 1]7 and Q C paths Z¥ measurable with respect to the o-fields
generated by the cylinder sets let

P(4 x Q) = §, M(Q) dQ(a) -

A monotone class argument shows that M, (Q) is measurable as a function of
the environment @ — so P(4 x Q) is well defined. It is easily seen that P ex-
tends to a g-additive probability on the field generated by {4 x Q: 4, Q meas-
urable}. And the Caratheodory Extension Theorem shows that P extends to a
probability measure on ([0, 1]7 x Z%, 5).

The random walk in a random environment is formally defined as the process
{X,} defined on ([0, 1}* x Z¥, &, P) where X, (a, 0) = o,.

It follows directly from the construction that {X,} is a Markov Chain on Z
which moves only to neighboring points at each step when the environment is
fixed. Also, if {X,} has a certain property almost everywhere (a.e.) for almost
every (a.e.) fixed environment, then {X,} has this property a.e. IL.e.,

0.1) THEOREM. Let Q C ZV be measurable. Suppose M, ({X,}eQ) =1 for
a.e. environment a. Then P({X,} e Q) = 1.

PROOF. P({X,} Q) = § M(Q)dQ(a) = 1.

This theorem provides the basis for finding the limit behavior of {X,} in the
next section.

1. Basic results. The limit behavior of {X,} can be obtained by fixing the
environment and considering the limit behavior of the resulting Markov chain.
For those cases in which the random walk tends to +oco or to —oo a.e. we
calculate the limit of the “speed” n~* . X,. A calculation of the expected number
of times the random walk hits each integer concludes this section.

When the environment {a,} is fixed, Chung [1], page 65-71, uses systems of
difference equations to derive results which we summarize in Lemmas (1.1) and
(1.5). The limit behavior of the random walk in a random environment (Theo-
rem (1.7)) will be obtained by applying fluctuation theory to Lemma (1.5).

Fix the environment {a,} and let {X,} be the Markov chain on Z with transi-
tion matrix

M(n,n+1)=an, ,M(n,n—l):ﬁ,t:l—a.
Let
fij = P(X, =], some n>0|X,=1i),
m;; = mean recurrence time from i to j.
(1.1) LEMMA. Fix {a,} with 0 < a, < 1 for all n; set g, = B,/a, and

pﬁ:gl...g‘n’ n>0
=0_, " 0,, n<O.
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(i) Leti <j; then

= (Bme ) (Bl ) < 1

n J n J
(1.2) if To-L <o
. - 1
:‘1’ l.f Zn=l = 0.

(ii) Let i > j; then
(1.3)  fu=(Z%m0; - 0N Znoj0; 00 0) < 1, if Deepn < 0
=1, if 2a1Pp=o00.
(iii) If fy = 1, then
(1.4) my =(140)+ X5 (l +0;4)0; - 0.
(1.5) LEMMA. Fix {a,} with 0 < a, < 1 for all n. Then
(1) Zemi(pon)™ = 00, Nusy 0, < oo implies lim,_,, X, = oo a.e.
(i) Xroi(p-)t < 00, X, 0, = oo implies lim,_,, X, = —oo a.e.

(i) Yoy (p_p)™t = 00 = Xx., p, implies {X,} is recurrent. In fact —co =
liminf, ., X, < limsup,_. X, = oo a.e.

n—oo

Proor. (i) If
1

-n

Dine1 = 0, Din=t Pn < 00,

then Lemma (1.1) implies f;; = 1 for i <j, but f;; < 1 for i > j. Therefore
lim,_, X, = oo a.e. Cases (ii) and, (iii) are also clear from Lemma (1.1).

We will use Lemma (1.5) to derive the limit behavior of {X,} when the a,’s
are independent, identically distributed random variables. This suggests that
we find conditions on {,} under which 3] (o_,)"%, 3 p, are finite. The neces-
sary machinery is summarized in

(1.6) LemMA. Let {Y,} be a sequence of independent, identically distributed,
nondegenerate, finite valued random variables; let S, = Y, + ... 4+ Y,.

(i) XDwin'P(S, > 0) < oo if and only if lim,_,, S, = — oo a.e. in which case
e, e < oo a.e. '

(i) Dy nP(S, > 0) = 00 = Xz, nP(S, < 0) if and only if —oo =
liminf, S, < limsup,_., S, = oo a.e. in which case 3,7_, e™5n = co = Y1%_, €Sn
a.e.

Proor. The “if and only if” parts follow from fluctuation theory. (See [2],

Chapter 8.) The second assertion in (ii) is trivial. Thus we show that if
lim, .S, = —oo a.e., then }] eS» < oo a.e. Stone [8] has shown that under
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the conditions of the lemma either

. S . S
lim supﬂ_,w_i‘- = oo a.e. or lim,_,, _;’- = —oo a.e.
n n
But lim___ S, = —oo a.e. Therefore
lim”_mﬁ = —oco a.e.
nt

Hence S, < —n? eventually. Thus there exists an N such that
0< o pen< Yo ye™ < oo ae.
A complete characterization of the limit behavior of {X,} can now be given

in terms of the random environment {a,} by combining Lemmas (1.5) and (1.6).

(1.7) THEOREM. Let {a,}",, be a sequence of independent, identically distributed,
nondegenerate random variables with 0 < a, < 1 forallnor0 < a, < 1 forall n.

() If D=, nP(p, > 1) < oo, then lim X, = oo a.e.
(i) If Nz, n'P(p, < 1) < oo, then lim,_, X, = —oo a.e.
(iii) If Do, (o, < 1) = 00 = 3, n7P(0, > 1), then {X,} is recurrent;
in fact —oo = liminf,_, X, < lim sup, .., X, = oo a.e.
If E(In o) is defined ( possibly + o), then (i), (ii), (iii) correspond respectively to
(i") E(lno) < 0,
(ii") E(lng) > 0,
(iii") E(In ¢) = 0.
Notice that the two series in (i) and (ii) cannot both converge simultaneously
since 3 n=P(p, = 1) < oo. (See [2] Chapter 8.)

Proor. First suppose 0 < a, < 1 for all n. We prove (i), cases (ii) and (iii)
being similar. So, suppose

Eft Pno, + o + 100, > 0) = Tin Koy > 1) < oo

Then Lemma (1.6) implies
Z::l On = Z:}o=1 e&n < co a.e.
where S, = Ing, + --- + Ing,. Now p, = p_, in distribution. Thus

Zflf:l_i_ = oo a.c.

-n

Hence Lemma (1.5) implies that for a.e. fixed environment lim,,_,,, X,, = oo a.e.
Now randomizing the environment gives :

P(lim X, = o0) = 1

n—00

as in Theorem (0.1).
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If a, = 1, (a, = 0), with positive probability, but a, > 0, (a, < 1), for all
n, then it is clear that case (i), (case ii), holds.

Suppose that E(In ¢) is defined. SetS, =Ing, + --- +Ing,. Then E(Ino) < 0
if and only if lim,_,, S, = — oo a.e. if and only if

ZL%H&>D=Z%%H&>®<W

by Lemma (1.6). Thus (i’) corresponds to (i). Similarly (ii") and (iii’) correspond
respectively to (ii) and (iii).

The law of large numbets or Birkhoff’s Ergodic Theorem cannot be used to
find lim, ., X, /n directly since the sequence {X; — X;_,} is not strictly stationary
(unless {«,} is degenerate). Suppose that {X; — X;_,} is strictly stationary; then
PX,—X,=1,X,— X, =1)=PX, — X, =1, X, — X, = 1). Butitisan easy
exercise to show that this is true if and only if

E(a,?) = (Ea,)?

which is true if and only if «, is degenerate.
However, the sequence of ladder variables z, is strictly stationary. Let

T,=0
T,=min{k > 0: X, = n}, if sucha k exists
= o0, if nosuch k exists
t, =1, —T,_,, nz=1

and define z_, and T_, similarly.

(1.8) THEOREM. Suppose limsup X, = oo a.e. Then each v, is finite a.e. and
the sequence {z,}? is strictly stationary and ergodic.

Proor. If limsup X, = oo a.e., then trivially z, is finite a.e. That {z,} is
strictly stationary follows from the strict stationarity of {a,}. To show {z,} is
ergodic, we show that {r,} is strongly mixing—the central idea being

(1.9) LemMA. Let Ay, -+, Ay, By, - -+, B; C Z be such that
B,c(0,m—k], s=1,.--,j.
Then for m > k
(1.10) P(r,ed,1<r<kyz,, B, 1 <5 <))
= P(r,eAd,,1 <r<k) . Pr,eB, 1 <s<)).

Proor orF (1.9): Recalling the definition of M, in the introduction, it is clear
upon fixing the environment « that

(1.11) M(r,ed,1<r<k7,,,eB,1 <s5s<))
=M(r,e A, 1 Zr<k) - M(t,,,€B,,1 <5=Z))

since M, is a Markov chain.
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Now

(1.12a) M, (z, e A,, 1 < r < k)ismeasurable with respect to & {a,}*2} where
F{a,}t.l is the o-field generated by {a,}*2).

But X,,, =X, + land r,,, <m —k, 1 <5 <jimply that X, > k during the
excursion from m to (m + j). Therefore

(1.12b) My (T, € B,, 1 < s < j) is measurable with respect to {a,}7 if B, C
O,m—klforl <s5s<j.

Combining the fact that {a,}*;! and {a,}y are independent with (1.11), (1.12)
and integrating with respect to dQ(a) yields (1.10).

Lemma (1.9) has an intuitive interpretation. If m > k and if it is certain that
the random walk in its excursion from m to (m -+ j) has not doubled back far
enough to hit (k — 1), then {z;, - -+, 7} and {z,,,1, - - -, T,y ;} are independent.

We apply Lemma (1.9) to prove the strong mixing of {z,}. It suffices to show
(1.13) lim, ,, P(r,ed,, 1 £r<kyz,,,eB,1 <s5=))

=Pir,ed,1 <r<k) - Pr,eB,1 <s=)).
Let ¢ > 0 and choose N such that
P(r,e B, — (0, N) foratleastone s;1 <s=<j)<e.
Then
P(T,,GA,,, 1 é ré k; 1-m+seBc n (O’ N]’ 1 é &) g])
(1‘14) éP(T'reAr’lgrék;rm+ceﬁs’1§s§j)
éP(T,GA,,, 1 érék;fm_l_,eB, n (O’N]’ 1 éséj)_l'e‘
Applying Lemma (1.9) to the extreme members of (1.14) for large m implies
Pir,eA,1<r<k)y -Pizr,eB,n(0,N],1 £5<))
<lim,_ ,P(r,ed,1 <r<kit,,eB,1 <s5s<))
< P(t,ed, 1 £r<k)-Pr,eB,n(0,N,1<s=<j)+e.

Letting N / oo and ¢ \ 0 implies (1.13) and thus completes the proof of The-
orem (1.8).
Before applying the Ergodic Theorem to {r,} we compute Er,.

(1.15) THEOREM.
14+ Eo

1 — Es’
= oo, Es=1.

Er, = Esc < 1

Before proving the theorem it should be noted that Es¢ < 1 implies X, — oo
a.e. To see this note that P(p, > 1) < Ep, = (Eo)*. Thus Eo < 1 implies
> n~'P(p, > 1) < oo which in turn implies that X, — oo a.e. by (1.7).

PrOOF OF (1.15). The above remark shows that if lim sup X, < o a.e., then
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Eg =z 1. But in this case Er, = oo since P(r, = c0) > 0. We therefore prove
(1.15) assuming lim sup X, = o a.e.
Fix the environment {a,} such that lim sup, ., X, = oo a.e.

E(r [ {a,} fixed) = (1 4 00) + X} (1 4 0,.)0; - - - 0,

by (1.4). Taking the expectation with respect to the environment yields Er; = oo
when Eo > 1 and when Eo < 1

Bey = (1 + Eo)(1 + X (Boy—9) = £ T 27

(1.16) THEOREM. (i) Eo < 1 implies

limﬂ_m—TL —1+Eo a.e., lim, X, _1—-Eo a.e
n 1 — E¢ n 1 4+ Eo¢

(i) E(e7') < 1implies
lim T = 1+ E(¢™) a.e., lim_, ~Z» — —_lﬂ

" 1 — E(¢7Y) " n 1 + E(e7Y)
(i) (Eo)™ < 1 < E(s7?) implies

lim,_,, T, = o0 = limn_,mli a.e., lim, X, =0 a.e.

n n n

Notice that the three cases concerning ¢ in this theorem are mutually exclu-

sive and exhaustive. That this is so is a consequence of Jensen’s Inequality, i.e.,
(Eo)™t < E(a7Y).

PROOF OF (1.16). The results for T, are a direct result of Theorems (1.8),
(1.15), and Birkhoff’s Ergodic Theorem. (At least this is true when lim sup X, =
oo a.e. When limsup X, # oo a.e., i.e. when X, —» —co a.e. by (1.7), then
a.e. T, = oo for large n. So n~'T, — o a.e. But in this case Eo = 1 by the
remark before the proof of (1.15).) The result for T_, follow from those for
T, by a reversal in the roles of the positive and negative integers.

Now we will prove the results for X, assuming the results for T,, T_,. Let
k, and I, be the unique nonnegative integers such that

T, =n< Typi1s T, =n< T ;-

In case (i) X, — oo a.e. by the remark following the statement of (1.15). Thus

k,— oo a.e. Now X, < k, + 1; also, by time n the random walk has already
hit k, and since it moves only one integer at each step

kné'Xﬂ_l-(n_ Tk“)‘
Thus

(1.17) ﬁ_(l_T"n>gX"<k"+l.
n n n n
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But the definition of k, implies

2
T

n

(1.18) lim, .,

k .
" = llm”_wo
n

Thus to find the limit behavior of X, in case (i) it suffices to combine (1.17),
(1.18) with the observation that n~'T, —1 a.e.
The proof in case (ii) is similar, but uses /, instead of k. In case (iii) note that

T,
k

T_, n
n S -
L=,

n

=

n
-
n kﬂ

so that k,/n — 0 a.e. and [,/n — 0 a.e.
But

X, <k,+1, —I,—1<LX,
by definition of k,, [,.

So

-1, —1 <_)£'n_<k,,+1

n n n

which completes case (iii) since the extreme members of this inequality tend to
Oa.e.

When {X,} is recurrent, it is reasonable to conjecture that lim,_, n~* - X, = 0
a.e. This conjecture is, of course, correct since Theorem (1.16) implies that
lim_ n~'. X, exists a.e. and so this limit must be O in the recurrent case.

An interesting feature of Theorem (1.16) is that the random environment
“slows down” the random walk in certain cases. That is, if each a, is replaced
by Ea, then the law of large numbers implies

lim,_,, X, _ Ea — EB a.e.
n

But Jensen’s Inequality implies

1\-?
<E—> < Eax
o
Hence
1
(1)
1 —Es _ @’ since o = L.
1+ Ec' E<-1—> o
a
<2Ea —1
= Ea — EB.

and similarly

_1 =B > ga — EB.
1¥ E@D) —
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Le., in cases (i) and (ii) of Theorem (1.16) the limit of the distance covered per
unit time is less in the random environment than in the fixed environment with
each a, = Ea.

Even in case (iii) it is easy to see examples in which the random environment
“slows down” the random walk in some sense. For example, if we choose a
distribution for « such that (E¢)~' < 1 < E(¢~") and Ea # §, then n'X, tends
to 0 a.e. in this environment while n~'X, tends to a nonzero constant a.e. in
the fixed environment with each a, = Ea. (An example of a random variable
« satisfying these requirements is given by

l —«
g =
o

o =01, with probability p
=6-7,  with probability ¢

where § > 0butf =1, p=1—gbut p+ 0, , or 1. It is an easy exercise to
show that & or ¢ defined in this way satisfies (Eo)™ < 1 < E(07"), Ea # §).

An interesting consequence of Theorems (1.7) and (1.16) is that when
E(lno) < 0 and Es = 1, even though X, — oo a.e., we still have n™*. X, — 0
a.e. (Notice that E(In¢) < 0 and Es > 1 automatically implies that case (iii)
or (1.16) holds since E(In o) < 0 implies Es—* > 1 by Jensen’s Inequality.) Sec-
tion Two is devoted to certain examples of this. The next theorem may help to
explain another aspect of this phenomenon.

(1.19) THEOREM. Suppose limsup, ., X, = oo a.e. Let G; = E (number of
k = 0 such that X, = j| X, = 0).

() If Eoc < 1, then

1+ Eo _; ,
G, =-—-1"—" .(Eo)7, < -1
s o G =
1+ Eo ,
= ) 20
1 —Eo /=

(ii) If Eo = 1, then G; = oo, for all j.

Proor. Case (ii) clearly holds when —oo = liminf X, < limsup X, = oo
a.e. So suppose lim, ., X, = oo a.e. Let

G,; = G = E(number of k > 0 such that X, =j|X, =i, a = {a,} fixed)

fii=f4=PX,=Jj, some n>0|X,=ia={a,) fixed).
Then (see [1] page 53)
(1.20) G,;=0;+f;G;;» where 0,;,=1,i=j; 6,,=0,i+].
Now a.e.

fu=11i<]
=(Z=i05 - 0N 05 -0 0,) < 1, i>]
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by (1.2), (1.3). So

fis = @if5,5 + Bifio;
=(Bio;+ Xnoin 0 0, ) Du 0500 0,)
Using (1.20) with i £ j gives

Gia—fiiGu="ﬂ1—.'Z:=:01 ) i<j
i
=ﬁij-2:=,.a,----o,,, i>J.
Ie.,
G, = i © Dmmivi Ot Oy
B;

where i vV j = max {i, j}. Taking expectations with respect to the random en-
vironment completes the theorem.

Notice that when }; n='P(p, > 1) < oo and E(s) = 1 an unusual situation
occurs: Although the random walk originating at zero has zero probability of
hitting — 1 infinitely often, the number of times it does so has infinite expectation.

2. The slow approach to infinity: an example. In this section we consider
the case lim, ., X, = o a.e., but lim,__, n72X, = 0 a.e. We seek norming con-
stants f(n) such that f(n) - X, tends to limiting districutions along subsequences.
The problem in its complete generality involves difference equations with random
coefficients (2.1) which we cannot solve; hence we simplify the problem by
considering the case where ¢; can take only two possible values, ¢; = 0 or 6.
The points j such that ¢; = 0 are barriers reflecting to the right. The principal
advantage of this scheme is that the random walk can be decomposed into the
independent excursions from one barrier to the next. There are two justifica-
tions for this simplification: The phenomena discussed in Theorem (1.16) are
still apparent; this new model has a natural analogue in the diffusion process of
Section 3.

The following notation will be used throughout this section. If x is a real
number, [x] denotes the largest integer less than or equal to x; {x} is the frac-
tional part of x, i.e., {x} = x — [x]; log, y denotes the logarithm of y in the base
x. Also, E, will denote the expectation with the environment « = {a,} fixed,
i.e., E, is the expectation corresponding to the probability M, of the introduction.

Throughout this section assume that

6, =0 with probability (1 — 7)
=0 with probability 7, 0< 0 < oo fixed.

So a; is 1, (1 + 0)~* respectively when ¢; = 0, 6. Then each integer j such that
o; = 0 is a “one way mirror” reflecting to the right. Now E(In¢) = — oo so
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that lim, X, = oo a.e. When E(s) = 76 < 1, then

T, 1470
ER
but when y6 = 1,lim,n='. T, = co a.e. by Theorem (1.16). It is the case
76 = 1 to which the present section is devoted. In particular we assume 6 > 1
throughout.

Set ¥, = 0 and inductively V, = min{k >V, ,: o, =1} forn = 1. V, is
the position of the nth “one way mirror” to the right of zero. Since V, is finite
a.e., so is T}, ; also, it is clear that the excursions between times 7, and T,
form a sequence of independent, identically distributed random variables for
n = 1. Wefirst calculate the Laplace transform of the distribution of T,, — T, ,
use this to obtain limit distributions for 7', suitably normalized, and then use
the law of large numbers to obtain limit distributions for T, suitably normalized.

lim,,

a.c.

LEMMA. Fix a = {a,} so that limsup, X, = co a.e. Let F;u)=
E, exp(—uT;) be the Laplace Transform of T;. Then

@.1) L S j=1.
Fj(u) Fj+1(u) Fj—l(u)
Proor. For a = {a,} fixed, 7, 7,, - - . are independent. Now
M(t;0 = k)= a;, k=1
=8 MS(tju+t;=k—1), k>1.

Hence if ¢,(u) = E, exp(—ur;), i.e., if ¢ (u) is the Laplace transform of r; given
a fixed environment {«,}, then

0in(U) = a;e™ + Bie o (U)p;..(4) Jj=0.
But \
. F(u) .
F- — “ e . N €., R = __I\N7 s = 1
1(”) gol(u) goﬂ(u) 1.e gD](H) Fj—l(u) ] =
when the environment is fixed. Thus
F]'+l(u) — aje—u + ‘Bje—u . Fj+1(u) ]' g 1.

Fi(u) Fi(u)
Dividing by F, () yields (2.1).
We find the Laplace transform of the distribution of 7}, . — T, under the
assumption
a;, =1, with probability (1 — 7)
1 . -
=_ - with probabilit .
Again fix {a,) and let V,, < k < V,,,, and Gy(u) = E(—uw(T, — Ty )); (2.1)
together with 7, ,, — T, = 1 imply
1 1 e 0 e ‘
2.2 =(527) +(5=1) . Va<k<V,
(2:2) G,(u) 0 + 1/ Gypu(u) 0+ 1/ G,_y(u) *‘
G, =1, Gy () = e,
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It is easy to verify that the unique solution to (2.2) is

2.3) Gy() = — (DB~
S a(w) + b(u)(OFH W)
where
A(u) = % (0 + 1+ [(0 + 1) — 46e]),
Ay(u) = % (0 4+ 1 —[(6 + 1)* — 40e]t)
and
a(u) = A(u) —e* =0 — 1 + O(u)\, 0 — 1,
(2.4) b) = e — dy(u) = — 2_‘9 - 00),

c(u) = A(u) — A(u) =0 — 1 + O(w)\ 0 — 1,

B(u) = 07 2,(u) = 1 + O(u) \, 1
as u\,0. Now let p(u) = Eexp(—u(T, , — T, )) with the environment ran-
domized. Then

q)(u) = Z;’Ll GJ'+V,,,(u) : P(V'n+l - Vn =.])
1 — )
= ” r 251Gy (1) .

Combining this with (2.3) gives the following:

(2.5) LEMMA. Let o(u) = Eexp(—u(Ty, , — Ty )) forn = 1. Then

n+1
Bl S P (e ) S

r " a(u) + b(u)(0F(w))’

Before calculating the limit distributions of T, suitably normalized we show
that ¢ may be replaced by ¢ where

p(u) =

_1l—7 . w 7 v = _20
o) = — Dy @ —1¢"
(2.6) LEMMA. As u\_ 0
o(u) — P(u) = O(u) .
ProoF. Let
) — 1 TT e (6 =Dy
Al(u) = gD(ll) -—r—— Za=1 a+ b(gﬂz)j ’
_1l=7 s — 1)y ! - :
Az(u) = » Za:l (0 l)r <a + b(gﬁz)a‘ a + b0j>

A ==L 75, U= g,

Then ¢ — ¢ = A, 4 A4, + Ay; thus it suffices to show 4,(u) = O(u) as u \, 0 for
j=12,3,
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Now

_1l—7 e (eBi—(0—1))?
IAl(u)I - 7’ Z]=1 a + b(0ﬁ2)’

13

<17 e (e — 0 — 1)
ar
1 —7 c 01
= p” <1—.37 1_r>, for small u
= 0(x) by (2.4) .
|A,(u)| < Q:Qﬂ:—ll R (Y — )
= 0(u), by (2.4).
| < L=7 . ye (@ =@ =1+ 16— w0 — Dulpi)y!
=Ty = (@ + bOI)(1 + vubi)
a0 — My ==y
u
= 0(»), by (2.4)

where M and M’ are finite constants.

2.7) LEmMMA. Foreachu >0

(i) 70 = 1 implies

. 20
2.8 lim, .. (1— ( # )): .
(2-8) MV =2 Gmy)) T 6= Dime

(ii) 70 > 1 implies

29 lim,.. (y(l ~ so(—y’%)) — Ku.yg_ O

1 4+ vufi-tewn

>=o

where v = 20/(0 — 1%, K = (1 — y)[r - v, o(y) = log,,, y, o = log,,, 6 > 1.

Proor. Since y = o(yIn y) and y = o(y°), Lemma (2.6) shows that it is
enough to prove (2.8), (2.9) for ¢ replacing ¢. Now set ¢ = a(x) = log, x.

Then
=y (2) (1) B

()
= k(L) (0 - o5 %
(0)""

= Kur” . Z?:l-—[o] —l—m .
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(i) If y0 = 1, then y° = x~'. Thus

1= 9 () =K (5) (B 1 pagmer +O0)
= K (L) (101 + o)
= K () ([log, 5] + 0(1)) -
Therefore
tim, .. (1 —¢ (’Z‘)) = 1?:9 = —Z?l)llnﬁ » for b =1.

Now let x = y In y; then

ylny (1_ ( u >> 20u
my+mmy " Gmy)) T G- nme *7T
which implies (2.8).
(ii) If y6 > 1, then y° = x~V¢ implies

xVe . (1 — ¢ ({_)) —Ku. % (70)i-1)

=1-[o] 1 + ”uaj_(,,; M
Therefore

~ (o (E\) k. se GO
tm, .o (370 (1= ¢ (5 )) — Ki - Zre T hgmar) =0

(2.9) is now apparent by letting y = x/# and noting
o(x) = 0(y*) = log, y* = log,, y = &() .
(2.10) LemMA. (i) 70 = 1 implies

T, 0
2nlog,n 0 — 1

(2.11) p — lim,
where p — lim,_,, indicates the limit in probability.
(ii) If y0 > 1 and {n,} is a sequence of integers tending to co such that
lim, . {log,, m} =¢,

then n,=° . T,,”k approaches in law, as k — oo, the probability distribution function
with Laplace transform

0y~
(2.12) exp (—Ku $o. 1_2“3707>

where v = 20/(0 — 17, K= (1 —y)[r - v, p = log,,, 6 > 1.

Proor. Since {T,,j — Ty, }i=; is a sequence of independent, identically
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distributed random variables each with Laplace transform ¢,

(2.13)  lim,_ Eexp <—u ;;3 ) =lim,__ ¢ (f(‘; ) )”-1 - Eexp (—u ;;1) )

= lim,__ ¢ (f_(%)“

if f(n) — o0 as n — co.
(i) If y0 = 1, then by (2.8)

u n
: (1 - ¢ (iew)
limwwgo( u > = lim,_ |1 — nlnn

nlnn n

(1 (g By o)

= exp <(«9——_2f%17> :

Therefore (2.13) implies as n — oo

T, 20
" —
nlnn @—1)Ine

in distribution and hence also in probability. Thus

. 20
nlog,n 6 —1°

p — lim,__

(ii) Let 760 > 1 and let {n,} be a sequence of integers such that
lim, . n, = oo, lim, ., {log,,, m,} = ¢.

Then by (2.9)

u "k
u \" nk<1—¢<nﬂ>>
Iim,,_mgo<;k_p> = lim,__ |1 — -
1 (r0)" ))”"

= 1 Am(l———<K - : 1

1 n, “ 23 1 + vui— +o()
- —Kuy= _(rfl’__e_>

oxp (K K- 0

Therefore by (2.13) n,~*T;, approaches in law the distribution with Laplace
transform (2.12). (See [5] page 408). To complete the proof it is only neces-
sary to observe that as  \, 0 the Laplace transform in (2.12) approaches 1 and
hence is the Laplace transform of a probability distribution.

RemARK. Let{Y,} beindependent random variables with distribution functions

exp( KTN) 2in= o——(y K (%)



16 FRED SOLOMON

where F;(x) = 1 — exp(—x/vfi~) is an exponential distribution and F;*" is the
n-fold convolution of F,. The Laplace transform of Y; is

exp (—K(y0)i~¢ - — % )

p( S S

Thus (2.12) is the Laplace transform of 3=, Y;. The Lévy measure of 3=, Y;
is (see [5] page 427)

R(dx) = g— e (T’;—y_e exp <__vt9x?—> dx .

Thus R(x, 00) = K/v 317 _.. 77~ exp(— (x/v077%)). So R(0, co0) = lim, ,R(X, 00) = o0
which implies that the distribution function whose Laplace transform is (2.12)
has no atoms. (See [6] page 11.) And we conclude that this probability dis-
tribution is continuous and concentrated on (0, co) since we already know that
it is concentrated on [0, co).

The immediate use of the next lemma will be to obtain the limit distributions
of T, suitably normalized.

(2.14) Lemma. Let {V,}, {T.}, 0 < x < oo, be non-decreasing families of non-
negative random variables such that

p—limz_mV”=_1_, 0<B<oo.
x B
Then for each 0 < 6 < B and any sequence {y = y,} tending to oo
o T, o T,
(2.15) lim inf, .. Z<M> < liminf, ., g( v >
fQ) f&
(2.16) lim sup, .., & ( 7, > < limsup,_,, & (M:&)
f»n7 - f)

where (X)) denotes the Laplace transform of the distribution of X and f is a
strictly positive function.

Proor. Let 0 < 6 < 8 and set

A=Ax,a={y:ﬁ'—6<§<ﬂ+6}.

=4+ SAc$<f< i )_1 “ Topip-ns | Ve =}’)P(Vz =dy).
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Since T, increases with y

@1 (1 (555)"  Tamn)

<L (f(555)  TlVe=2) POV = d) + PV 49

gg(f(ﬁ )T+ P,

Let {y = y,} be a sequence tending to oo and set x = (8 — 0)y. Then (2.17)
implies (2.16). (Note that p — lim,__ x/V, = 8 implies lim,_, P(V, € 4°) = 0.)
(2.15) is proved in a similar way.
The limit distributions of T, suitably normalized are now easily obtained by
applying Lemma (2.14) to Lemma (2.10).

(2.18) THEOREM. (i) 70 = 1 implies
T,

n

2nlog, n -

N —00

p — lim

il If y0 > 1 and {n,} is a sequence of integers tending to co such that
r q 4 &

lim,_, {log,, n} =¢,

then n,~¢ - T, approaches in law, as k — oo, the probability distribution function

with Laplace transform
X —L e M)
© p( R e R 77
where p = 26/(0 — 1) - (1 — 1), L =1 = 7)fr- ps p =¢ + logy,, (1 — 1), p =
log,,, 0 > 1.
Proof. Let T, = Tj,;and V, = V{,;. Then

lim,_,, Y. 1 __1 a.e.
X B8 1—7
(i) If y6 = 1, then (2.11) implies
g( TVn(ﬁiJ) > = g( TVn(ﬁiIt) . (B + 0)log, n(f + 6))
2nlog, n 2n(B + 0) log, n(f + 9) log, n
NCET)Y
— exp ( 1 ) .

Therefore Lemma (2.14) implies for each 0 < 4 small

exp(—a(‘g—_i_?"_) < liminf, ., E exp (—u . lec;,,:;—n>
_ "

lim sup, .., E exp (—u . 2n—1?g,,_n—) < exp(—w) .
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Therefore (since f =1 —y = (0 — 1)/f)asn — oo

___.&*___) 1
2nlog, n

in distribution and hence also in probability.
(ii) Let {n = n,} be a sequence of integers such that

lim, . n= oo, lim,_, {log,, n} =«.
Then

{log,, [n(B  8)]} = {logy,, n} + {logy, (B  8)} + {logy, —[Ziﬁ—if ﬁil} mod 1

— ¢ + {log,,, (B + 9)} mod 1

as n — oo. Therefore

= () = (i) ¢ =)

R _ o o0 (r6)"
exp( Ku(B + 0y 5w 1+ vu(B + 5)00:1’—7) ’

as k— oo,

by Lemma (2.10), where » = ¢ + {log,, (8 & 9)}. Combining this with Lemma
(2.14) implies case (ii) of the theorem.

Although the following corollary is weaker than the theorem, it is more
concise.

COROLLARY. If y0 > 1, then

. InT
2.19 — lim,_,, 2
(2.19) p — lim, .,

= log,,, 0 .

Proor. Let {n,} be any increasing sequence of integers. To prove (2.19) it
suffices to show that there exists a subsequence {m,} C {n,} such that (2.19) is
valid along {m,}. Thus extract {m = m,} C {n,} such that

lim, ,,m = oo, lim,_,, {log,, m} =¢.

Then T, /m* tends in law to a limit distribution by Theorem (2.18) and this
distribution is concentrated on (0, co) by the remark preceding Lemma (2.14).
Therefore if 6 > 0, then

1= lim,,_mP<_1- < Tn < m")
m? me
= lim,_,P((0 — 0)Inm < InT, < (p + 9)Inm)

= lim,,_mP<lln To _ pl < 5).
Inm

Le., p—limInT,/Inm = p = log,,, @ which completes the proof.
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We can now obtain limit distributions of X, suitably normalized.
(2.20) THEOREM. (i) If y0 = 1, then
X,

n

— lim__
P "™ nflog, n

=1.

(ii) If y0 > 1 and {n,} is a sequence of integers such that
lim,_,n, = o, lim,_, {log, n,} = ¢,
then for each x > 0
limy_o, P(m,70 - X, < X) =1 — Fp,((1 — 7)%)7°)

where p =log,,. 0 > 1, A(x) = ¢ 4 log,,, (1 — 7)x), and F, is the distribution whose
Laplace transform is given by (2.12).

Proor. Let N(n) be the unique integer such that

VN(n) é Xn < VN(n)+l

i, Tyy S0 < Ty

Thus

(2.21) 1< X <Vrwn ge.
Vi Vi

since n='V, — (1 — y)™* a.e.

Notice also that

(2.22) P(N(n) Z y) = P(Ty,, < n)

where ]y[ is the least integer greater than or equal to y.
(i) y0 = 1. Let g(f) = tlog,t. Then for s > 0

= P(Ty 10y = 1) by (2.22)

=P Vig—lm)/sl < n .
07 10g, 970) T 07) 150 97()
N s N s

Now
n ‘L s
07(n) 1o, 970 1= n7g7(n) logy s
S s .

and g~'(n)/n — 0 as n — oco. Combining these observations with (2.11) implies

g (n) _ 26

— i .
P= e "Ny ~ 9= 1

Nn—r00
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Butlim, . V,/j= (1 —r)a.e. Sop —lim,__, g~ (n)/Vy,, =20(1 —1)/(6 — 1) =
2incase (i). Thusp — lim X,/g~*(n) = % by (2.21). Noting that g=}(n) ~ n/log, n
now completes the proof of case (i).

(if) Let {n = n,} be any sequence of integers such that n — oo, {log, n} —e.
Then for x > 0

N(n
P ( ,,5/,,) = X) =P(Tyyn =1 by (2.22)
Vizal/e xfn -
(]xn‘”'[" =% " xntvepe = Faan-n(*™*)

by (2.10) since
{log,,, [xn*/*]} — log,,, x + lim {log, n} mod 1

= log,, x + ¢ = Ax/1 —7)

and since each F, is continuous by the remark preceding Lemma (2.14). Now

v, 1

n

n 1—7

a.c.

So

P(Lrm 2 x) = (.;(_n) DO 2 x) > Fun((1 = 1))

Combining this with (2.21) completes the proof of case (ii).
CoROLLARY. If y6 > 1, then

p — lim,_, In X, log, ( 1 )
Inn 7

Proor. In the same way that Corollary (2.19) follows from Theorem (2.18),
the previous theorem implies this result. However, we must verify that if

G(x) = 1 — Fyoy((1 — 71)x)™*)

is the limit distribution in case (ii) of (2.20), then G is concentrated on (0, co).
We show that G(x) \ 0 as x \ 0; the proof that G(x) / 1 as x / co is similar.
Now F, is concentrated on (0, co) by the remark preceding Lemma (2.14). Given
0 > 0, choose x,so small that F,(((1 — y)x)=*) > 1 — dfor 0 < x < x,. Choose
0 < x, < x, 50 that A(x;) = e mod 1. Then

Fiap((1 = %)) = F((L = 1)x)™*) > 1 — 0

where the equality follows from the fact that F, is periodic in ¢ of period 1.
So G(x,) < 8. And G(x,) < d for 0 < x < x, since G, by its expression as the
limit in case (ii) of (2.20), decreases as x decreases. Thus lim, , G(x) = 0.

3. A diffusion in a random Environment. In the random walk model of the
previous section we showed that n=¢ . T, tends to limiting distribution only along
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subsequences. The present section shows that this behavior is the result of the
discrete nature of the model. We do this by considering a diffusion {X,} with a
drift and randomly placed reflecting barriers; in this process X, — oo a.e. and,
depending on the drift rate,

(i) lim,_, T,/x = nonzero constant a.e.,
(iijy p — lim,_,, T,/x In x = nonzero constant, or
(ili) & — lim,_,, T,/x* = stable distribution

where T, is the first passage time from 0 to x and .#” — lim indicates the limit
in distribution.

We first construct a diffusion on [r, r,] where r, and r, are both finite. The
diffusion will have a constant drift in (r, ), a reflecting barrier at r,, and an
adhesive boundary at r,. Let C[r, r,] denote the set of continuous, real func-
tions on [r,, r,] and C*[r,, ;] denote the set of twice differentiable functions u on
[74> r,] such that u" e C[r,, r,]. Define 4: Z(A) — C[r,, r,] by

Au(x) = $u"(r,) , xX=1r
(3.1 = qu"(x) — Bu'(x), n<x<n
=0 N X =n

where
(3.2) 2(A) = {ue CYr, n]: lim,,, $u"(x) — Bu'(x) = 0, lim,_, u'(x) = 0}
and B is a finite constant.

(3.3) LEMMA. The operator A is the infinitesimal generator of a contraction
semi-group {p,(x, dy)} on C[r,, r,]. There exists a Markov process {Y,}5 with con-
tinuous sample paths and with transition semi-group { p,(x, dy)}.

Proor. Writing the operator A4 in the form

D D —= le%= . __fi_ (e"zﬁ” . i)
mTe T2 dx dx

where p(x) = (28)7* - (e** — 1) and m(x) = ' - (1 — e~%*) we see that both r,
and r, are accessible, regular boundaries for the operator D, D,. Hence Lemma

1 of [7] page 54 implies (3.3).
(Suppose r, = 0. Perhaps the most intuitive way to see that 0 is a reflecting
boundary for {Y,} is by considering the process {Y,’} defined by the infinitesimal
generator

A'u(x) = $u"(x) — Bu'(x), 0<x<nn
= Lu"(x) + Bu'(x), —n<x<O0
=0, X ==4n.

Then {Y,'} is a diffusion with a drift toward zero (at least on (—r, r)). {|Y/|}
can be shown to have generator defined by (3.1), (3.2). (See [4] pages 325-329).
But {|Y}/|} is a diffusion on [0, r,] with a reflecting barrier at zero.)
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We derive one more result about the process {Y,} which will be needed—the
distribution of the first passage time from r, to 7, + x < r,. Let {p,(x, dy)} be
the transition semi-group of {Y,} and R, the resolvent operator of {p,(x, dy)}.
Since a passage from x to z > y > x must first be accompanied by a first passage
from x to y,

§ et - pu(x, dz) dt = ¢ (x,y) - \o e~ - p(y, dz) dt

where ¢,(x, y) is the Laplace transform for the distribution of the first passage
time from x to y. Thus

(3-4) R f(x) = 9u(%, y) - RaA(Y)

for fe C[r, 1] vanishing on [r,, y]. Now fix y and apply (a — A) to both sides
of (3.4). If f vanishes on [r,, y], then

J1x) =0 = (a — g+ y)(*) - R AY) -
Or (a — A)p,(+,y) = 0. Setting u(x) = ¢,(x, y) and using the definition of 4
we thus have
au(x) + Bu'(x) — 3u"'(x) =0, n<x<y,
(3.5) lim,, #'(x) =0,
lim,, u(x) =1,

where #'(x) — 0 as x — r, since u is R, f(+)/R, f(y) on [r,, y] and this function
is in Z(A); also u(y) = 1 by definition. The solution to (3.5) is easily obtained
and implies the following

(3.6) LEMMA. Let ¢, (u) be the Laplace transform for a first passage from r, to
ry+ x < r. Then

3.7 0,() = (h + B + (h — B)e™=)=1. 2heth-p=
where h = h(u) = (B* + 2u)t.

Now let us construct a Markov process with randomly placed reflecting bar-
riers to the right. Independent copies of the process {Y,} constructed above
can be pieced together to give a process with reflecting barriers at points a;.
More specifically let 0 = g, < a, < a, < --- and let {;Y,} be the process con-
structed in Lemma (3.3) with the reflecting barrier at r, = a; and the adhesive
barrier at r, = a;,,. Set ;Y, = a; and let

Vi = inf{t 2 0: Y, = a,}, jzo.
Set
Xt = oYc s < V1
=1Yy,» ViSt< Vi+ VW,
=”Y

tm(Vytee et V) 2 N+ + VSt Vi+ -+ Vo

Then {X,} is a Markov process with continuous sample paths.
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The process in which we are interested consists of {X,} with the a;’s randomized
so that {a;,; — a,} is a sequence of independent, identically distributed random
variables each exponentially distributed with mean y-*. The construction of the
process is, except for notation, the same as the construction of the random walk
in a random environment in the introduction.

We find the limiting distributions of T, = the first passage time from 0 to x
in the same way as in Section 2. Thus the Laplace transform for the distribu-
sion of the first passage time from 0 to the first reflecting barrier at a, is

(3.8) o(u) = § E(e™T+|a, = x) - P(a, = d)
=78 pa(w)e7 dx
where ¢,(u) is defined in (3.6).
THEOREM.

2
3.6 E =
(3-6) (Te) 1(r — 2PB)

= o0, r < 28.

r>2p

Proor. It suffices to show —lim,, ¢'(x) has the form (3.9). But

o'(u) = lim,, 7 §¢ Pa(t + €) — ¢, () e dx
€

by (3.8). Now ¢,(u) is convex as a function of u. Therefore monotone con-
vergence implies
o'(u) = 7 §¢ ¢,/ (w)e77" dx
where ¢,'(u) is the derivative of ¢,(x) with respect to u. ¢, is a Laplace trans-
form; thus ¢,'(x) decreases as u decreases; so monotone convergence implies
—lim, o ¢'(4) =7 §5 (—1lim,y, p,'(w))e7" dx .

Direct calculation from (3.7) shows

lm 0./ = 5 - (14265 — &%), 50
= —x? s ‘B =0.

And another calculation shows —lim,, ¢’(x) has the form (3.9).

(3.10) THEOREM. (i) If y > 28, then

lim,_,_, L _ _2_5,8_ a.e., lim,_,, X _ 1—72,8_ a.e.
x 7 — t
(i) If yr < 2B, then
lim, I = oo a.e., lim,_, % =0 a.e.
x

ProoF. Noting that {T,. — T, _}7., is a sequence of independent, identically
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distributed random variables, the law of large numbers implies
T, 1
lim, ., % = E(T,) ae., lim,_.->=_ ae.
L

Hence

T
lim,_ ., = = yE(T,) a.e.
a

n—00
n

Let m, be the unique integer such that a,, < x < a,,_,,- SO

Ta Tx T(l
me < _ % < mg+1 ;
am,,+l B X B amz
therefore
. T,
hm”"“_x_ = rE(T,) a.e.
2
=——, r>28
r— 2
= 0, r=28.

For each ¢t > 0 choose the unique integer n = n, such that ¢, < X, < a,,,.
Then

T, t T,
o< Do T

' n n n
and
LA RO
n t Tt n t
Thus
lim,_, ﬁ = lim,_,,, Gn lim,_,, n
t n o
-2
_r=28 , 7> 28
2
=0 3 7 é 218 .

Before finding the limiting distribution of T, suitably normalized when y <
28, we prove the following result to simplify subsequent calculations. Assume
for the remainder of this section that y < 2 so that, in particular, > 0. The
proofs of the following results leading'to the limit behavior of T, are substan-

tially the same as the proofs in Section 2; we therefore delete the details.
(3.11) LEMMA. Let
Py =7-¢

e dx

1 4 (2871 - uer® :

Then as u\, 0
o(n) — $() = O() .
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For ease of notation set p = 28/y and r = p~' throughout the rest of this
section.

(3.12) LeMMA. (i) If y = 28, then for eachu = 0

limn_,mn(l—go< d >>= “_,
nlnn 2p

(i) If y < 2, then
limaou™ - (1 — o) =CBs7)=7" %

e2B-1y
2437 4 ety

We use Lemma (3.12) to find the limiting distributions of T, suitably nor-
malized when y < 2. Before doing so, however, it should be noted that two
results are immediate from the lemma. The first of these concerns the asymptotic
behavior of P(T, > r). (Recall that T, is the first passage time from O to the
first reflecting barrier and that ¢ is the Laplace transform of the distribution
of T,.)

(3.13) THEOREM. Let y < 2B3. Then

dy .

C
r'a—-r»r

where T is the gamma function and C = C(B, 7) is defined in the previous lemma.

lim,_,, 1. P(T, > 1) =

Proor. Let A(#) = (1 — ¢(u))/u. Then
Au) =\ eP(T, > t)dr .
Hence the theorem follows from a Tauberian theorem. (See [5] page 423,
Theorem 4.)
Also of interest are the asymptotic behaviors of the residual waiting time

until the next reflecting barrier is hit and the spent waiting time from the last
reflecting barrier hit. Let n, be the unique integer such that

T"M =< T"’m-&—l
and let Y, and Z, be respectively the spent and the residual waiting time, i.e.,
Y,=t-T, , Z="7T,, —1.

If y < 2B, then t~*. Y, and t~* . Z, tend to generalized arc sine distributions. In
fact (see Dynkin [3] or pages 445-447 of Feller [5]). We have the following
result which follows from Theorem (3.13).

(3.14) THEOREM. Lety < 2B. Then

limth<% > ¥, _Zti > z> =

sin
T

Tz w7 (1 — w)yr—tdu

for0<z< 0and0 <y < 1.
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Returning now to the calculation of the limiting distributions of T, suitably
normalized, we first find the limiting distributions of T,, normalized.

(3.15) LemMmA. (i). If y = 28, then

T, u
li 00 E (— . In ) = _— ).
m exp u ainn exp ( 2‘32 )
(i) If y < 2B, then

lim,_,, E exp (—u . _T"_"> = e 0",
ne

where C = C(B, 1) is defined in Lemma (3.12).

The main result concerning the asymptotic behavior of 7, for large x when
7 < 28 can now be stated.

(3.16) THEOREM. (i) If y = 28, then
T

z pa—

p — lim,_,, i .
xInx B

(ii) Lety < 2B and set r = p~* = y/2B. Let G, be the stable distribution con-
centrated on (0, co) of index r with Laplace transform e=*". Then

T

z pa—

=G,
Kx)r

& — lim,_ (

where
eﬂﬁ—r)y

K=K r)=7CB1) =7 2P e

dy .

Proor. The proof of this theorem is an application of Lemma (2.14) to the
previous lemma. We let V, = aj,; where [x] denotes the largest integer less than
or equal to x. The proof is similar to the proof of Theorem (2.18).

Limiting distributions of X, suitably normalized can now be found and a proof
similar to the proof of Theorem (2.20) implies

3.17) THEOREM. (i) If v = 28, then

X, In X, .y

— lim,__,
p ¢ ;

(ii) Lety < 2B and set r = p~* = y/2B. Then

. t
3.18 < —lim,_,,—— =G,
G0 KXy
where
” e(zﬁ—TW
K = K(‘B,r) = T2 . _wwdy.

When 8 < r < 28 the theory of stable distributions allows us to calculate
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the limit distributions of r~". X,. Let Z, be a random variable with charac-
teristic function
Eexp(iZ,,) = exp(— |1 - e

where the sign in the exponent is positive if 2 > 0 and negative if 2 < 0. Then
(see [5] page 548-549). Z,, ., isstableif 0 < a < lorl < a < 2and

7 <L e, 0<ax<l
<2—a, Il<a<k?2.
(3.19)  THEOREM. Let r= p=' = 7/2f. If B <1 < 2B, then

‘ X
lim,__ P <_t_t < x> = P(Zyy SK-X|Z4p0 > 0).

In particular, if 8 = r, then

limt_mP<£ < x> - 2N(_K_"> —1,
1t 2%

where N is the normal distribution with mean 0 and variance 1 and K = K(B, r) is
defined in the previous theorem.

Proor. First let 8 < 7 < 28 so that { < r < 1. By (3.18)
lim, Eexp( —u. _£_> = e,
(KX,)f
Therefore

lim, .., E exp (ix — exp(—|a" - extmrmy |

t
' (KXt)ﬂ’)
Le.,

L lim = 2Z,_,.
(K- X, :

Let p(x, a, ) be the density of Z, . Feller ([5] page 549) showed that

y e p(y=, r, —r = P(}’, P, 0 —2)
fory >0and 4 < r< 1. Thusfor x >0

lim, ., P( R x> — lim, .., P( t > x‘P>
t' (KX,)r

= oo p(ys 1, —1) dy

=p- Gy r-p(y s —ndy
=p-p(y,pp—2)dy
=P(Z o0 S X|Zpp > 0).

The case with 8 = 7 is similar.



28 FRED SOLOMON

4. A system of difference equations. Consider the system of difference
equations

(4.1) Z,=0
Z, =01+ 2,), n>1

where {s,} is a sequence of independent, identically distributed nonnegative
random variables. Our principal interest is in finding limits of Z, + ... + Z,
suitably normalized.

To see the application of this system to the random walk model first fix the
sequence of transition probabilities {a,, 8,} with a, > 0 for all n and let z, be
the mean first passage time from n to (n 4 1). Then

l‘ln = a'n + an(l + #n—l + l"n) M
ILe.,
o = Unpn—l + (Un + 1) M

If we set @, = 1 so that zero is reflecting to the right, then

#0=1’ #nzanl‘ln—l—i_(o‘n'i_l)’ ngl'

Now set Z, = §(¢, — 1). Then {Z,} satisfies (4.1) with {s,} fixed. Le., if {Z,}
satisfies {4.1}, then 2Z, + 1 is the conditional mean first passage time from n
ton 4 1 given the environment. For simplicity we assume Z, = 0, i.e., a, = 1.

4.2) LEMMMA. The solution of (4.1) is

4.3) Z, = %.,0;---0 n=1.

n =

(i) If ZoanP(p, > 1) < oo, then & — lim,_, Z, = 315, p; < co a.e. where
p; =0y 0,

(i) If 35, n7'P(p, > 1) = oo, thenp — lim,_, Z, = co. When E(In ¢) is de-
fined (possibly infinite) (i) and (ii) correspond respectively to (i") E(In ) < 0, (ii’)
E(lng) = 0.

PROOF. (4.3) is trivial. The rest of the lemma follows from Lemma (1.6) and
the observation

Zy= 25050, = 25105
Using the fact that {s,} is independent, identically distributed we obtain
(4.4) THEOREM. Let v = E(s). Then a.e.

lim, At +Z, v v <1
n 1 —v
. = o0, v g 1.
PrOOF. Let
Y = Dt I

It is clear that Z, ... Z, = Y* 4 ... Y,". Now Y,* is the (n — k + I)st
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partial sum of random variables that are strictly stationary and ergodic, each
with expectation v*. Thus for k fixed

tim oY —fim,_ "=kt N g
n n n—k41
Thus
timinf, , 22t "+ Z0 _fiminf,__ Ly v,
n n
> ' liminf, . Y&
n

= 2l vk
where the second line follows from Fatou’s Lemma.
This proves (4.4) when v > 1.
Let v < 1; it suffices to show

v
a.c.

llm Supn—-»eo ”11‘ Z'I':=l Zk é _

Without loss of generality we may assume that ¢; is the jth coordinate function
on the probability space ([0, o]%, &, P) where & is the o-field generated by
the cylinder sets and P is the product measure. Now

Z,(0) = %400, = D% _0G; -0, =S,(0).
(S, is finite a.e. since v < 1). But S, = S, . T where T is the shift
(To); = 04 -

Hence Birkhoff’s Ergodic Theorem applies to S, and we obtain
limsup, ... - 2., Z, < lim, . L >z, 5,
n n

= E(S)) a.e.

= E(Decut; o )
v

1 —
which completes the proof.
We now consider the case n™*(Z; + .-+ Z,) — oo. Asin Section 2 in a special
case we find norming constants f(n) so that f(n)(Z, 4 --- Z,) tends in law to

nontrivial limiting distributions along subsequences.
Throughout the remainder of this section assume

6, =0, with probability (1 — 7)
=0, with probability 7

where 0 < 7 < 1, § > 0. As in Section 2 we are assuming the existence of only
two types of transition probabilities—one of which is the condition for a “one



30 FRED SOLOMON

way mirror” reflecting to the right. Assume also that y§ = E(s) = 1—the case
70 < 1 being covered by Theorem (4.4). In particular we assume 6 > 1 through-
out this section. Let ¥, = 0 and inductively

V,=min{k > V,_,: g, = 0}
and set

Wn+l=ZV”+l+"'+ZVn+ls nzo-

Then {W,};° is a sequence of independent, identically distributed random vari-
ables. Now (4.3) implies W, = 0 with probability (1 — y) and
Wl = Zz=1 ?:1 gF-i+t

with probability P(V; = n 4 1) = (1 — y)y*, n = 1. Thus

0 9
W= g — 1) —
1 0_1[0_1( ) ":|

with probability (1 — 7)r", n = 0. Hence we have shown

4.5) LemMMA. Let W, =Z;, + -+ + Z, _,n=0. Then{W,}is ase-
quence of independent, identically distributed random variables. If o(u) = E(e~*"1),
then

0 0
- nres[ (7)o Ly - v -1))
o) = (1 = 1) Zieorexp| —u () (g O = D= n
The proofs of the following results leading up the limit behavior of Z, 4 ... +
Z, are so similar to the corresponding proofs in Section 2 that we delete them
and state the results as an outlline.
Let

o) = (1 = 1) Taarexp (—u (52 ) o).

(4.6) LEMMA. Asu \ 0
o(u) — ¢(u) = O(u) .
4.7 LEMMA. (i) 70 = 1 implies

lim °°x(l _go(L)):@—"
- xInx @ —1)Ineg

@ii) If y0 > 1, then
lim, . x (1= ¢(2)) = (1 = 1) Sl — e = 0
X

where © = w(x) = log,,, x, {0} is the fractional part of o, p = (0/(6 — 1))?, and
14 =,10g1/r 0> 1.
(4.8) THEOREM. (i) 70 = 1 implies
W+ - +W, 0
nlog, n a1

p — lim,
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(ii) If y0 > 1 and {n,} is a sequence of integers tending to infinity such that

lim,H,,, {lOgl/r nk} =€,
then

tim, .. & (P T W) ) exp(—(1 — ) T r (1 — e )
np

where pr = (0/(60 — 1))* and p = log,,, 6 > 1.

Applying Lemma (2.14) to the previous theorem gives a limit theorem for the
limit distributions of Z, suitably normalized.

4.9) THEORM. (i) 70 = 1 implies

Zi4+ - +2Z, _
nlog, n

p — lim,

N —00

(ii) If y60 > 1 and {n,} is a sequence of integers tending to infinity such that

lim,_, {log,, (n,)} = ¢.
Then

lim,,_,mEexp<—u Zit e Z"")

.0
=exp(—(1 —7) Ty (1 — e—vn0))
where p = logy,, (9), 1 = (0)(0 — V(1 — 1), 7 = ¢ + logy, (1 = 7).
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