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Let p(#), t€ (0, co) be the standard p-function of a regenerative phe-
nomenon as defined in Kingman’s theory. Let p(l) = M and min {p(z),
0 <t = 1} = m. Griffeath (1973) has derived a new upper bound for M for
given m by using the Kingman inequalities of order < 3. Here Griffeath’s
result is generalized by using the Kingman equalities of order < n. Further
taking limits as 7 — co a new upper bound is obtained which is uniformly
strictly superior to the present known upper bound. Thus a part of the
uncharted region in the M — m diagram becomes charted by being shown
inaccessible. This gives also an improved upper bound for the constant .

1. Introduction. Let p(t), ¢ € (0, o) be the p-function of a standard regener-
ative phenomenon Z as defined in J. F. C. Kingman’s theory [8]. This means
that there is a stochastic process Z = {Z(t); t > 0} which assumes values in the
two-point set {0, 1} such that for every increasing sequence 0 =1¢, <, <

[2‘.. <t”,

(1) PiZ(t) = Z(t,) = --- = Z(t,) = 1} = [T} p(t, — t,4) -
The p-function is said to be standard if
) lim,_,p(t) = 1.

For standard p-functions we put p(0) = 1.

In the following we consider only standard p-functions. .“Zdenotes the class
of all standard p-functions. Suppose we know that for some given s, p(s) = M.
What is the maximum possible fluctuation in the value of p(f) for a fixed
te (0,5)? As Zis closed under constant dilations and contractions of the time
scale, for notational convenience, without loss of generality we take s = 1.
Thus the problem is to determine for fixed 7 ¢ (0, 1)

©) Ty(t) = sup,e {p(1) | p(1) = M},

zy(1) = inf,c o {p(1) | p(1) = M} .
This is termed by Griffeath [7] the maximal oscillation problem for regenera-
tive phenomena.

Until now interest has centered mostly on the following part of the problem.
Let m(p) = min{p(t), 0 < t < 1}. An’ordered pair (M, m) is termed accessible
if there exists p e “for which m(p) = m, and p(1) = M, where obviously 1 =
M = m = 0. Further as shown by Davidson [5], if a pair (M, m) is accessible,
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then so is every pair (M’, m) for which m < M’ < M. Hence there exists a
boundary which separates the accessible and inaccessible pairs in what Davidson
[5] refers to as the M — m diagram. We refer here to the M — m diagram given
by Griffeath ([7] Fig. 1, page 408). Its shaded portion shows the region which
at present is uncharted; for pairs (M, m) falling within this region it is not known
whether they are accessible or not. A connected problem is that of determining
the value of a constant v, defined by

4) I, = inf{z, (1), 0 < t < 1}, v, = inf{M| M) > 0}

where z,/(t) is as defined in (3).

The latest contribution to this topic is of Griffeath who gives a summary of
previously known results and proves ([7] Proposition 1) a new upper bound for
M for given m. This new bound does not however make any contribution to
the M — m diagram being uniformly higher than the upper bound obtained
already by combining a result of Bloomfield [2] and Davidson [6] with that of
Cornish [4] (cf. Equations (9) and (15) in [7]). This upper bound is expressible as

5) M < gy(m)
where ¢,(m) =1 —etifm< e, ¢(m) =1+ mlogm if m = e~*. Hence v,
in (4) satisfies

(6) v <1 —e?.

As against (5) the new bound derived by Griffeath [7] is expressible as

@) if m<y, MZE%; if m>=%, MZIiBm* —2m 4 3)
yielding v, < 4. But Griffeath’s new bound is of interest because it holds for a
wider class % of functions p. For each integer n, 27, denotes the class of
continuous real valued functions p defined on [0, co) such that p(0) = 1 and for

every non-decreasing sequence {t,; 1 < k < n} p satisfies the nth order Kingman
equalities viz.

(81) ft) =0,
(8ii) 9(t,) 2 0,
where for each s, s = 1,2, ..., nthe functions f(¢,) = f(¢,, ¢, - - -, ¢,) and g(t,) =
9(t, ty, - - -, t,) are defined recursively by
(91) f(t) = p(t) — iz ft)p(te — 1) »
(9ii) 9(t,) = 1 — 251 f(t,) -
Note 1.1. Obviously the value of f(z,) depends not on 7, alone but also on
t, by, + - -5 t,y. Thus f(z,) is a convenient notational abbreviation for f(z,, t,, - - -,

t,). Similarly for g(z,).
For pe & the inequalities (8) hold for all n. Also the nth order Kingman
inequalities include all lower order ones as special cases as the increments in the
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sequence {#,} can be assigned the value 0. Hence
(10) 1D, D D, lim,_, 5%, = .

In deriving (7) use is made only of the Kingman inequalities of order < 3.
Hence (7) holds for pe %73. An earlier result of Davidson [5] (also derived
independently for Markov processes by Blackwell and Freedman [1]) is ex-
pressible as: for p e 5773,

(11 if m<i, M<3; if m>4, M<14m—m.

Generalizing the argument of Griffeath ([7] Proposition 1, page 410), we
derive in Section 2 an upper bound for M for given m, which holds for p ¢ 57,
for each n > 2. (11) and (7) thus become particular cases of our result for n = 2
and 3. Further taking limits as n — oo, we derive an upper bound, M < ¢,(m)
for p e &, which is uniformly strictly superior for 0 < m < 1 to the existing
bound ¢,(m) in (5). A portion of the uncharted region in the M — m diagram
([7] Fig. 1 page 408), thus becomes charted as inaccessible. Our result also
yields vy < .590 as compared to the bound of approximately .632 in (6).

2. Main result. We state the main result as a proposition.

ProrosiTioN 2.1. Let p(1) = M, inf{p(t),0 < t < 1} = m. Then,
(A) for pe ¢, where n = 2,

(12i) f mse, Msl+4p—(1-_Z0)7,
n_

(12ii) if m=op, M§1+m2_<1_ 1"%)”"1,
n_

where 20 = (1 — (1 — p)/(n — 1))}
(B) forpe &,

(13i) if msK, M<(—Ky,
(13ii) if mzK, M<14+m—exp(m—1),
where exp(K — 1) = 2K. Hence

(13iii) v < (1 —K).

Proor. Select arbitrarily any ¢ € (0, 1); let p(t') = a. Then select ¢, ¢ (0, 1)
such that either
(14) Py =a, pl-—t)sea, or
p(t) = a, pl —t) =a.

For any given ¢, #, can always be chosen so that (14) is satisfied. For let w be
the first ¢ (0, 1) for which p(w) = a. If p(1 — w) < @, put ¢, = w; if p(1 —
w) > a put f; — 1 — w. Having selected #, we form a non-decreasing sequence
H<t, < ty.-- <t = 1 such that

(15) plt, —t.)=pt, —t,) >0, r=2,3,...,(n—1).
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After choosing t,, t,, t;, - - -, ,_, satisfying (15) can always be found because of
(2) and the continuity of p on [0, co). Next using (8ii), (9ii) and (9i) after
putting s = n and that p(z,) = p(1) = M, we obtain
0=<9(t,) =1—f(t) — Lizif(t)
=1 =M= Ziafll —pt, — 1)) -
Taking out the term for k = n — 1 from the summation, we get
(16) 1— Mz ft,)[1 — p(ts — ta-i)]
| + DI — plta — 1] -
In the right-hand side of (16) substitute for f(z,_,) by (9i) putting s = n — 1.
This gives
(17) 1 - M = P(tn——l)[l - P(tn - t'n—l)]
+ DAL = p(ta — 1) = p(tacs — (1 — p(ta — )]} -
We next use the 2nd order Kingman inequalities (8ii), (9ii) and (9i) for the
sequence {v,, v} where v, = 1, — t,_,, v, = t, = 1, so that
0= 9(v) =1 —f(v) = f(v))
= 1 - P(t'n - tn—l) - M + p(tn - tn—l)p(tn—l)
which gives, since p(t, — t,_,) > 0 by (15),
1—-M
(18 typ) =1 — ————.
) P( ' P(tn - tn—l)
Similarly taking another sequence {v,’, v,} with v,/ = t,_; — #,, v/ =1, — 1, and
applying (8i) and (9i) for s = 2 we get p(v,’) = p(v,)p(v,’ — v/) so that
19 t,,—t) < Pt — 1) .
(19) Pt — 1) S TR
Substituting in (17) by (18) and (19) and simplifying,
1—M _ (t, — 1)
;Zn=2t)[1__p_n k]
P(tn - tn—l) ’ lf( : P(t'n - tn—l)
+ [1 = p(ta — )]
Suppose that n = 4. We extend the result (20) by induction.

(20)

InpucTive HyporHEsis. For some integer j, 1 < j < n — 3, the following
inequality holds viz.

1 - M n—g—1 o pt.— 1)
@b i iy = B [ PR

; t, — i)
+ i [1 _ P(_nn_k_}
= P(t'n - tn——k+1)
Note that in the right-hand side of (21) for k = 1, p(t, — t,_441) = p(0) = 1.
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The following inductive argument runs closely parallel to that from (16) to
(21). From the first summation in (21) take out the term for k =n — j — 1.
Then substitute for f(z,_,_,) by (9i) putting s = n — j — 1. This gives

_1___3/[_5 = P(tais) [1 _ p(t, — tn—j—l)]

Pty = - Pty — t,_;)
(22) + DT () {[1 _ % ]

5 [1 - Ll hed

P(t'n - tn—k+l)
In place of (18) and (19) we use

1— M
23 ezl =M
(23) P(tajzr) )
24 )< P t)
(24) Plajor — 1) = R

(23) is derived by applying the 2nd order Kingman inequalities to {v,, v,} where
V=1, — t,_j_1, ¥V, =1, = 1 so that

0= 9(wy) =1—f(v) = f(vy)
=1- P(tn - tn—a‘—l) - M+ p(tn—j—l)P(tn - tn—i—l) .

Similarly (24) is derived by applying (8i) and (9i) to {v/’, v,'} where v/ =1¢,_;_, —
t, vy =t, — t,, so that 0 < f(v,)) = p(vy) — p(v,))p(vy — v,’). We now substi-
tute in the right-hand side of (22) by (23) and (24). Substitution by (24) is
possible because by (15)

(25) | —Pl—tin) 50 for j=1,2,..., (n—3).

P(tn - tn—j)

On substituting in (22) by (23) and (24) and rearranging the terms we obtain
that (21) holds also on changing j into j + 1. By (20), (21) holds for j = 1.
Hence it holds for j = 1,2, .., (n — 2). Putting j = n — 2 in (21) we obtain,
using that f(#,) = p(t,) by (9i),

1— M _ pit, — 1)
26 izt Pl = 3]

+ Yz [1 _ Pt —tay) ]

p(tn - tn-—-k+l)

(26) has been proved by induction for n > 4. For n = 3, (26) is identical with
(20). Thus (26) holds for n = 3. Asz, =1,

(27)  the first term in the right-hand side of (26) = « [1 _ ﬁ]
P n — ‘2
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by (14). Put
(28) ﬁr:p(tn_tn—r) r=132""3n—2-
Substituting in (26) by (27) and (28) we obtain after a slight rearrangement

(29) 1 —M=af, , — &+ B, {(1 - B) + X3t [1 - %ﬁ{l}

where in the last summation we have put » = k — 1. Denote the expression in
the right-hand side of (29) by F = F(B,, B, -+, B._s» @). Since (29) holds for
all possible g,, B,, - - -, a, subject to (15) we maximize F for fixed a. Putting
0F[op, =0fork =1,2, ..., (n — 3), B, = B/By = - -+ = B._s/Ba_s. Hence
(30) B, = Bi* for k=1,2,...,(n —2).

Note that (30) is consistent with (15). Next putting dF/3pB,_, = 0, we obtain
using (30)

0=a+1—ﬁ1+22;§<1—h)+[1_&]

B, Ba-s
=a+m—-11-8)-1, so that
(31) 1_ﬁl=nTll(1_a).
Substituting in (29) by (30) and (31) we obtain
(32) 1 - Mz —a® + B" a4+ (n — 2)(1 — B))]

— —a [1 _nT11(1 - a)]"'l.

Denote the right-hand side of (32) by g(a). g(a) is maximized when g'(a) = 0
which gives

(33) 20 = [1 — n__i_i (1 — a):|”_2 .

It is easily seen that the equation 2X = [1 — (n — 1)7(1 — x)]*~? has a unique
root p say in (0, 1). Let m = min {p(¢), 0 < ¢ < 1}. Since a = p(*') for some
t€(0, 1), « = m. Hence a can assume the value p satisfying (33) only if m <
p. Then putting @ = p in the right-hand side of (32) yields (12i). Suppose
m > p. By (32), 9'(a) = —2a 4 [1 — (n — 1)™%(1 — @)]"~? and it is easily verified
that for @ > p, ¢’(@) < 0. Hence for m > p, g(a) is maximized for a = m.
Putting @ = m in the right-hand side of (32) we obtain (12ii).

The above argument holds for n > 3. If n = 2, note that by the 2nd order
Kingman inequalities (26) holds for n = 2 also if the 2nd term in its right-hand
side is equated to zero. Then substituting in (26) by (27) and maximizing the
right-hand side for a we obtain (12i) and (12ii) for n = 2.

This completes the proof of part (A) of the proposition. Part (B) follows
immediately by taking limits as n — co because of (10).
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REMARK. (13iii) gives K = .232 where = denotes approximate equality.
Hence v, < (1 — K)* = .590. Combining (13ii) with (6), we obtain .368 =
e <y, < (1 — K)* = .590. According to a remark of Williams [9], it is im-
portant to know whether v, <  as this has an important application to Markov

semigroups (cf. remark in [7] page 411). This question remains open.
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