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POISSON APPROXIMATION FOR DEPENDENT TRIALS

By Louis H. Y. CHEN
University of Singapore
Let X3, - - -, X, be an arbitrary sequence of dependent Bernoulli random
variables with P(X; = 1) =1 — P(X; = 0) = p;. This paper establishes a
general method of obtaining and bounding the error in approximating the
distribution of X7, X; by the Poisson distribution. A few approximation
theorems are proved under the mixing condition of Ibragimov (1959),
(1962). One of them yields, as a special case and with some improvement,
an approximation theorem of Le Cam (1960) for the Poisson binomial dis-
tribution. The possibility of an asymptotic expansion is also discussed and
a refinement in the independent case obtained. The method is similar to
that of Charles Stein (1970) in his paper on the normal approximation for
dependent random variables.

0. Introduction. Let X, X,, ---, X, be independent Bernoulli random vari-
ables with P(X; =1)=1— P(X; = 0) = p,. There has been considerable
theoretical interest in how well the Poisson distribution approximates the distri-
bution of 2, X,. Prohorov (1953) showed that, in the case where all p, = i/n,

N0 [P(Xi X, = k) — e 24/K!| < (A/m)[2(2ne)+ + O(min (1, 2-4))] .

The bound was later improved considerably by Kerstan (1964) to 1.22/n and
Vervaat (1969) to (2!2/n)(1 — A/n)~*. Hodges and Le Cam (1960) used an
elementary argument to show that, in the general case with 2 = 7, p,, the
difference between P(}]7, X; < x)and .., e~ *A*/k! is at most 3(max,,, p;)}.
At the same time, Le Cam (1960) proved that for every real-valued function %
defined on the nonnegative integers such that || < 1,

(0.1) |[ER(X 7 X)) — Pk <2 21, pd

(0.2) |ER(R1 X)) — Sk < 9 maX,g,q, p;

and

(0.3) |ER( 71 X)) — Ak < 1627 1, p? (MaXge, pi < 1)
where

Foh = Y, e 2h(k)/k!
and ,
A= 2tapi-
This discrepancy between the distribution of };7_, X, and the Poisson distribution
considered by Le Cam is equivalent to that considered by Prohorov, Kerstan
and Vervaat as mentioned above, in view of the fact that the supremum of
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|ER(3 2., X;) — k| over all |k <1 is attained by setting A(k) =1 or —1
according as whether P(3», X, = k) = or < e~*2*/k!.

The results of Le Cam were later generalized by Kerstan (1964) to include
independent nonnegative integer-valued random variables. One of his results
when specialized to Bernoulli random variables yields Le Cam’s (0.3), but with
the absolute constant 16 replaced by 5.4.

In this paper, we consider the approximation problem in a different direction
of generalization by moving from independence to dependence. To this end,
we employ a perturbation technique similar to that of Stein (1970). An identity
expressing the error in the approximation in terms of % is derived for an arbitrary
finite sequence of dependent Bernoulli random variables. This is then used to
obtain explicit bounds in special cases of dependence in Section 4, where the
results in the m-dependent case yield Le Cam’s as special cases and with some
improvement. Finally, a refinement of Le Cam’s results similar to one of
Kerstan’s in the independent case is also obtained.

1. Notation. Let (Q, <7, P) be a probability space and let % be a sub-g-
algebra of <Z. We shall denote the conditional expectation of a random variable
X given & by E”X. In the same way the conditional expectation of X given
a random element Y or Y = y will be written as EYX or E¥=*X. We shall also
denote the g-algebra generated by a set of random variables X;, X, --- by
B(Xyy, Xy, - -)or F(X;:i=1,2,...). Asusual, we shall denote the real line
by R but denote the g-algebra of Borel subsets of a subset H of R* for k > 1
by ZZ(H). The sup norm of a bounded real-valued function f will be denoted
by ||f||. Finally, we adopt the convention that the sum }}}is empty if & < a.

2. The basic identity. Consider an arbitrary sequence of dependent Bernoulli
random variables X, - .., X, with P(X; = 1) = 1 — P(X; = 0) = p,. Let

W= 24X
WO = s Xi
Ve = Zlk—i|>m Xk

A= 2laps

where m is a nonnegative integer. Then for every real-valued function f defined
on the nonnegative integers, we have
E[Wf(W) — 4f(W + 1)].
= D E[X (WD + 1)] = 2E[f(W + 1)]

2.1) = L BXLWE + 1) — f(r® + 1]}

+ St (X — pUfV + 1))

+ D Eplf(V® + 1) — W + D} .
Take X, to be identically zero when i < 0 or = n + 1 and let

Yis =V 4 Ziaiom X
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and '
Yi’j =V® + Zi=i—m,k$i Xk .

Also define Af(w) = f(w + 1) — f(w). Then by writing each of (W™ + 1) —
fV® 4 1) and f(V® 4+ 1) — f(W 4+ 1) as a sum of differences and using the
fact that each X, takes on 0 and 1, (2.1) can be rewritten as
E[WAW) — #(W + 1)]
= 2 Docii-iizm E[X X B(Y{ 52 + 1)]
(22) + i B[ — p)fVe + 1)]
— 2 Zu-sism P EIXG (Y, j0 + D]

In order to make the Poisson approximation more apparent, we now choose
f in the basic identity (2.2) such that

(2.3) wfw) — 2w + 1) = h(w) — 3k
where 4 is a bounded real-valued function defined on the nonnegative integers
and

2.9 FPoh = e 35, h(k)A¥[k! .

The solution of (2.3) is unique except at w = 0, but we see that the value of f
at w = 0 does not enter into our consideration at all. For w = 1, the solution
of (2.3) is bounded (as will be seen in the next section) and is given by

(2.5) fiwy = —(w — DA Tz [a(k) — F h2K!
=mw— D2 3e, [Ak) — G h)AF k!
where the second inequality follows from
et Yiv o [m(k) — F k2K = 0.

From now on, we shall denote the solution of (2.3) for w = 1 by S, A(w). Sub-
stituting (2.5) into (2.2), we obtain

Eh(W) = FAh + ZZO<|i—j|$m E[X, Xj Asz h(Yi',j—l + 1)]
(2.6) + D E[(X — p)S; (VD + 1)]
— XX i—iism P E[X;AS; B(Y, ;0 + 1)] .

Thus it becomes clear that that question of how well the distribution of W
can be approximated by the Poisson distribution with parameter 2 can be an-
swered by bounding the error terms on the right-hand side of (2.6).

3. Preliminary results. In this section, we shall prove a few lemmas con-
cerning S; k which will be useful later for bounding the error terms in (2.6).

Lemma 3.1. ForAz=zwandw =1,
3.1 (w— 1) 2w Zwt k! < 2274,

ProOOF. The lemma is obviously true for w = 1. For w = 2, let ¢(2) be an
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increasing function of 2 such that 1 < ¢(2) < 2and ¢(2) — oo as 2 — co. Then
(w— D) 2=v Fw-t 2%/k!
=2k (w—1).--. (w— k)/2e+
= N e e R L L
= (TP 4+ ZHERw)@A = 1) v (2 = kyja
= P2+ Zino (A — (Q))F[a+
= ¢(A)/2 + 1/$(2) ,
where [a] denotes the largest integer < a. Clearly the optimal choice of ¢(2) is
#(2) = 2* and this proves the lemma.
LEMMA 3.2, ForO< 2<wandw =1,
(3.2) (w— D av e, k! < 2wt
Proor. Forw = 1, 2 or 3, it is easy to check the validity of (3.2). Forw = 4,
(w— 1)t 2= e, A%/k!
= DWW+ 1) e (Wt k)
= (R + Efarohiod) Ww 4 1) oo (v + )
S wHw] — 1+ 14 ww + W)™ i wh/(w + wh)}
= w1 [Awed - (v — WD)/ (w + (W) |
<2wt by wt=<w+ [wh.
LeEMMA 3.3.
(3.3) 152 4] < 4||A]| min (-4, 1) .

Proor. If 2 = w, the lemma follows from the first equation of (2.5) and
Lemma 3.1. On the other hand, if 2 < w, then the lemma follows from the
second equation of (2.5) and Lemma 3.2.

LemMMA 3.4.
(3.4) |1AS, A| < 6][#]| min (2-%, 1) .
LemMA 3.5. Forw =1,
(3.5) |AS; A(w)| < 27Y|A||{2 + 4|w — 2| min (23, 1)} .
Proor or LEMMAS 3.4 AND 3.5. By (2.3), it is easy to show that for w > 1,
(3.6) AS k(w) = — 27 [h(w) — Fh — (w — S, h(w)]
and
(3.7) AS;h(w) = —w ' [h(w) — Fh — (w — 2)S, h(w + 1)] .

If 2 = w, (3.4) follows from (3.6) and Lemma 3.3. On the other hand, if 2 < w,
then (3.4) follows from (3.7) and Lemma 3.3. Finally, (3.5) follows from (3.6)
and Lemma 3.3 and this proves the lemmas.
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4. Approximation theorems for mixing sequences of trials. It is clear from
(2.6) that, under specific dependence assumptions, explicit bounds can be ob-
tained for the discrepancy between the Poisson distribution and the distribution
of a sum of n dependent Bernoulli random variables. The type of dependence
for which the error terms in (2.6) render themselves to effective bounding is
one where the dependence between the random variables decreases as the dis-
tance between them increases. Examples of such dependence are the mixing
condition of Rosenblatt (1956) and that of Ibragimov (1959), (1962). Other
examples can be found in Philipp (1969). In this paper, we shall only be con-
cerned with the mixing condition of Ibragimov (1959), (1962). From the present
exposition, it should be clear that results similar to those obtained in this paper
could be obtained under other mixing conditions. Ibragimov’s mixing condition
may be described as follows: Let X, X,, - .- be a finite or infinite sequence of
random variables and let _#Z, ;, = <#/(X;: a < i £ b). There exists a monotone
decreasing sequence ¢(k) | 0 such that for every Be _#;,, .,

(4.1) |P(B| A,) — P(B) < $(K) w.p. 1.

A special case of sequences satisfying this mixing condition is one in which
(X + -+, X,) and (X,,, - -+, X;) are independent whenever k > m. Such a se-
quence is called an m-dependent sequence and is such that ¢(k) = 0 for k > m.
Thus an independent sequence is also a special case satisfying (4.1) and, in this
terminology, is 0-dependent. Other sequences of random variables satisfying
(4.1) are discussed in Ibragimov (1962) and Billingsley (1968).

In this section, except for Lemmas 4.2 and 4.3, where X, X,, - - - refer to an
arbitrary sequence of random variables satisfying the mixing condition (4.1),
X, - -+, X, will be a sequence of Bernoulli random variables with P(X; = 1) =
1 — P(X; = 0) = p, which satisfies the mixing condition (4.1). All notations
will be the same as in Sections 2 and 3.

LemMMA 4.1. Let (Q, &, P) be a probability space, Y and Z be random elements
taking values in the measurable spaces (R, ) and (S, &Z) respectively such that
for every B e B,

4.2) |[P(ZeB|Y)— P(ZeB)|<a w.p.l.

If (S, ) is a Borel space, then there exists a regular conditional probability P, for
Z given Y = y and a set M € &7 with P(Y € M) = 1 such that for every y e M,
(4-3) SUPse o |Py(B) — B(B)| < «

where P is the distribution of Z.

Proor. Since (S, £Z) is a Borel space, there exists a regular conditional prob-
ability £, for Z given Y = y. It remains to show that there exists M e .9 with

P(Y e M) = 1 such that (4.3) holds for every ye M. Let ¢: S — H ¢ Z#(R) be
a one-to-one and onto mapping such that ¢ and ¢~! are measurable < and <Z(H)
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respectively. (This is possible, because (S, &Z) is a Borel space.) Also let

&' ={H n A: A is a finite disjoint union of left open and right
closed intervals in R with rational end points if the

end points are finite}
and
={H n A: A is a finite disjoint union of left open and right

closed intervals in R}.
Since &’ is countable, we may denote it by {C,, C,, ---}. By (4.2) and the

properties of regular conditional probabilities, there exists, for every i, M; e &
with P(Y € M,) = 1 such that for every y e M,,

|B(¢7(C)) — B(¢~Y(C))| < .

Let M = N, M,. Then, clearly, M e &, P(Ye M) = 1 and for every ye M,
(4.3) holds for B = ¢~Y(C,), i = 1,2, ..., and hence holds for B = ¢-}(C),
C e &, by the denseness of the rationals and the continuity of probability meas-
ures. As < isan algebra of subsets of H and <#(H) the o-algebra generated by
&, the proof of the lemma is completed by applying the monotone class theorem,
using the continuity of probability measures and observing that

={B: B = ¢ C), Ce Z(H)}.
LemMA 4.2. LetY =(Y,,---,Y,)and Z = (Z,, - - -, Z,) be r- and s-dimensional

random vectors measurable _#;, and _/#,..,, .. respectively. Then for every bounded
and Borel measurable function f: R™** — R, we have

(4.4) |E*A(Y, Z) — EXf(Y, Z")| < 2||f||¢(m) w.p.1
where Z' has the same distribution as Z and is independent of the sequence X, X,, - - -.

Proor. Since (R*, ZZ(IR*)) is a Borel space, it follows from Lemma 4.1 that a
regular conditional probability £, which satisfies (4.3) with a = ¢(m) exists for
Z given Y = y. Then for every y € M, the total variation of the signed measure
P, — P is less than or equal to 2¢(m). Hence for every y e M,

1§ [ 2) dP(2) — § f(y, 2) dB(z)| < 2| fl|g(m) .

This together with the properties of regular conditional probabilities implies
(4.4). Hence the lemma.

LeMMA 4.3. Let Y, T, Z be random variables measurable _#,,, #,,, #,, re-
spectively wherec — b = mande —d = m, andlet 9: R— R and f: R* — R be
bounded and Borel measurable. Then
(4.5) |Ef(Y, Z)9(T) — Ef(Y, Z)Eg(T)|

< 4¢(m)|| fI|E19(T)| + 2¢(m)||9]|EIA(Y, Z7)|

where Z' has the same distribution as Z and is independent of X, X,, - - -
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Proor. The lemma follows from Lemma 4.2 and the inequality
\Ef(Y, Z)9(T) — Ef(Y, Z)Ey(T)|
= |Eg(T)[E™A(Y, Z) — ETYA(Y, 21)]|
+ [EA(Y, Z)[ET*'9(T) — Eg(T)]|
+ |Eg(T)E[E*(Y, Z) — E*Y, Z)]| .

LEMMA 4.4,

(4.6) [Var (W)]t < 2i[m + 1 + 2(ng(m + 1))] .
Proor. By letting f(w) = w, (2.2) yields

(4.7) Var (W) = 2+ X Xoci-sism EXi X; — T Xz jism PiP;

+ Lt E[(X — p)V @]
But the first sum on the right-hand side of (4.7) is less than or equal to
2m 3r EX, = 2m2
and by Lemma 4.2,
| St B[ — p)V ]|

(4.8) = 2l E[S|ESX; — pil] + X1 E[X|E*T, — ET,|]

= 2¢(m + 1) Yin, ES, + 2n¢(m + 1) 31»_, EX,

< 4ing(m + 1)

where
Si = Deciom Xi and T, = Yisiim Xe -

Thus Var (W) < 4(2m + 1) + 42ng(m + 1) and this implies (4.6). Hence the
lemma.

Lemma 4.5.

(4.9) 2 Docii—jism EX; X; < Var (W) — 2+ 2m + 1) T2, p?
+ 4ing(m + 1) .
ProOF. By the Cauchy-Schwarz inequality,
L Di-nzm PiPi S 2m + D30 pi(F iz jism P
(4.10) = @m 4+ DH(E pOE Di-iism P57}
=(@m+ 1) X pt

Then (4.9) follows from (4.7), (4.8) and (4.10), and this proves the lemma.

LEMMA 4.6. For every bounded function defined on the nonnegative integers, we
have

(4.11) | 203 E[(X; — paf(V + D] < 6|\ f|ng(m + 1)
Proor. The lemma follows immediately from Lemma 4.3.

Now we prove the approximation theorems.
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THeOREM 4.1. Form =0, 1,2, ... and |h| < 1, we have

(4.12) |ER(W) — k| < 6 min (-1, 1)[Var (W) — 4
+22m + 1) B p + 44 + Drg(m + 1)].
Proor. By Lemmas 3.3, 3.4 and 4.6, (2.6) yields
|ER(W) — Z3 k) < 6 min (274, DX Docii-jism EX X;
+ X 2i-iism PiPs + 4ng(m + 1)]

which by (4.9) and (4.10) implies (4.12) and this proves the theorem.

THEOREM 4.2. Form =0, 1,2, --- and |h| < 1, we have

|ER(W) — Fh| < 227 [8m + 5 + 4(ng(m + 1))}]
(4.13) X [Var (W) — 2 +22m + 1) 32, pf]
+ 32[6m + 3 + (ng(m + 1))}1ng(m + 1) .
Proor. By Lemmas 3.3, 3.5 and 4.6, (2.6) again yields
|ER(W) —
(4.14) < 227 5 Bocumiizm B X1+ 2 min (74, D], + 1 — A))
+ 227 X Fli-qizm P E{XG[1 + 2min 74, 1Y, 5 + 1 — 2]}
+ 24 min (7%, Dng(m 4 1) .
Let V&9 = 3 0 _ism—ii>m Xz- Then, for 0 < |i — j| < m, we have
E{X, X;[1 + 2min (-4, 1)|Y/,;_, + 1 — 4|]}
(4.15) < E{X,X,[6m 4+ 3 + 2 min (17}, 1)|V&D — EV&9)]}
= [EX, X;][6m + 3 + 2 min (i~}, 1)E|V%D — EV &9
+ 2 min (274, 1) Cov (V> — EV®&D|, X, X)) .

By Jensen’s inequality and Lemma 4.4,
(4.16)  E|V®» — EV@i| < [Var (VS < 2[m + 1 + 2(ng(m + 1))H]

where it is observed that the sequence obtained from X, ..., X, by omitting
some of the X,’s again satisfies the mixing condition (4.1) and that EV“# < 2.
By Lemma 4.3, for 0 < |i — j| £ m, we have
Cov (V& — EV@I|, X, X;)
(4.17) < 4ng(m + 1)EX, X, 4 2¢(m 4 1)E|S,; + T,; — ES,; — ET,j|
< dnp,g(m + 1) + 42(m + 1)
where
Sii = Dr<iomp<i-m Xp s
Tij = Xisitmpsirm Xi'

and (X', - -+, X,') is an independent copy of (X,, - - -, X,). Thus the substitution
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of (4.16) and (4.17) into (4.15) yields
E{X, X,[1 + 2min (-4, D[Y/,., + 1 — 2]}
(4.18) < [EX, X,J[8m + 5 + 4(ng(m + 1))!]
+ 8min (2-%, 1)(np, + A)p(m + 1).
In the same way, it can be shown that, for |i — j| < m, we have
(4.19)  p,E{X,[1 4+ 2min (27}, 1)|Y, ;, + 1 — 2]}
< pupil8m + 5 + 4(ng(m + 1))]
+ 8 min (4-%, 1)(np; -- )@(m + 1),

By substituting (4.18) and (4.19) into (4.14), by Lemma 4.5 and by (4.10), we
obtain (4.13) and this proves the theorem.

Theorems 4.1 and 4.2 immediately yield

THEOREM 4.3. If X,, - -, X, are m-dependent, then for |h| < 1, we have

|ER(W) — A
(4.20) < 6 min (2%, 1)[Var (W) — 2 4 2(2m + 1) 332, p/’]
= 6 min (24, D[ Tin; Cov (X, X;) + (4m + 1) Tty p/l]
and
|E(W) — P H
(4.21) < 2(8m + 5)A-'[Var (W) — 2 + 2(2m + 1) 232, p’]

= 2(8m + 5)A7[ X Xis; Cov (X, Xj) + (4m + 1) T7, p] -
For m = 0, we obtain

CoroOLLARY 4.1 (Le Cam). If X,, ---, X, are independent, then for |h| < 1,
we have

(4.22) |[EN(W) — k| < 6 min (14, 1) D1, p?
and
(4.23) |ER(W) — Fih) < 1047 B, pe

where the former is a slight variation of (0.1) and the latter is an improvement of
(0.3). The absolute constant in (4.23) is not as small as has been obtained by Kerstan
(1964).

However, it should be mentioned that ho special attempt has been made in this
paper to minimize the absolute constants jn the bounds.
Finally, Theorems 4.1 and 4.2 also yield

TueoreM 4.4. If X,, ---, X, are identically distributed with ¢(m) = e-*™ for
some a > 0, then for |h| < 1 and n = 3, we have
(4.24) |ER(W) — F k|
=< Cy(a) min (274, 1)[Var (W) — 2 + (2 + 1)’n~*log n]
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and
(4.25) |ER(W) — Fh| < Cy(a)i~*log n[Var (W) — 2 + A2 + 1)n~*logn]
where C,(a) and C\(a) depend only on .

ProOF. Put m = [2a~'logn].

5. A refinement. It is possible to obtain expansion of EA(W) about Fh up
to any desired order by repeated iteration of the basic identity derived in Sec-
tion 2. In this section, we shall do so up to the second order for independent
Bernoulli random variables and obtain a bound for thé error of second order.
It should be mentioned that a similar result has been obtained by Kerstan (1964)
but by a different method. All notations are the same as in Sections 2 and 3.
To facilitate computations, we define two operators L and U, by

Lf(w) = fiw + 1)
LemMA 5.1. ForA=zb >0andk =0,1,2, .-,
(5.1) ek — e=PbH| < (X — b)(e~*kA*-t 4 e~%b*) .

and

Proor. We first obtain
le= 2% — e7tbk| < e~ 2A¥|1 — [1 — A7YA — b)]¥| + e tb*|1 — e~2+P| .,

This together with 1 —kx < (1 —x)ffor0<x<l,k=landl —e* < x
yield (5.1).

An immediate consequence of Lemma 5.1 is
LEMMA 5.2. For A= b >0,
(5.2) \Bf — Pf] £ (3 — AL + FS)) -
LemmA 5.3. Form=0,1,2, -
(5.3)  FIL™U,h| < 227Y|h||[1 + 2|m + 1 4+ b — 2] + 2bt min (2°%, 1)] .
ProOF. Let Y be Poisson distributed with parameter 5. Then by Lemma 3.5,
FL™U,h| = E|U, k(Y + m)|
< 227YA[[1 4+ 2 min (274, DE|Y 4+ m + 1 — 1]].
ButE|Y +m+41—2 <|m+ 1+ b— 2 + [E(Y — b)*]t. Hence (5.3).
LEMMA 5.4. Forw =1,
(5.4) |S, Uz h(w)| < 427Y|R||[(2 + 4|1 + b — 2]) min (b7, 1) 4 3 min (274, 1)] .
Proor. We have, forw > 1, '
(5.5) S, Uyh(w) = —(w — ) b= F ot [U, i(k) — F U, h]b¥[k!
=mw—= Do Xr, [Uikk) — FA U, kb k! .
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If 5 < w, (5.4) follows from the second equality in (5.5) and Lemmas 3.2, 3.5
and 5.3. On the other hand, if 1 < w < b, (5.4) follows from the first equality
in (5.5), Lemmas 3.1, 3.5 and 5.3. This proves the lemma.

LEMMA 5.5. Forb £ 2,
Uy Uzh(w)] < 4(26)7A[I[1 + |1 + 6 — 4|
(5.6) + B+ |w+2— 2 + 3w+ 1 — A)min (4%, 1)
+ 24+ 414+b—2)w+ 1 — A min (67 1)].
Proor. First we have
U, Uh(w) = =b[U,h(w + 1) — FU B — (w + 1 — b)S, Uy i(w 4 1)] .
This together with Lemmas 3.5, 5.3 and 5.4 implies (5.6).

THEOREM 5.1. If X, ---, X, are independent and p = max,;, p; < 4/2, then
for|h| < landn = 2,
(3.7 |ER(W) — Foh + (L1 pHF2 Ukl < C271 T, pi?

where C is an absolute constant not greater than 24 + 96(2)%.

Proor. In order that the use of symbols may be simplified, we introduce two
random indices 1, J independent of the X,’s such that (I, J) is uniformly distri-
buted on {(i,j):i,j= 1,2, ---,n;i # j}. By putting m = 0 and using inde-
pendence, (2.6) yields
(5.8) EW(W) = S h — nEpE"U, (W*)
where

W* = 2lisr Xi -
Now applying (5.8) again to E’U, i(W*) but using the random index J, we obtain
EWW) = Ph — Ep [P Ush — (n — D)EpUp Uy h(W**)]
= Poh — (D1 pAFUsh — nEp (P Ush — AU, b)
+ n(n — 1)Ep/pER U, U ((WH¥)
where
A= Ylisr Pi

WH* = Zi#I,J Xi .

and

By Lemmas 5.2 and 5.3,
| T Uk — F UK < p[FLU B + T U3 A
< 24p, i1,
and by Lemma 5.5,
|EDI U, Uy (W) < 8(A4*)7Y[T + S(A*)REDT|WH* — 2**[]
< B(AF)T 4 S(RX)H(Var's (Wrx)i]
=< 96(24%)71,
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where
¥ = 3 iarg Pi - . Thus

(5:9)  |EWW) — Tk + (XNia p*)F Ui
< 2427'nEp® + 964~'n(n — 1)E(2*)~'p,’p,* .
But by Jensen’s inequality,

A7in(n — DEQ*)7plp = 78 Tty pi? Zjws P32
< A7 B0 P D s PAAO)
= (A= PN L= P iz PR
= [2(2 - P)]_i Z:Z;l Pia
=207 Y, pés

where 2 = 37 ,., p;. Hence the theorem.
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