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EXTREME TIME OF STOCHASTIC PROCESSES WITH
STATIONARY INDEPENDENT INCREMENTS

By PrisciLLA GREENWOOD
University of British Columbia

Let {S» = X7, Yi}or {X;, t = O} be a stochastic process with stationary
independent increments, and let T#(z), T-(r) be the times elapsed until the
process has spent time rat its maximum and minimum respectively, defined
in terms of local time when necessary. Bounds in terms of moments of Y3
or X; are given for E(min (T*#(z), T-(z))). The discrete case is studied first
and the result for continuous-time processes is obtained by a limiting argu-
ment. As an auxiliary it is shown that the local time at zero of a process
X; minus its maximum can be approximated uniformly in probability using
the number of new maxima attained by the process observed at discrete
times.

1. Introduction. By the extreme time of a process we mean the time it spends
at its maxima and minima, or if these are instantaneous, the time the process
spends increasing and decreasing to new extrema measured by local time. We
will study stopping times for a random process defined in terms of the extreme
time. Such stopping times are of interest for embeddings of processes and for
those control problems in which extreme time is an important quantity.

The stopping time studied here may be compared with the crossing time of a
process at a two-sided boundary. Let {S, = >i7, Y;} or {X,, ¢ = 0, X, = 0} be
a stochastic process with stationary independent increments. In the latter case
take a standard, right-continuous version. Frequently, if 5 >0 and T =
inf{t > 0: X, > b} then ET = co, whereas if a <0< b and T = inf{t > 0:
X, ¢ (a, b)} then ET < co; S, behaves similarly. If instead of boundary crossing
times we consider 7*(c) and T(z), the times elapsed until the process has spent
time > 0 at its maxima and minima respectively, then frequently E(7*(r)) =
oo, but we expect that

(1) E(min (T*(7), T~(7))) < oo .

Although the maximum and minimum processes associated with S, and X,
have been studied extensively, little is known about the joint behavior of the
two processes, which are neither independent nor simply related. The primary
result is the equation of Spitzer (1964) involving the transforms of the maximum
and minimum processes at their increase times in the discrete case, and Fristedt’s
(1974) extension of this equation to the continuous time case. Here we study a
particular aspect of the joint behavior, namely min (T+(z), T-(z)).
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The quantities 7+(z), T(r) are adequately described above if X, is a discrete-
time or compound Poisson process. If X, has continuous time parameter, is
symmetric and not compound Poisson, it follows from a result of Rubinovitch
(1971) that T = inf {r: X(r) > 0} is almost surely zero. In this case local time at
zero of X, — M,, where M, = sup,_, X,, exists by the construction of Blumenthal
and Getoor (1968) of local time at regular points of Markov processes. Alter-
natively, since X, — M, is a strong Markov process, the set of ¢ such that X, —
M, = 0 forms a regenerative set. A general study of local time on regenerative
sets has been made by Maisonneuve (1971). We take T*(z), T~(z) to be the
right-continuous inverse of the local time at zero, chosen in a natural way, of
X, minus its maximum, minimum process respectively.

We obtain (1) first for a random walk S, = >}~ Y;, with a bound in terms of
the second and fourth moments of Y, (Theorem 1). The result is then derived
for compound Poisson processes by replacing fixed time increments with expo-
nentially distributed ones (Theorem 2). In order to extend the result to the re-
maining symmetric independent increment processes we show, more generally,
that whenever the local time at zero of X, — M, exists it can be approximated
uniformly by the number of new maxima attained by the process observed at
times i/2", i an integer, normalized appropriately. The approximation is in the
sense of convergence in probability as n — co (Theorem 3). This extends a
similar result of Fristedt (1974) who obtained convergence in law. The approxi-
mation of local time is used to compute ET*(r) for processes such that EX; > 0.

Some remarks about the hypotheses, methods, and related problems are con-
tained in the last section.

2. Results. For convenient reference the main results are stated here. Some
lemmas and a corollary to Theorem 3 are stated in the next section.

THEOREM 1. Let S, = 3.7, Y,, where the Y, are independent random variables
with common distribution F. Let Y = Y,. Suppose that F is continuous, EY = 0,
EY? = ¢% and EY* = y < oo. Let T, , = min {m: number of new maxima of S,
is r or the number of new minima is s for n < m}. Let Z = S, where T = min {n:
S, >0}, Z=—S; where T =min{n: S, <0}. Then

(2)  ET,,< ((EZ* + EZ)EY)(r + 5) + (BZ)* + (EZ))[EY")(r + 5)".
If F is symmetric then
ET,,< c(r 4+ s) + (r + 9)?
where ¢ = 2EZ*|EY* < (27)}/o".
THEOREM 2. Let X, be a compound Poisson process with characteristic exponent
log E expif X, = —tA (=, (¢*" — 1)dF(x),

where F is a continuous distribution function with second moment ¢* and fourth moment
7 < oo. Let L*(f), L~(r) denote the time spent by X, at maxima, minima, respectively,
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up to time t. Then
E(inf t: max (L*(1), L=(t)) = 7) £ d, 7 + d, 427,
where d, = 2¥y}[g® + 2, d, = 1 if F is symmetric. Otherwise
d, = 2(EZ* + EZ*d®) + 2, d, = ((EZ)* 4 (EZ)})/d*.

THEOREM 3. Let X, be a process with stationary independent increments such that
Xy, =0and T =inf{t > 0: X, > 0} = 0, almost surely. Let M, = sup,., X, and
denote by L, the local time at O of the process X, — M,, chosen so that
E (¢ e*dL(s) = 1. For each positive integer n let ' = min {i/2": X(i/2") > 0}
and let L,(t) = card {ascending ladder epochs of X(i|2") before t} - (1 — Ee~*™").
Then L, converges to L uniformly on bounded intervals in probability.

THEOREM 4. Let X, be standard symmetric process with stationary independent
increments, not of Poisson type, X, = 0, EX;? = 0% EX; = y < oo. Let L+, L~
be the local time at 0 of X, minus its maximum, minimum process, respectively.
Let T*(r) = inf {t: L,* = ¢}, T~(r) = inf{¢t: L,- = z}. Then

E(min (T*(z), T—(7))) £ Y /od)r + 472,

THEOREM 5. Let X, be a standard process with stationary, independent increments,
not of Poisson type, X, = 0, and EX, > 0. Then ET*(r) = r.

3. Proofs. We will adopt, with some modifications, terminology of Feller
(1966). In particular, Z = S,, where T = min (n: S, > 0), and Z = —Sj3, where
T = min (n: S, < 0) are called the ascending and descending ladder variables
associated with S,. In the symmetric case Z and Z have the same distribution.
The times at which successive new maxima and minima occur are called ladder
epochs. We use the term ladder height to mean the absolute amount by which
the difference of the maximum and minimum of the process increases at a ladder
epoch. We note that ladder heights are distinct from ladder variables. Results
of Spitzer about ladder variables used here are presented by Feller (1966) in
Chapters 12 and 18.

Spitzer showed that the first moments of the ladder variables are related to
the variance, ¢%, of Y, if EY, = 0 by

3) EZ = (0*2)te°,  EZ = (6*[2)te~",

where ¢ = 3} n=(P(S, > 0)~!) < oo. The following lemma gives similar inequali-
ties for the second and third moments of the ladder variables. Of this informa-
tion we will use only the bound for EZ* in the symmetric case, and the finiteness
of both EZ? and EZ? in the nonsymmetric case.

LEMMA 1. Let S, = X7, Y,, where the Y, are independent with distibution F.

Let Z, Z be the ascending and descending ladder variables. Suppose that F is con-
tinuous with mean zero, second moment ¢ and fourth moment y < co. Then
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EZ*EZ* < y/2 and EZ®*EZ® < v*/(20%). If F is symmetric, then
EZ'< (2 and  EZ® < p/(2%).
Proor. Spitzer showed that
(4) F=F++4 F —F*«F—,

where F*+ and F- are the distributions of Z and —Z. For each positive integer
m, let §,™ be a random walk with steps distributed like

W,=0 if |Yy|>m
=Y, if |Y|<m.

Let Z,,, Z,, be the possibly defective ladder variables of S,™. Relation (4) holds
for the distributions of W,,, Z,,, and —Z,,. Multiply by x* and integrate to obtain

(5) 4EZ,EZ,® + 4EZ,’EZ, — 6EZ,*EZ,* < EW,*,

where each EX™ denotes § x"G(dx), G possibly defective.
Leta = (EZ, EZ,*}, b = (EZ,’EZ,)*. From the moment inequalities

EZ, < (EZ,EZ )} and EZ,? < (EZ,EZ})}
we have
EZEZ,*< ab,
and from (5)
4(a® 4 b*) — 6ab < EW,*,

or

ab2 < (a — b)* + abj2 < EW,*/4.
Let m — oo and use (3) to obtain

lim inf EZ,?lim inf EZ,* < 7/2,

liminf EZ,? lim inf EZ,3 < 1*/(24%) .

For each sample function, if m is sufficiently large, Z, and Z,, are defined and
equal Z and Z. Fatou’s lemma completes the proof.

Proor oF THEOREM 1. If the number of ladder epochs of S,,, n < n,, is at least
r 4 s then either at least r ascending or at least s descending ladder epochs have
occurred before n,. We consider the stopping time 7, = min (m: at least u
ladder epochs occur in (n < m)).

Let 7, be the time from the (i — I)st to the ith ladder epoch. Then ET, =
S, Et;. Let H, be the absolute size of the ith ladder height. Let

W, = Z§‘=1 Hj = maX;_,..r, Sj - minj:l""'Ti Sj ’

To show that Et, is finite we look at the process starting at 7,_,. The time until
the next new minimum or maximum is the time it takes the process S, to escape
from the random interval of width W = W,_, starting from one endpoint. For
the present let the process be symmetric. In this calculation we may assume
Sz,_1 to be a minimum and the endpoint in question to be a lower endpoint.
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For w fixed let N, = min {n: S, ¢ [0, w]}. We write N, = N, remembering that
N always depends on w. For each w, EN = ES,*/EX}?, and Et, = E,[ES,*/EX}?,
where E,, denotes integration with respect to the distribution of W. We will
show that Et; is bounded in terms of moments of the ladder variable Z. Using
the identity Sy* = (Sy — w)? + 2w(Sy — w) + w?, we have
Ey ES\* = EL[E((Sy — w)! Sy > w) + E(S,% Sy < 0)]
(6) + 2E5[wP(Sy > W)E(Sy — w|Sy > w)]
+ Ey[w'P(Sy > w)].
For fixed w the Wald equation
ESy = P(Sy > W)E(Sy|Sy > w) + E(Sy, Sy < 0) =0
and the observation that S, is the same as — Z on the set {S, < 0} give
P(Sy > w) < EZJE(Sy | Sy > W)
= EZ|(E(Sy — w|Sy > w) + w).
Under the continued assumption that the process is symmetric,
wP(Sy, > w) < EZ.
From the same observation, E(S,? Sy < 0) < EZ*for every w. A similar argu-
ment will give bounds for the other terms of (6), which can now be viewed as
7 EyESy < EyE((Sy — w)%, Sy > w) + 2E, E(Sy — w|Sy > w)EZ
+ EWEZ + EZ*.
If H, is ith ladder height,
Ey E((Sy — w), Sy > w) = E(H?, H; has opposite sense from H,_))
< EH?.
Similarly, E, E(Sy — w|Sy > w) < EH,[q, where g, = P(H, has opposite sense
from H, ,) > 0. Also, EW = EW,_, = },'-1 EH;. We see that (7) is finite if
for each ladder height H,, EH; and EH} are finite. But H,, in each of its pos-
sible roles, is a restriction of some ladder variable Z;:
EH, = Y%_ E(H,, H; is the jth ascending ladder height)
+ E(H,, H; is the jth descending ladder height)
< 2iEZ,
and
EH? < 2iEZ*.

This establishes that Et, is finite in the symmetric case. If F is not symmetric
we calculate Ey, ES,* by first conditioning with respect to the two events that
T;_, is an ascending, decending ladder epoch. The inequalities remain valid if

EZ and EZ* are replaced by max (EZ, EZ) and max (EZ?, EZ?) which are finite
under our hypotheses according to Lemma 1.
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Having shown that ET, is finite, we use Wald’s equation,
®) ' ET, = ES} |EY*,

to obtain a bound. The quantity S, is a sum of # ladder heights of which a
random proportion are ascending. The component sets of ascending and de-
scending ladder variables can be described in terms of random times n(w), but
these, we note, are not stopping times for S,. Let Z;, i =1, ..., r be the first
r ascending ladder heights, which are independent and distributed like Z, and
let Z,,i=1, ..., r be the magnitudes of the first » descending ladder heights,
another independent family of random variables each distributed like Z. For
any nonnegative X, Y, E(X — Y)* < EX? 4+ EY*. Similarly,

©) ES}, = E(D1 Z; — X321 Z,)
S BTt Z) + E(X3a 2)

Recalling the first paragraph of this proof, we replace T, by T, ,and u by r + s
in (8) and (9) to obtain (2). If F is symmetric, Z and Z have the same distri-
bution. From (9),

Ez: EZ)y
BT, 2222 (r+ 9) +2(_E—)—/2—(r+s)(r—l—s— 1.

Spitzer’s equation (3) and Lemma 1 allow us to replace (EZ)*/EY* by % and
EZ?|EY? by (7[20%?.

Proor or THEOREM 2. The Poisson-type process remains in each state for an
exponentially distributed time with parameter 2. The number of states required
to accumulate a total time of at least ¢ is a Poisson random variable with parame-
ter Az, independent of the identity of the states involved. The number of max-
imal states visited by X, before L*(r) = r and the number of minimal states
visited before L=(f) = ¢ are independent Poisson variables Y and Y-, each with
parameter ir. Let S, , = inf (¢ > 0: X, has attained a maximal states or b mini-
mal states, s < ¢). ThenS, ,isasum of T, , exponentially distributed independent
summands R;, where T, , is defined as in Theorem 1 in terms of the discrete-time
process S, with jump distribution 7. Using Theorem 1, we have

E inf (t > 0: max (L*(¢), L~(¢) = 7)
= X5 P(Y*, Y) = (a, b))
(10) X E(S,,|(Y*, Y7) = (a, b))
= Do (Y, Y7) = (a, D))
X N B(Sas | (YT, Y7) = (a,0), Ty = ©)
X P(T,, =c|(Y*, Y7) = (a, b)) .
Now T, , is independent of (Y*, Y~), and given that T, , = ¢, S, is the sum

of ¢ exponentially distributed waiting times. That (Y*, Y~) = (a, b) means that
two particular subsets of a and b waiting times each total < r and one of these
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totals . Expression (10) is bounded by
Do P(Y*H, Y7) = (a,0)) Bassnn E D R P(T,,, = ¢) + 27

= D=1 P((Y+’ Y-) = (a, b)) Dot f—:—(%—l_—b) P(Ta,b =c) + 27

= ZEam P(Y%, YY) = (@, D)(ET. — (a + ) + 2,

if F is symmetric
1

S - L= P(YF, Y7) = (@, ))((e — (@ + 8) + (@ + b)) + 2t

= % [(c; — )24z + 4(Ar)? + 227] + 2¢

=d, + 42,

where d, = 2¥%/o® + 2.
If F is not symmetric use (2) for ET, ;.

Proor oF THEOREM 3. We assume that (X,, &) is a standard (Hunt) process
on a probability space (Q, &, P). Let A,(t) = {{e " dL,(s), A(t) = (i e * dL(s).
It suffices to show A4, — A4 uniformly in probability. Let f,, be the time from
the (i — 1)st to the ith ladder epoch of X(j) = X(j/2"), ™ =t,,, and a, =
1 — Ee*'". Then

EA,(00) = a,E 37, exp(— 2l 1i,0)
= a, Y, (Be ™)) = Eet™' .
Also, EA(c0) = E (¢ e=*dL(s) = 1 by our choice of local time.
Foreachs > Olet[f] = inf(s = ¢: (X — M)(s) = 0). Then Y &7, = U F,

and
e,(t) = E[A4,(c0) | Zt]]

and
e(t) = E[A(c0) | F 1y
are martingales with respect to the family of o-fields & ,;. Let[¢], = min (i/2" >
[£]: X(j/2") < X(i[2"), all j < §). For fixed t and n, that P([t] = [¢],) = O follows
from the fact that P(X, = @) = O for any fixed s and @ and any initial distribu-
tion. Since [7], is a stopping time for L, which does not increase between [¢]
and [7],, ‘
en(t) = A[1]) + E[S§ias e dLu(s) | F 1]
(11) = A([1]) + an E(e™ | F 1) + E[§7 em W dL,(s + [].) |7 1]
= A1) + (@, + E {5 e dL,(s))E[e” | F ]
= A ([1]) + E[e7 [ F ] -
Similarly, since L does not increase between ¢ and [],

e(t) = A[1] + e ME {¢ e~ dL(s) = A(f) + ™19,
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To show that A, converges to 4 uniformly in probability, it suffices to show

that, as n — oo:

(i) Ee*'" — Ee " =1, i.e.,a,—0;

(ii) E[e~tn]..7 ] — e~ uniformly, almost surely;
(iil) P(le,(r) — e(t)] > ) — O uniformly;
(iv) A4,[t] — A4,(t) — 0 uniformly.

ProOF OF (i). Clearly #™ > T and ™ | T almost surely since X, is right

continuous.

PRrOOF OF (ii). Since X, begins anew at [¢], there are arbitrarily small ¢ > 0
such that X([r] 4+ ¢) > X(s), all s < [¢]. By the right continuity of X, at [7] + ¢,
there is an i/2* such that X(i/2") > X(s), all s < [¢], and i/2* < [f] 4 2¢. This

n depends only on the path X;, ¢ > [¢]. Hence
E[e=tn | ] = e"ME[e 0] ] — e

uniformly in 7, almost surely.

PRrOOF OF (iii). Apply Doob’s inequality to the submartingale |e,(r) — e(?)[:

P(sup, |e,(1) — e(?)| = 9)

< E(Ay(00) — A(e0))
= 51{ E[§ e*(dL, — dL)T*
2

= 5 E\ye(dL, —dL) {7 e(dL, — dL)
2 i
= S E 7 e(dL, — dL) E(\7 L, — d1)|-7)

= 2 E(sup, [E(0.(5) |77 1§ (L, — dL))

where
g.(s) = (e '(dL, —dL),

< % (E sup, |E(9,(s) | -7 )HHE(\s e~ dL, — dL)})} .

The last factor squared, by the same calculation as above, is
<2E(\fe>dL, — dL)\ye(dL, — dL)
< 2(E \ye*(dL, + dL))
=2(Eet™ + e 7)< 8.

A computation similar to (11) gives

E(g,(s)|.F) = E(e™*»| ) — E(e™].7) .
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Each term is bounded by 1. Therefore
sup, |E(g.(s)| ) = 4.

We will show that sup, E(je~*» — e~l)]| 54 ) — 0 almost surely, and conclude
from the dominated convergence theorem that E sup, |E(g,(s) | -#,)|* — 0.

For each s let B,(s) = {w:[s] <s,}. Recall that [s]=inf{t > s: (X —
M)(r) = 0}, s, = the Ist ladder epoch of X(i/2") after s. We write

E(je~*» — e711|| ) = E(e”*] — e~*», B,(s)| &)
+ E(e*s — e, B/(s)| 7).
For w € B,(s), we have [s] < s, < [5],, so that
E[e ) — e=*n, B,(s)| 57) < E(e™™) — e~Tln | .57) .

This goes to 0 uniformly in s by the argument used to prove (ii).
Fix . Lets, be any 0 of X — M. Then

lim,,, E(e~|.5) = lim,,, E({7e~*dL(1)|.5",) = e

8|8,

for this o, since L(¢) is continuous and the path is right continuous. Given
e > 0, we can find ¢, > 0 such that

E(e=*n — e ), B/(5)| F,) < ¢ forall s, <s < s+ ¢,

and for all n, since s, < s, < [s] and E(e~F*1| 57) is near e~. We note that ¢,
depends on w and s,. Let

Cs) ={v: s <5< s +¢ where s, isany 0 of X — M}.

We have Efje~*» — e~l]|, B,(s) U C(s)| #,} < ¢ for large n, uniformly in s.

The complement of B,(s) U C(s), denoted by (B,(s) U C(s))’, may contain some
o for which 0 < [s] — s, < e. Call this set D,(s). Since |e™*» — e7F*]] < ¢ on
D,(s), we have E(le=*» — e 41|, D,(s)| % ,) < ¢. Choose #,s0 thate~% < e¢. The
proof will be finished once we see that there is a null set N not depending on s
such that (J,,, (Bu(s) U C(s) U D,(s) U N)’ — ¢ asn — co. In a moment we will
see what N should be.

Suppose that @ € U,<:, (Bu(s) U C(s) U D,(s) U N) for infinitely many n. Then
for each of these n’s thereisan s < ¢,such thats, + ¢, < s < 5, < [s] — ¢ wWhere
s, = inf {t > 0: M(t) = M(s)}, a 0 of X — M. There are finitely many intervals
(50> [$])> § < 15, Of length greater than ¢, so there are infinitely many of the pairs
s, 5, in one particular such interval. There existsad > 0such that (X — M)(s,) <
— o for all n. Otherwise a subsequence 3, of the s, would converge to an § where
(X — M)(5,) — 0 but (X — M)(5) + 0. But this happens only with probability
0, as is shown in the proof of Theorem 9.1 of Fristedt (1974). Put such o into
N. Since X — M is right continuous, for all large enough n there is a point i/2"
in (s,, S, + &) such that (X — M)(i/2") > —4. This contradicts our assumption
about o.
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PRroor oF (iv). To show that 4,[¢] is uniformly near A,(f) for large n in the
sense of convergence in probability, we write

Au(l) = E(A4,(0)| ) = E(4,(00) | F7) — E(\7 €7 dL(5)| 7))
and
ALt = E(A[1]| F 1) = eu(t) — E(§gh e dLy(9)|-F 1) -
Then
A[1] = Au(1) = e,(t) — E(4,(c0)| F)) — E(e™n| F 1) + E(e™n| 7)),
by an argument familiar from the proof of (iii). The processes E(A,(c0)|-F )

and E(A(o0)| 5 ;) are martingales with respect to the o-fields %,. Doob’s in-
equality gives

P(sup, |E(A,(00) | F7) — E(A(0) | F)| > 0) = %E(An(oo) — A(c0))?

which is shown to approach 0 as # — oo in the proof of (iii). We know also from
(i) and (iii) that E(e~l"ln | & ,)) — e and E(e~'»| F,) — E(e11| &) uniformly.
Combining these gives us
lim, ., 4,[t] — 4,(f) = e(t) — E(A(c0)| F ) + E(e7| F,) — e 11,
A closer look at the first two terms on the right gives
e(t) = Al1] + E({iy e dL(s) | & 1)
= A[t] + e VIE {§ e~ dL(s) ,
E(A(o0)| &) = A(t) + E(e71| F)E (7 e~*dL(s) .

Since A[t] = A(f) and E {7 e~*dL(s) = 1 we conclude that

lim,_ A4,[t] — 4,(1) =0,
in the sense of uniform convergence in probability.

CorOLLARY. Let T(zr) = inf{t > 0: L(t) = 7}, T,(r) = inf{t > 0: L,(t) = 7}.
There exists a subsequence ny, such that T, (t) — T(t) almost surely.

PROOF. Since P(Supyc;<s, |L(f) — L,(f)] > 0) — 0, there exists a subsequence
n, such that sup,, ., |L(t) — L, (1)] — 0 almost surely. By taking #, — co through
a countable sequence, constructing successive subsequences of n,, and using a
diagonalization argument we find a subsequence which we again call n, such that
sup [L(t) — L, (1)] — 0 almost surely. '

Fix z. For any 1, and almost any sample path such that L(t,) > r, L, (t,) —
L(t,) so that for large n,, L, (t,) > v and T, (r) < . Similarly, if L(r) < z, for
largen,, T, (v) = #,. Thus T, ()iseventually arbitrarily near the set {¢: L(r) = r}.
But since T(s) is a subordinator (see e.g., Fristedt) and almost surely continuous
at s = 7, the set {t: L(f) = 7} = T(v). :

The proof of Theorem 4 will utilize the corollary just proved and an additional
lemma which tells how fast the moments of the ladder variables Z for the
discrete processes X(i/n) decrease with increasing n.
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LeMMA 2. Let X, be a symmetric process with stationary independent increments,
EX! =7 < o0 and EX? = ¢*. Let X™(i) denote the process X(i[n) and Z'™ the
corresponding ladder variable. Then EZ'™ = (0*[2n)}, and E(Z™*) < (7[2n)t.

Proor. For each n write X, = X7, Y, where Y, = X(i/n) — X((i — 1)/n).
Then EY;? = ¢*/n, and

T = E(Z:‘:l Y‘L)4 =F Z’g=1 Yi4 + Z?,j=1;i¢j EYiBYj + Z?,j=1;i¢j EYi2Yi2
= nEY?* + n(n — 1)o*/n?,

and
EY =7[n — (n — D)o*/n* < y/n.

From Lemma 1,
EZ™ = (EY}2)} = (d*/2n)}

and
EZ™? < (EY#2) < (7/2n)t .

Proor oF THEOREM 4. If X, is symmetric and not of Poisson type then
P(T > 0) = 0 where T' = inf { > 0: X, > 0}, as shown by Rubinovitch (1971).
Let X‘™(i) = X(i/n). Theorem 3 says that on the subsequence m = 2", L,,*(t) —
L*(f)and L,,~(t) — L~(¢) uniformly on bounded intervals in probability. We use
+ and — here to denote the processes L, and L arising from the maximum and
minimum processes respectively. Let ™ denote the first ascending ladder epoch
of X divided by n. A relation due to Sparre-Anderson (see Feller, Chapter
12) is

IOg 1/(1 _ Ee_t(n)) — Z:;l e—tn P(X(l/n) > 0) )

1

In our case X is symmetric, P(X(i/n) > 0) = 1, and 1 — Ee~*'"' ~ n~%.

Let T,*(r) = inf{r > 0: L,*(#) = r}and T*(r) = inf{r > 0: L*(f) = r}, where
*is + or —. According to the above corollary, there is a subsequence n, of the
integers such that almost surely 77 (v) — T*(r) as k — oo, where * is + or —.
By renumbering, we replace {n,} by {n}. Let n be large enough so that
(1 — Eet"")n* is near 1, and let cn* denote its own integral part. Then T,*(r) ~
inf (+ > 0: card {ascending ladder epochs before ¢} > rnt), and a similar descrip-
tion gives T,,~(r). Let ¢{, denote the time between the (; — 1)st and ith ascend-
ing ladder epochs of X(i/n), similarly ;,,. Then T,*(r) =~ 2" ¢, and T,~(z) ~

o Let B, = {0: T,*(r) < T,(¢)} and let B = {w: T*(r) < T-(r)}. Ex-
cept for a set of probability zero, o € B implies w € B, for all large enough n.
Hence, by Fatou’s lemma,

E(T*(z) A T~(r)) = E(T*(7), B) + E(T(z), B')
< lim inf, ., (Bt B,) + E(D 17, B.))
= lim inf, . E(Ni% 6, A 5% 17)
< liminf,  E Yty .,
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where ¢, , denotes the time between the (i — 1)st and ith ladder epochs of any
type. The last inequality is obtained by reasoning that when 2zn# ladder epochs
have been attained, among them are at least tn* of one type or the other. We
apply Theorem 1 with r + s replaced by 2zn?, and note that the discrete process
X(i[n) proceeds by time units of size 1/n to obtain
E Yt < (QEZ™Y(EX(1/n)?)2cnt 4 4cn)n~?
< (/203 (0% |m)2nt T + 4o

b
=1 24 + 477,
0-2

Lemma 3 was used to evaluate EZ™?,

Proor oF THEOREM 5. For each n, X is transient and (see Feller, Chapter 18,
(4.9) and (3.2))

(12) Et» = exp S, P(X(ijn) < 0))i < oo ,
and
(13) log (1 — Ee='™)~* = ¥i2, P(X(i[n) > O)e="]i .

Let {n} denote a subsequence of the integers such that T,*(z) — T*(r) almost
surely, given by the corollary. As in the proof of Theorem 4 we have ET+(zr) =
lim,_,, >3;2% Et},, if a finite limit exists, where a, = (1 — Ee~4'»)~'and ra, de-
notes its own integral part. Substitution of (12) and (13) gives

St Et}, ~ tEt}, (1 — Ee~%n)

= % exp Yo, (P(X(ifn) < O + P(X(i/n) = 0)e="/")/i

= = exp {{ (P(X, < 0) + P(X, = 0)e™!)tdr
for any ¢ > 0. The numerator of the integrand is continuous and — 1 as # — 0.
Consequently ET*(z) = lim,_,, (z/n) exp(log n) = .

4. Discussion. Spitzer’s equation (4) and the method of Lemma 1 give a
family of relations between the moments of the ladder variables and those of the
increments of a random walk. For instance in the symmetric case we could
conclude in Lemma 1 that

8EZEZ® — 6(EZ% =7 .

All of these relations involve products of moments in such a way that in the
nonsymmetric case we cannot obtain from them inequalities similar to (3) for
higher moments of Z and Z. A possible method of evaluating £Z?, for instance,
in the nonsymmetric case would be analysis of (3/d(%)y(s, {) at{ = Oass— 1—,
where y(s, {) = E(s%¢'*5z). Such an evaluation might then be used to obtain a
result like Theorem 4 for the nonsymmetric case.
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The hypothesis that F is continuous enabled us to avoid the notions of strict
and weak ladder variables (Feller) but is probably not necessary. Its removal
from Lemma 1 would improve Theorem 1. The setting of Theorem 4 involves
continuous F in any case.

The finiteness of the fourth moment of the process was needed not only to
have EZ* finite but also to obtain the bound EZ? < (y/2)}, an essential fact in
our treatment of the continuous-time case. A different approach to the problem,
not using ladder variables, might yield (1) under a weaker moment condition.

The proof of Theorem 3 is similar in outline to the proof of existence of a
continuous additive functional whose potential is a given bounded excessive
function, provided by Blumenthal and Getoor (1968). The points of similarity
are the use of 4, and 4 in place of L, and L and the manner of defining and
using martingales.

Acknowledgments. I am grateful to the referee who located an error in the
original proof of Theorem 1 and made additional helpful comments. The present
truncation method in Lemma 1 was suggested by B. Fristedt and W. Pruitt.
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