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Let X(#), 0 < ¢, be an . x & -measurable process on (Q, &, P) with
state space (E, &), where & is the Lebesgue o-field and & is countably
generated. Let & (f,1), 0 <t < f; < oo, be the o-field generated by
{Szl [f(X(s))ds,t1 <t < 1,0 < fe &). A new process Z(f) is constructed
whose values consist of conditional probabilities in the wide sense over
F (¢, o) given F (0, t+). It is shown that Z(¢#) is a homogeneous strong-
Markov process on a compact metric space, with right-continuous paths
having left limits for # > 0. Z{(#) determines X(#) wp 1 except for ¢ in a
Lebesgue-null set. We call Z(f) the prediction process of X(#). Some
general properties of the construction are developed, followed by two
applications.

0. Introduction. Let (E, &) be an arbitrary set and a countably generated
o-field of subsets. A continuous time stochastic process with state space (E, &)
is, as usual, a collection of E-valued random variables X(¢), t € I, on a complete
probability space (Q, .5, P), where I is an interval (finite or infinite) of the real
line R. From an empirical viewpoint, however, it must be allowed that this
concept is something of an artifice, if not even selfcontradictory. Thus if X(z)
is to have any operational meaning for individual ¢, without reference to any-
thing else, we must admit the possibility of a continuum of separate and instan-
taneous observations, and no amount of ingenuity seems likely to suggest a
procedure for carrying these out. Something further is clearly needed to prevent
the process from disintegrating into an uncountable number of discrete instants.

This difficulty is present, of course, in deterministic as well as in stochastic
processes. In the former case, however, it is always apparent that the intended
trajectory has some additional regularity property, such as continuity in some
topology on E, which reduces the problem of making observations to a sequence
of approximations, each member of which requires a non-zero length of time
for its accomplishment. In the stochastic case it is usually not obvious from
the finite-dimensional distributions alone that the paths can be chosen to have
such a property.

A first step out of this difficulty is the well-known idea of separability due to
Doob (1953). If X(¢) is real-valued, this yields a standard modification of X(7)
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(a process equal to X(r) with probability 1 at each ¢) for which determination
of lim sup’s and lim inf’s of X(z) at all ¢ is reduced to determination of X{(¢) for
t in a countable set. But this alone does not seem to solve the problem for two
reasons. First, determination of X(¢) is still instantaneous, contrary to all usual
processes of measurement. Second, the significance of lim sup’s and lim inf’s
hinges largely upon the presence of some additional regularity property to make
these values representative of the behavior of the paths at more than a countable
dense set of times.

Another aspect of separability, however, is that it leads to the existence of
measurable modifications of the process, and this feature is essential to the
present approach. If, for example, (E, &) is a locally compact space with
countable base, and X(r) is continuous in probability at all ¢ except for a
Lebesgue-null set, then there is always (<~ x & )-completion-measurable stand-
ard modification [9: Chapter 4, 2, Theorem 1 and Remark 1] where (£, L)
denotes the Lebesgue o-field and measure on 7, and the completion is with re-
spect to the measure L x P. For a general state space, we will take the point
of view that such measurability is axiomatic. Thus we assume throughout that
for every Ae &, {(t,w): X(t,w)e A}e & x & up to an L x P-null set. We
shall also assume for convenience, except when stated otherwise, that / =
R* = [0, o0). Using the notation fe ¥ x & for & x &-measurability, we
recall that for f e & x & either positive or bounded we have { f(s, X(s)) ds € &
for each ¢. This is clear for f = I, I, Be &£, C € &, by Fubini’s Theorem, and
the general case follows by a standard extension procedure. The starting point
of the present synthesis is to disregard the process X(7) for individual ¢, and to
consider those sets of & obtainable in terms of such integrals of the process.
Stated differently, this means that we regard two paths of X(r) as equivalent if
they differ at most on a Lebesgue-null set of #. Indeed, it is not difficult to show
that the atoms of the o-subfield of .5 generated by all such integrals are pre-
cisely the atoms generated by this equivalence relation (in particular, the latter
are elements of .% ). The mathematical advantages of this approach, such as
the fact that this subfield is separable, will gradually become apparent. It is
hoped that the above remarks will suffice to provide also some heuristic
justification.

A fundamental question which immediately arises is how to interpret X(¢) as
a stochastic process without any essential loss of information for individual ¢,
but using only its indefinite integrals.” The answer which we give to this is in
fact the basis for the present paper. Stated very briefly, it is that we replace
X(r) by the conditional distribution over the entire future after time ¢ given
the entire past up to time 4. At first glance this admittedly looks quite awk-
ward, but with practice it becomes much less so, and there are unexpected
benefits. One of these is that sets contained in the intersection of the past up
to -+ and the future after r have conditional probability 0 or 1. Thus, to the
extent that X(¢) is measurable over this intersection, nothing is lost in the
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reformulation. On the other hand, it turns out that the new process may be
viewed as having right-continuous paths with left limits in a compact metric
space. There is some non-uniqueness involved in the choice of this topology,
but essentially none with regard to the process itself. Perhaps even more sur-
prising is the fact that the new process is always a homogeneous strong-Markov
process, irrespective of any Markov property for the original process X(7). The
theory of such precesses is quite highly developed (Blumenthal and Getoor
(1968), Dynkin (1965), Meyer (1967)), and the present result means that this
theory is placed at our disposal in studying an arbitrary measurable process X(t).

In the present paper we develop the general method, setting up the corre-
spondence between measurable processes and what will be called their “predic-
tion processes,” as outlined above (the term derives, of course, from the fact
that the conditional probabilities also define the best least squares non-linear
predictors of future based on past). Some theoretical uniqueness and stability
properties of the prediction process are given (Section 2) which may assist the
reader to overcome some of the conceptual difficulties involved, and also to al-
leviate a natural degree of skepticism as to the intrinsic merit of the construction.

By way of application (Section 3) we limit ourselves to two general cases. If
X(7) is a right-continuous, homogeneous, strong-Markov process to begin with,
we show that the prediction process is completely equivalent with X(z) if and
only if the resolvent of X(r) takes continuous functions into continuous func-
tions (i.e. X(7) is a Ray process [17], [18]). More generally, we find that if X(¢)
is Markovian and time homogeneous, its prediction process corresponds to a
Ray compactification of the original process, as carried out in [12]. In the
second general case it is shown that if X{(7) is stationary and Gaussian with mean
0 and continuous covariance then its prediction process has continuous paths.
In other words, even the paths of X{(¢) are highly discontinuous, the predictive
aspect of the process varies continuously. We conclude with two counter-
examples. One shows that if the stationarity assumption is omitted, then the
prediction process may have fixed discontinuities. The other illustrates the
possibility of totally inaccessible discontinuities of the prediction process, even
if X(¢) (non-Gaussian) has continuous paths.

1. Construction of the prediction processes.

1.1. The sojourn time process. Let 0 < h,(x) < 1,n=1,2, ..., be a fixed
sequence of Z-measurable functions generating all of &. For example, we can
choose the indicator functions of a sequence of sets generating &, but if E has
a topology it will sometimes be more convenient to choose (#,) € C(E). We
introduce

DerFINITION 1.1.1. The process Y(r) = (Y,(¢)) = (1 ,(X(5)) ds) is.called the
sojourn time process of X(¢) relative to (&,). For0 <1 < 1, < oo, let F (¢, t,)
be the o-subfield of & generated by {Y,(r) — Y,(1,), t, < t < t,,n = 1}. We
call (0, t+) = Neo-F (0, 1 + ¢€) the past of Y at time 7, and (¢, o) the
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future of Y at ¢+. For each .&(0, r+)-stopping time T, let (T, T + 1), 0 <
t < oo, denote the o-field generated by {Y, (T + s5) — Y, (T),0< s < t,n = 1}.

All of our considerations of X(¢) will be through the medium of Y(7), as a
process with countably many components. It will be shown in Section 2 that
in a quite strong sense the results do not depend on the choice of (%,). At present,
as a first indication of what is involved, we have

THEOREM 1.1.1. F (1, 1,) is generated by the family of integrals {(} f(s, X(5)) ds,
L<t< 1,0 < fe L x &}, hence it does not depend on the choice of (h,). For
any pair wy, wy € Q, Y(s, w,) = Y(s, w,) 0 < s < 1, if and only if X(s, w,) = X(s, w,)
for all s < t except for a set of Lebesgue measure 0.

Proor. If weconsider (4,) as a function E— X_, [0, 1], if follows from [1: 0.2,
Proposition 2.7] thatany 0 < f € & has the form f = g(#,, &,, - - -) where ¢ is a meas-
urable function on X, [0, 1]. Let W,(¢) = lim sup,,_,, (1/A7) {1+ h,(X(s)) ds,
n = 1. Then for ¢, < t < t,, W,(¢) € F (4, 1,), and moreover W, (¢) = h,(X(¢))
except on a t-set of Lebesgue measure 0 for each w € Q. In fact, since W,(f) is
& x F(t,, t,)-measurable on (#,, 1,) we have

Vi, /(X(9)) ds = §i, g(i(W(5)), B W(5)), - - +) ds € F (1, 1) -
The case of general f(s, x) € £~ x & follows easily by approximations, starting
with f(s, x) = I, 1,, Be ZB(t,, t,) (the Borel subsets of (¢, #;)) and Ce &. The
second assertion of the theorem is an obvious consequence of the first.

Still another way of describing the information carried by the process Y(?) is
to define it in terms of the sojourn time measures

pt, A) = \EI(X(s)) ds, Ae& .
CorOLLARY 1.1.1. F(t,1,) is generated by the family {u(t, A) — p(t,, A),
L<t< t, Aec &}
Proor. Immediate from the preceding.

1.2. A path space for the sojourn time processes. The paths of Y(¢) are quite
regular, having non-decreasing components which satisfy the Lipshitz condi-
tion Y,(t + 5) — Y,(f) < s, and the o-fields & (1, t,) are obviously separable.
(Z(0, t+), however, is in general not separable, which leads to certain diffi-
culties below.) We need to use regular conditional probabilities over .5 (0, o)
or its equivalent, and there is a question of their existence unless the range of
Y(¢) is suitably measurable. To circumvent this, we shall systematically replace
Y(r) by the process (or measure) induced by Y(7) in the space of all paths which
share the above properties. This amounts to using what are called by Doob
(1953) “conditional probability distributions in the wide sense,” for Y(r). It
also has the advantage of providing a space independent of X(#), and hence the
possibility of a more unified treatment.

DEeFINITION 1.2.1. Let Q' denote the set of all paths y(f) = (y,(¢),n = 1,2, - - +;
0 < ¢) such that y,(0) =0 and 0 < y,(t + ) — y,(¢) < s for all s > 0. Let
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F Nty 1), 0 < 1, < t; < oo, denote the o-field generated by (y,(r) — y.(%),
n=12,...;4 <t< t),and let F7(0, t+) = NeseF (0, t + ¢). Forevery
Z (0, t4) stopping time T’ < oo, let & '(T", T’ + t) denote the o-field generated
by {(yu(T" + 5) — yu(T"), 0 < s < t} for 0 < ¢t < co.

We shall introduce the natural topology in Q’, in such a way that & (0, co)
is the Borel o-field. Let (r,;, 1 < n,1 < j) be an enumeration of the positive
rationals for each n. We can consider Q' as a subset of the compact product
space R, = X ;-110, 7, ;] by identifying y,(r, ;) with the component in [0, 7, ;],
and it is obvious that this mapping is one-to-one.

THEOREM 1.2.1. The topology of Q' induced by R., is that of uniform convergence
in finite time intervals for each component y,(t). In this way, Q' is a compact
metrizable space and % '(0, o) are the Borel subsets.

Proor. Immediate from the definitions.

THEOREM 1.2.2. For any pair of processes (X(+), Y(+)) as above and 0 < t, <
t, < o0, F (4, t,) coincides with all sets of the form {weQ: Y(.)e S’} where S’
ranges over . '(t,, t,). Setting P'(S") = P{Y(+) € S}, Y induces a probability meas-
ure P! on (', (0, 0)).

Proor. Obvious.

1.3. The general prediction process. The entire construction of a prediction
process can be carried out for any probability P’ on (@', Z (0, o)), irrespective
of the existence of (X(-), Y(+)): only the interpretation in terms of X{(.) is miss-
ing. Again, the more general approach provides a more tractable state space
and a more unified treatment. Not only do we obtain a single theory covering
at once all separable (E, &) and measurable X{(¢), but (remarkably enough!) by
treating P’ as a variable we find that, in the sense of Markov processes, there is
really only one prediction process, and it is quite independent from any particular
(X(+), Y(+)). At a later stage (Section 2) we shall specialize to the case when
there is an (X(+), Y(+)) which induces the measure P’.

DeriNITION 1.3.1. Let (H, £#”) denote the set of all probability measures on
(Q', (0, 00)) with the topology of weak convergence of measures, and its
Borel o-field. Thus (H, 5#) is a compact metrizable space with its Borel sets.
(Here “weak convergence” as usual means really “weak* convergence,” i.e.
convergence of the integrals § f(w’)P’(dw’) for each fe C(Q')).

THEOREM 1.3.1. For each t, the mapping i,: i,(,(5)) = (Vu(s + 1) — yu(?)
from Q' onto Q' is continuous and F'(t, 00)|-F (0, co)-measurable. For each
P’ ¢ H there exists an H-valued random measure Z(t) on Q', F (0, t+)/5#-
measurable, such that for all 8' e F'(t, o0) '

P/(S'|.77(0, t+)) = Z(1)(i,S), P'-as.

Here Z(t) is uniquely determined up to a P'-null set.
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REMARK. We emphasize the fact that Z(r) depends essentially upon the choice
of P'e H.

Proor. Since & '(t, o) is generated by the random variables y,(t 4 r) —
¥.(t), n = 1, r rational, where the range of these is a Borel set in X, , [0, ], it
follows from the Existence Lemma of [13, 27.2a, page 360] that regular con-
ditional probabilities exist over & '(t, co) given & '(0, t4). The continuity
and measurability of i,, and the fact that its range is Q' are both obvious. Hence,
for any Se.%'(0, c0), we have S = i,§’ where S’ = i,7'S e & '(t, 00). Thus
if P'(S'|Z'(0, t+)), §'e F(t, o), is any regular conditional probability as
indicated, and if we define Z(#)(S) = P'(i,”'S|Z'(0, t+)), Se . F (0, o), the
main assertion follows. Since & (0, co) is separable, the uniqueness assertion
is clear.

We shall next extend the construction to all ¢.

THEOREM 1.3.2. For given P’ ¢ H, let Z(r) be defined as in Theorem 1.3.1 for
each rational r > 0. Then Z(r) has right limits in H at all t = 0 and left limits at
all t > 0 except on a P'-null set. We redefine Z(t) = lim, |, Z(r) if this exists, and
Z(t) = P’ elsewhere. Then the process Z(t) is & '(0, t+)|5¢-measurable, and right
continuous with left limits in H outside a fixed P'-null set. Moreover, for each
F (0, t+)-stopping time T < co and §' € & (0, o),

(1.3.1) P(ip7S"| (0, T+)) = Z(T)(S"), P-as.,

where, as usual, Z'(0, T+) ={S'e F'(0,0): 8’ n{T < 1}e F'(0,t+) for
all t = 0}. These properties determine Z(t) uniquely to within a fixed P'-null set.

Proor. The idea of the proof is to define the convergence of Z(r) in H in
such a way that it follows from a martingale convergence theorem. Accordingly,
foreachn>1,1et0<f,, <1,1=1,2, ..., enumerate a set of continuous
functions of n real variable with limit 0 as x,* 4 ... 4 x,? — oo which is uni-
formly dense in the set of all such functions. Thus, if C;* is the corresponding
Banach space of continuous functions with limit 0 at oo, then (f, ;) generates
a vector space dense in C,*. Let (4,) be a fixed enumeration of the positive
rationals, for each nlet (r,,) = (r, (1), -+, T, ,(n)),m = 1,2, ..., bean enu-
meration of the n-vectors with nonnegative rational components, and let (j) =
(ji» + - +»Ja) be any n-vector of positive integers. We shall need to use the

following

‘

LemMMmA 1.3.2.  For each choice of indices, let L(i,n,l, m,(j)) denote
15 24 €XP — (A aa (P Fum(1) + 9) = Y3 -+ 5 Yy, (Fa,m(m) + 8) — 3y (5)) ds. Then
foreach P' e H, E, ., L(i, n, I, m, (j)) is a A,-supermartingale for P’ as r varies, when
Z(r) is defined as in Theorem 1.3.1. Moreover, convergence of E,,,L(i, n, I, m, (j))
for all (i, n, 1, m, (j)) is equivalent to convergence of Z(r) in H.

REMARKS. Here it is understood that L(i, n, I, m, (j)) is defined on Q’, and
E,,, denotes its expectation with respect to the measure Z(r) on Q’.
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Proor. For simplicity of notation we write only the case (j) = (1,2, ---, n)
and we then omit the index (j) in L. The general case is entirely similar. From
Theorem 1.3.1 we have

E, . L@i,n,1,m) = Ep(\¢ 4, exp—(48)fu((Tun(l) + s+ 1) — yi(s + 1)
YaFam(n) + 5+ 1) — yals + 1) ds| F7(0, r4)) .

For r' > 0, the integral on the right is not less than exp — (4,7') {5 4, exp — (4;5) X
FudEanD) + 5+ 7)Y = 35+ 7 ), oy YlEpm(B) + 5+ 7+ 1) = yols +
r + r'))ds. Consequently, E,(E,,,,,L(i, n,1, m)| "0, r+)) < exp(l-r') X
E, ., L(i, n, I, m), proving the 4,-supermartingale property.

Next, let z, — z in the compact metric space H. Since, for each s = 0, the
quantity

1(3)s ) = fau((Ta,m(1) 4 5) = 1s(8)s - YalCum(®) + 5) — Yu(5))

is a continuous function on Q’, we have lim,_. E, I((y), s) = EJ((y), s). By
the dominated convergence theorem, it follows that, for all (i, n, [, m),
lim,_, E,kL(i, n,l,m) = E,L(i, n, I, m).

Conversely, if this convergence holds, then for fixed (n, /, m) we have for
every 4 > 0,

limy_,, §5 2 exp —4sE, (I(()), 5)) ds = {7 2 exp —AsE,(I(()), 5)) ds ,

since clearly 1((y), s) is uniformly continuous and bounded in s, uniformly in
(). By the continuity theorem for Laplace transform [8, 13.1, Theorem 2a],
the measures E, (I((y), s)) ds converge weakly to E,(I((y), 5)) ds, and this implies
that lim,_., E, (I((y), 5)) = E,(I((y), s)) for each s. In particular, for s = 0 we
obtain as / varies with m and » fixed that the joint distributions of y,(r, (1)), - -,
Vu(T. (1)) on Q' converge weakly, and as m varies this extends to y,(t,), - -+, ya(t,)
forall ¢, - -+, ¢, > 0. Reintroducing the case of arbitrary (j), one obtains in
this way the weak convergence for all finite sets of coordinates on Q’. The
continuous functions on Q' depending on only finite sets of coordinates are an
algebra and separate points. Hence by the Stone-Weierstrass theorem they are
uniformly dense in C(Q’), and it follows that z, — z in H. The lemma.is proved.

It now follows by the martingale convergence theorem of Doob [5, page 363],
extended easily to A-supermartingales (as in [11, page 326], for example), that
Z(t) = lim, , Z(r) for all ¢, P'-a.s. Since the exceptional set at each ¢ is in
F(0, t+), we see that Z(t)e #(0, t4), and is right continuous with left
limits outside of a fixed P’-null set. Finally, if T is any finite Z(0, t+)-stop-
ping time, then T = lim, T, where, as usual, T, = (n + 1)2-*on {n27* < T <
(n 4 1)2-*} for all n = 0. As in the proof of Lemma 1.3.2 we have

Egiz, L(i, n, I, m)
= Ep(I§ 2 eXp — (A8)fa(11(Fam(1) + 5+ Ti) — 05 + T1)), -+
Ya(Tam(n) + 5 + Ti) — yu(s + T,)) ds| (0, T +)) -
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It follows by Hunt’s Lemma (see [3, Lemma 1.2, proof]) that
limy_., Eyr,, L(i, n, I, m)
=E; L@, n, 1, m)

= Ep (15 4 eXp — (A8)faN1(Tam(1) + 5+ T) —yu(s + 1), - -+,
Va(Tam(®) + 5+ T) — po(s + 1)) ds| Z7(0, T+)), Pl-as.

Bringing the mathematical expectations under integral signs on both sides, and
inverting the transforms as before, it follows that for every fe C(Q'), E,,f =
Ep(foiy| &0, T+)). Extending thisto 0 < fe & (0, co) by monotone con-
vergence, we obtain equation (1.3.1). The uniqueness assertion is obvious from
that of Theorem 1.3.1.

We can also state the following corollary which will be needed in the next item.

CoROLLARY 1.3.2. For each t > 0 and S’ € F'(0, o0), P'(i,7'8'| & (0, 1)) =
Z(t—)(S"), where Z(t—) denotes the left limit at time t.

Proor. Let \/,. %, denote, as usual, the o-field generated by (&), and let
0 < t, <t increase to t. Then & '(0,7) =V, '(0,t,+). For fe C(Q) it
is not hard to see that fo i, is continuous on R+ x Q'. It follows by Hunt’s
Lemma that
Eyooyf =1im, o Ezq \ f

= lim,_ Ep(fo iy, | Z7(0,1,+))

= Ep(foi,|Z'(0,1), P-as.
The extension to 0 < fe & (0, oo) completes the proof as before.

REMARK. A discerning reader may observe that these results might also be
proved using somewhat stronger topologies on H. In fact, the martingale con-
vergence of Lemma 1.3.2 would hold using any denumerable collections 0 <
fu1 < 1, measurable in (x,, - - -, x,) for each n (although inversion of the trans-
forms would present a further difficulty). However, the connection between
H and a given topology on E, as illustrated by Theorems 3.1.1 and 3.1.2 below,
seems to break down unless the f, , are continuous, and in any case the present
weak topology seems both natural and typical of the other possibilities.

1.4. The Markovian character of the prediction processes. For the purposes of
this item and afterwards, y and z will denote variables on H, hence probability
measures on ’. Our object is to prove that for any z € H the corresponding
process Z(r) of Theorem 1.3.2 is a homogeneous Markov process, and that all
of these processes have a single homogeneous transition function on (H, 22).
If this is true, then it is clear that the transition function is given by

DerINITION 1.4.1. For0 < t,ye H, and 4 € 57, let q(t, y, A) = P {Z(¢) € A4},
where Z(¢) is the prediction process defined from y. For g(y) € 57, and positive
or bounded, let

Q.9(y) = Yu q(t, y, d2)9(2) = E,9(Z(1)) -
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The principle result concerning g(t, y, A) itself is

THEOREM 1.4.1 If g(y) = E,f, fe€ C(Q'), then g(y) € C(H) and Q,9(y) € C(H)
for t = 0. More generally for 0 < g € 57, Q,9(y) is &[0, c0) x SZ~measurable

in (t,).

REMARK. It is important to observe that Q,g(y) is not in general g(y). By
Theorem 1.3.2 it is E,g(Z(0)) where Z(0)(S”) = P(S’| % '(0, 0+)), but in gen-
eral {P (S|~ "(0,0+)) + P,(S’)} has positive probability. Anticipating the
Markov property, it may be said that in this case y has the behavior of a “branch-
ing point” as in Ray (1959). However, this should not be taken too literally
since we are not actually dealing with a Ray process. An example is indicated
below to show that the “resolvent” of Q, does not take C(H) — C(H). In par-
ticular, the Feller property Q,g € C(H) does not always hold if g € C(H) is not
of the special form g(y) = E,f, fe€ C(Q') (for example, if g(y) = 9(E, f1; E, [3)
where g(x,, x,) is continuous on R? and f; € C(Q"), i = 1 or 2). This necessitates
the rather elaborate measurability proof for Q,g given below.

Proor. If g(y) = E,f, fe C(Q'), then by (1.3.1) we have

Q.9(y) = E,E;f
— E,E(foi,|.57(0, t+))

p— y(foit).

Since i, is continuous, fo i, € C(Q') and the continuity of E, (foi,) follows
immediately.

To prove the measurability over £2[0, o0) x 57, since Q,9(y) = E,9(Z(t))
and Z(t) is right-continuous (P, -a.s. for each y), it follows by standard argu-
ments (not requiring the Markov property) that is suffices to prove Q,g(y) € 52
for fixed ¢. To this end, consider first g(y) = g(E, f, - - -, E, f,) Where, without
risk of confusion, g(x,, - - -, x,) is continuous in n = 1 real variables on the right,
and f,e C(Q'),i=1,2, ..., n. For such g(y) it will be enough to prove that
Q,_ge 5 for all t > 0, where the limit

Q.-9(y) = lim,;, E(Ez,)9)
= Eyg(EZ(t—)fl’ ) EZ(t—)fn)

exists by continuity of the functions involved. On the right, by Corollary 1.3.2,
we have E,,_,f; = E(f;0i,| % '(0,1), 1 <i<n. The advantage of using
Z(t—) is that & (0, r), unlike & (0, t+), is separable. Let &,k =1,2, ...,
be an increasing family of finite subfields of &7'(0, ) with V. =, = ~#7(0, 1).
Then E/(f,; o i,| %) is a martingale in k, 1 < i < n, and by a theorem of P.
Lévy

limy_, E(f; 0 i,| %) = Ezurr fis Pass.

Since E,g(E,(fy 0 i,| F ), -+ +» E(fu o i,| 1)) can be written as a finite sum
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over the atoms S; , of &, in the form
2 PU(S; I(E(fro 85 S; 0P, (Si0)s -+ s Ey(fa © 13 S5.00P, 7 (S5.0))

it is clearly Z#~measurable in y. By continuity of g(x,, - - -, x,) this converges
to Q,_g(y) for each y, hence Q,_g(y) € 57.

The class of g € C(H) having the above form for some n > 1 is an algebra
and separates points in H. Hence it is uniformly dense in C(H) by the Stone-
Weierstrass theorem, and the measurability of Q,_g thus extends to g € C(H).
By right-continuity of Z(f) we obtain Q,g9 € 27, and finally this extends to all
g € S by the usual monotone class theorem. This completes the proof.

ExampLE 1.4.1. Consider the measure z € H for which P{(y,()) =¢ 0 <
t<hLnzlLand (y,(0) =1+ 30— 1,121} =} =P{(,)) = 1,0 < 1,
and (y,(1)) =1+ 4(r — 1), t = 1}, i.e. the measure is concentrated on two
paths which are identical in 0 < ¢+ < 1, but differ for r > 1. If we define z, by
P{(a(0) = (1 — k)1, 0 < 1 < 1,and (p,(0) = (1 — 1/k) + 3t — 1), 1 = 1} =
3 =P (u(0) = (1 =2/, 0 1< 1, and (y,(1) = (1 — 2/k) + 4(c — 1),
t = 1}, then clearly lim, _, z, = zin H. However, the prediction processes Z(t)
of z, do not converge weakly to Z(r) for ¢t < 1, since the former are concen-
trated on two quite distinct paths, each having probability 3 and which have
point measures as values, while the latter is unique in 0 < ¢ < 1, and its values
are measures which are equally divided between 2 points. Thus if we introduce
R,9(y) = {7 exp —(46)Q,9(y) dt there are g € C(H) for which lim,_ R,g(z;) +
R,9(z). In short, the topology of H is insufficient to insure weak convergence
of the conditional distributions Z,(t) to those of the limit measure.

We turn now to the main theorem.

THEOREM 1.4.2. The processes (', & '(0, =), P,, Z(t)), z € H, are Markovian
relative to the o-fields & '(0, t+), with (H, 5Z) as state space and q(t, y, A) as
transition function. They are right-continuous with left limits P,-a.s. and have the
strong Markov property.

REMARK. In view of this result, one can define an equivalent Markov process
in the sense of Dynkin (1965) on the canonical space of right-continuous, H-
valued paths with left limits for ¢+ > 0, but this process is not normal since in
general P,{Z(0) = y} # 1. It will be shown in the next section (Theorem 2.1.4)
that the paths (y,) € Q' can be recovered from those of Z(t), hence there is no
real necessity to maintain Q' as sample space apart from its simplicity.

Proor. We first prove the simple Markov property of Z(t) for each y, with
transition function ¢(t, y, A). Taking a mildly restrictive case, we show first
that for 4, = {z: E,f < x}, fe C(Q'), we have

(1.4.1) P(Z(t, + t)) € A, | -F (0, t,+)) = q(t;, Z(11), A,) , P,-a.s.

It will be convenient at times to record explicitly the dependence of Z(¢) on y
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by denoting it Z () so that the right side of (1.4.1) is Pzw{EzZ(z,)(tz)f < x}. To
prove (1.4.1) we can assume without loss of generality that ¢, 4 ¢, is a continuity
point of Z (1), P a.s., since for each ¢ this is true for ¢, in a dense set, while
(1.4.1) for all x is equivalent to

(1°4'2) Eﬂ(g(EZ(t1+t2)f) | ﬂ”(O, h+)) = Ezul) g(EZz(gl)(tz)f)

when g varies in a countable dense set of continuous functions on [—max |f],
+max |f|], and (1.4.2) is clearly right-continuous in #,, P -a.s. at each 7, along
any countable dense set of #,. At such a continuity point, Corollary 1.3.2 yields
that Z(t, + 1,)€ & '(0, t, + t,) up to a P,-null set, and F (0, t, + t,) is sepa-
rable. Accordingly, let S(x) € & (0, t, + t,) differ from {Z(t, 4 1,) € 4,} by at
most a P -null set. We shall need

DErFINITION 1.4.2. For any S’ e .5 '(0, ), the cylindrical section of S’ in
F(t, ) at (y,) € Q' is the set C(S’, (y,)) = {(z,) € Q": for some (w,) e §" with
W,(5) = y.(5), 0 < 5 < 1, one has z,(s) = w,(s), t < 5 < oo}

We show that this concept has the anticipated properties in

LemMMA 1.4.2. For each (y,)eQ', C(S', (y,)) € '(t, ), and P(S"| Z(0,
t+)) = Py i(C(S’, (¥,)) P,-a.s., where (y,) is the identity function on Q'.

Proor. Suppose first that S’ = S, n S, where S, € #(0, f)and S, € & '(¢, o0).
Then it is not hard to see that C(S, (y,)) is either empty (if (y,) € S;) or equals
S, (if (y,) €S,), and that P,(S'|F (0, t+)) = 0 (if (y,) ¢S,), or P(S’'| Z (0,
t+)) = Pyy(i,S,) (if (y,) € Sy, P,-a.s.). Just as in the case of product o-fields,
a finite union of sets S’ of this form may be written as a finite disjoint union,
and by additivity the result follows for any S’ ¢ &7(0, 1) Vv & '(t, o0). It only
remains to note that since y,(s) = y,(f) + (ya(s) — y.(?)) for s > ¢, where y,(¢) e
Z0,¢t) and y,(s) — y, (1) e F(t, ©), we must in fact have F'(0,¢) Vv
F(t, 0) = F (0, ).

Returning, now, to S(x) we note that S(x)e & '(0,t, + t,) and for every
S, e &0, t,*)and S, e F (1, t, + 1)

E(f ot S1 N Sy N S(x)) < xPy(S; NS, N S(x))
By varying S, in this inequality we obtain

(1.4.3)  E(foiy S0 Sx)|F0, 1)
< xP,(S, N S(x)|.F7(0, %)), P,-a.s.

We next apply Lemma 1.4.2 with
§'=808),  CE () =50 CSH), (),
and ¢ = t,, to express (1.4.3) in the form

(1.4.4) Ezm) (fe itz; i‘l(sz N C(S(x), (yn)))
= xPgyis (S, 0 C(S(x), (14)))}»  Py-a.s.
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But since .&'(f,, f, + t,) is separable (and P,,, is a regular measure on
F (1, 1, + 1) [10, page 228)) it is easy to see that (1.4.4) holds simultaneously
in S,, P,-a.s. This implies that P -a.s. we have up to a P, -null set
(1.4.5) 1, C(S(x), (y)) € {Ezap(f 0 i, | (0, 1)) < x}.
The same argument shows that for x; < x,,
(1.4.6) 1, C(S(xs) — S(x1), (1)) C (%1 S Epiepy(f 0 i1, | F7(0, 1)) < x5}
in the same sense. Thus by using a dense set x, we can easily obtain that for
all G, < C,, P,-a.s.,
(1.4.7)  §G2 xP (i, C(S(Ax), (14)) = §82 %P p{Egy(f 0 iy | F7(0, 1)) € dx} .
On the other hand, for C;, = — oo and C, = + oo we have
E, § Pyuy(i:, €(S(dx), (ya))) = E, § xP,(S(dx)|-Z(0, 1;+))

= VXPE(f o iyyr)| (0, 1, + 1)) € dx}

=EE/(f- it1+t2|ﬁd’(0’ 4L+ 5))

= Eyf° it1+t2 ’
while on the right side of (1.4.7)

E, § xPyq{Ezuy(f o iy| F (0, ) edx} = E,Ey Epy (f 0 i, | F7(0, 1))
= EyEZ(tl)fo it2
= Eyf° it1+22 .
It follows that (1.4.7) holds with equality for all C, < C,, P,-a.s., and this

implies
(1'4'8) Pz<t1)(it]C(S(x)a ()’n))) = PZ(tl){EZ(tl)(f° itzl‘g—l(o, 1) = x}

for all x, P,-a.s. In view of Lemma 1.4.2 and Corollary 1.3.2 this is equiva-
lent to

(149) Py(Z(tl + 12) €4, I ‘7&7'(0’ L+)) = PZ(tl){EZz(tl)“z_)f = x} ’

and to prove (1.4.1) we need only remove the minus sign on the right. To do
this, we let g(x) be continuous and obtain as for (1.4.2)
I

(1.4.10) E(9(Ezi10p [ 1F7(0, 114)) = Es4p9(Ez 54051 ) -

Since Z,, () is right-continuous in #, for each Z(z,), we may now take right
limits in ¢, along a countable set to obtain (1.4.2), and hence (1.4.1).
The remainder of the proof is essentially a repetition. Thus if 4=
FAES; < x5}, f; € C(Q), then Nk, S;(x;) e (0, t, + t,) and differs from
{Z(t,+1,) € A}bya P -nullset, while(1.4.2)can be expressed using g(E; 1) f1:* * *»
Ej, 410 fi) Where g(x;, - - -, x;) is continuous. Since, by the preceding

i, C(M5=155(X3)> (V) = M5=1, C(S;(x5), (Va))
= Nzt {Ezup([fi © 1, | F(0, 1)) < x5}
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up to a P, ,-null set, P,-a.s., we have the extension of (1.4.9), and using
9(xy, - -+, x;) in a countable uniformly dense set on X*%_, [—max |f;|, max |f;|]
we obtain (1.4.2) for all g(E,f, - - -, E,f,). As was noted in the proof of Theo-
rem 1.4.1, such functions are uniformly dense in C(H), hence the general case
of (1.4.1) follows by the monotone class theorem.

The proof of the strong Markov property is essentially the same, upon re-
placing #, by a finite & (0, t,4)-stopping time T,. It is necessary to apply
Corollary 1.3.2 at the random time T, + ¢,, but since, for 0 < ¢, < t,, T} +
t, — ¢, is again a stopping time, we may use the same proof (with ¢, — 0) where
as usual (0, T, + t,) is defined like &(0, T, 4 #,+) (see (1.3.1)), but using
Z (0, 1) in place of & (0, r+). By the continuity of (y,) we have & (0,
I,+t)=V,5Z'0,T, + t, — ¢,+). Recalling Definition 1.2.1 of F (T,
o), and applying it first with T} + ¢ in place of T, both Definition 1.4.2 and
Lemma 1.4.2 extend easily to & '(0, f)-stopping times T, + ¢, ¢ > 0, since
F0, 0) = F (0, T, + ¢) V.F (T, + ¢, o) follows by standard measura-
bility arguments using T, + ¢ & (0, T} + ¢). This yields the equivalent
expression E(f|F (0, T, + ¢+)) = Ezir 40 f(+5 (Ja)» 0 = fe C(Q’), where
A5 ) = A@): 2ud) = yalt) if 1= Ty 4 ¢, and z,(0) = pu(Ts + ¢) +
¥,/ (t — (T, + ¢)) otherwise. Letting ¢ — 0 and using the uniform convergence
of (z,), the uniform continuity of f, and the weak right continuity of Z(z),
we obtain Lemma 1.4.2 for T;. Finally since P, , is a regular measure
on the separable &#'(T,, T, 4 t,), the remainder of the proof goes through
unchanged.

2. Reintroduction of X(7).

2.1. The prediction process of X(t). In this item we examine the meaning of
Z(t) when its probability z is induced as in Theorem 1.2.2, by a pair (X(+), Y(+)).
The following theorem is almost immediate from Theorem 1.3.2 and its
corollary.

THEOREM 2.1.1. For each & (0, t+)-stopping time T < oo and S € F (T, o)
P(S|Z(0, T+)) = Z(T)(S"), P-as.

for any §" € Z (0, oo) such that S = {Y(+) €i,"'(8")}. Moreover if 0 < T < oo
is predictable (i.e. if T = lim,_, T, where T, are (0, t4)-stopping times less
than T, [16]) then P(S|.Z (0, T)) = Z(t—)(S") P-a.s.

Proor. We first define an & '(0, t+)-stopping time 7" such that 7'(Y(.)) = T
on Q. For each n, let S}, €. '(0, (k + 1)2-"), k = 0, be such that {k2-* <
T<(k+ 127" ={weQ: Y(+)eS},,}. This is possible in view of Theorem
1.2.2. Replacing S} , by S; , — U;<: S}, we may assume that for each n S} ,’s
are disjoint. We define T,) = (k + 1)2=" on S} ,, k=0, and T, = co on
Q, — Ui Si.. Then T, is an & (0, t+)-stopping time and P'(T,’ < o0) = 1,
where P’ is the measure induced by P. Finally, we set 7" = limsup,_., 7,’. It
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is clear that T” is a stopping time and P/{T" < oo} = 1. Also|T"(Y(+)) — T| < 27"
for every n, so that T'(Y(+)) = T on Q.

This being so, it is easy to show that & (0, T+) = {{Y(+) €S}, §" € F (0,
T'4)}, and the first assertion of the theorem follows by (1.3.1) with 7" in place
of T (where the set {T" = oo} can be neglected), and by definition of the measure
P’ induced by P.

For the last assertion, if T, corresponds as above to T,, then T,” = max,, T}’
are stopping times which increase to a limit 7’ with 7'(Y(+)) = T on Q. Since
the y,(¢) are continuous it is clear that \/, % '(0, T,”) = & (0, T"), and the
same proof as in Corollary 1.3.2, together with the observation (0, T) =
{{Y(:)e S}, S’ e Z (0, T")}, leads as above to the desired result.

Although this theorem and Theorem 1.1.1 show that the meaning of Z(r) for
X(#) does not really depend on the choice of (%,) to generate Y(#), it may be of
interest to prove an even stronger uniqueness result to the effect that for another
choice (#,’) there is a functional dependence for all ¢ between Z(¢) and the cor-
responding Z'(f). By analogy with the proof of Theorem 1.1.1 it will be useful
to introduce

DEFINITION 2.1.1. Let w,(f) = lim sup,,_o, (M)~ (y.(* + Ar) — y,(?)) on ',
and for the given (X(+), Y(+)) let W,(¢) = lim sup,, o, (A)7H(Y,(t + A1) — Y,(1))
on Q.

It is clear that (in the terminology of [14]) (w,(?)) is a (0, #) x (0, 1+)-
progressively meastrable process, and (W, (1)) is a £(0, 1) x Z (0, 1+ )-progres-
sively measurable process. Moreover, y,(f) = {§ w,(s) dsand Y, (1) = g W, (s) ds
for all n and ¢. As in the proof of Theorem 1.1.1 we write z," = Gu(hys Bgse - +5)
for each n where g,(x;, x,, - - -) are measurable on X;_, [0, 1]. We now introduce
the measurable mappings 7 : Q" — Q' and I1: H— H by n(y,(1)) = CHACAGE
Wy(s), - - -) ds) and I1z(S") = P,{(y,) e x~(5")}, S’ € F (0, o0).

THEOREM 2.1.2.
(@) P{Z'(1) = I(Z(t)) forall t =0} = 1.
(b) P{Z'(t—) = II(Z(t—)) forall t =z 0} = 1.

PrOOE. Since (W,(1)) = (h,(X(t))) except for ¢ in a Lebesgue—null set, we have
Y'(+) = n(Y(+)) where Y(+) is defined using (#,’). Therefore {Y(+) € i,7*S"} =
{Y(+) € z7%,~Y(S")} = {Y(+) €i,'a7}(S")}, and by Theorem 2.1.1 we have
Z'(T)(S") = Z(T)(z"Y(S")) P-a.s. for'each .#(0, t+)-stopping time T. Since
(0, oo) is separable, this implies that Z'(T") = II(Z(T)), P-a.s.

According to [14, 8, Theorem 16, Remark (a)] both Z(f) and Z'(r) are well-
measurable processes relative to .#(0, t+) at least if these are augmented to
contain all P-null sets. Since II is measurable, it follows that {(z, w): Z'(t) =
TI(Z(1))} is well-measurable. Accordingly, unless its projection on Q is a.s. empty,
there is by Meyer’s section theorem [14, 8, Theorem 21] a stopping time T with
P{Z'(T) + I(Z(T))} > 0. This contradiction completes the proof of part (a).



A PREDICTIVE VIEW OF PROCESSES 587

For part (b) we use the fact that {(¢, w): Z'(t—) = II(Z(¢—))} is previsible
[14, 8, Theorem 19]. Hence by [ibid., Theorem 21] there would be a predictable
(“accessible”) stopping time T with P{Z'(T—) = II(Z(T—))} > 0, contradicting
the second part of Theorem 2.1.1, just as the first part was contradicted before.
Thus the proof is complete.

A second, rather theoretical, but nonetheless important question concerns the
stability of the construction. In short, if we repeat the construction, using Z(7)
in place of X(r) to obtain the prediction process of Z(r), does anything new
appear? Not surprisingly the answer is negative, even in the general case when
z € H need not be induced by any (X(+), Y(+)). To make this precise, let 0 <
h, <1 be any generating sequence defined on H, and consider for any ze H
the corresponding (Y,’'()) = (¢ 4,(Z,(s)) ds) where, as before, Z, denotes the
prediction process for z. We introduce the measurable mapping j: H —» H
defined by j(z)(S") = P,{(Y,’) e S’}

THEOREM 2.1.3. PZ'(t) = j(Z(t)) for all t = 0} = 1, where Z'(¢) is the pre-
diction process for the measure z' = j(z) induced by (Y").

Proor. For any & (0, t4)-stopping time T < oo, by Theorem 2.1.1,
Z(TY(S") = PS|-F A0, T+)) = PAY,/(T + () — V,(T) € ' 530, T+)},
where &, denotes the o-field generated by (Y,’) on @', and § = {(V,/(+)) €
i;7%(8")}. Now the mapping z — (k,(z)) from H — X{°[0, 1] is one-to-one and
Borel. Hence its inverse (k,)~" is also Borel, and in particular the range of (&,)
is a Borel set.?

Since (A,(Z,(t))) = (W,(¢)) for Lebesgue-a.e. ¢, there is a dense set {#,} with
P (1 (Z, (1)) = W,(t,) for allnand k} = 1. It follows that Z,(¢,) = (k) (W,(t,)) €
F (0, t,+) up to a P,-null set, and by right-continuity of Z,(¢) the same meas-
urability is true for every ¢t. Then Z,(T)e .5 ,.,(0, T+) up to a P,-null set, and
by the strong Markov property of Z(¢) we have

P(Y,(T + (+)) = Y,)(T)eS'| F 3.0, T+)) = Py, {(Y,/)(+)) €S}
= P;iz,un(S"), P,-as.

Thus Z'(T)(S") = j(Z,(T))(S"), P,-a.s., and since . '(0, co) is separable we have
Z'(T) = j(Z(T)), P,-a.s. Now since Z’'(f) and Z/t) are right-continuous and
hence well-measurable, our assertion follows as in Theorem 2.1.2 by the section
theorem of Meyer. .

The last question of interest here is the extent to which Z(r) determines X(¢).
This is significant in determining the sense in which the present approach to
processes is a valid replacement for the usual one. The solution depends, as
follows, upon

2 See, for example, [4, page 98], for the case when the 4, are continuous. For the general case
one considers the graph of (k) in H x X{° [0, 1], followed by the continuous projection onto

Xt [0, 1.
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DEeFINITION 2.1.2. Forze Handn > 1, letv,(z) = lim SUP; e § E Ly, (k7Y) € S7.

THEOREM 2.1.4. For z e H, we have y,(t) = (}v,(Z(s)) ds for all ¢, P,-a.s. In
particular when z is induced by (X(+), Y(+)) then Y, (1) = (tv,(Z(s))ds for all t,
P-a.s., and P{h,(X(t)) = v,(Z(t)) for all n = 1} = 1 except for t in a Lebesgue-
null set.

REMARK. Since (h,) is one-to-one on E, this means that Z(f) determines
X(#) = (h,)"'(v,(Z(t))) P-a.s., except on a Lebesgue—null set of .

Proor. For z e H we have by (1.3.1)
(2.1.1) 0 Bz kyu(k™) ds = {5 E(k(yu(s + k77) — yu($))|-Z7(0, 54)) ds .

Recalling Definition 2.1.1 for w,(f) and using Fatou’s Lemma we have P,-a.s.
lim sup, . §4 E i kya(k™Y) ds
(2.1.2) < 1§0,(Z()) ds
S SGEWL(9)[F7(0, s4)) ds = §§wa(s) ds = y, (1) -
On the other hand, taking E, on the right of (2.1.1),
E lim sup, ., §§ Eyi ky, (k™) ds = lim, ., ((**7 KE, y,(s) ds) = E,y,(1)

by the dominated convergence theorem. Thus (2.1.2) holds with equality P,-
a.s., and by continuity this extends to all z. This proves the first assertion, and
the remaining ones follow immediately by Theorem 1.2.2, the joint measurability
of h,(X(¢)) and v,(Z(f)), and Fubini’s Theorem.

2.2. Reduction of H for prescribed E and (h,). It is evident that the space H
contains many points not generated by any (X(.), Y(+)), and that for different
spaces E the subsets of H induced by measurable processes on E do not coincide.
Thus it becomes of interest to reduce H at least to the subset induced by all
X(7) on a prescribed E, whenever this is possible. We shall not enter here into
the possibility of further reductions conforming to a given X(¢) on E, or class
thereof. In any case, for a fixed generating sequence (%,) on E we will need to
know that the range of (#,) in X [0, 1] is measurable in a suitable sense, and
to this effect the weakest hypothesis we will use is

AssumpTION 2.2.1. Let (E, &) be a topological space homeomorphic to a
universally measurable subset of a complete separable metric space D (i.e. of a
Polish space D, in the terminology of Bourbaki [2, Chapter 9, Section 6]) to-
gether with the restrictions to £ of the Borel sets of D, where we consider E as
embedded in D. Assume further that the %, are restrictions to E of measurable
functions on D.

ReMARK. The most important case is when E = D and D is compact. In
this case we can choose (%,) € C(E), generating a vector space dense in C(E).
Then convergence in H for measures z, induced by processes (X,(+), Y,(+))
is equivalent to joint weak convergence of the random sojourn integrals
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§ wa(t, dx)f(x), fe C(E), t > 0, where p,(t, A) are defined as in Corollary 1.1.1.
This can be viewed as a weak convergence in the space of sojourn time
distributions.

We formally introduce the relevant subset of H.

DeriniTION 2.2.1. Let E — H consist of all elements of H induced by
& x & -completion-measurable processes X(-) with state space E, for given
(h,) and arbitrary (Q, &, P).

THEOREM 2.2.1. Under Assumption 2.2.1, E — H is universally measurable in
H. If E is Borel in D, then E — H is Borel in H.

Proor. We denote by .#: E — X7 [0, 1] the mapping (e} = (h,(e)), and
for A C E the image of 4 by _#(A4). If E is Borel in D, then .“(E) is Borel in
H, as follows from the footnote 2 in 2.1. For any finite measure (Radon meas-
ure) p, on Xy [0, 1], (A,)~" induces a measure p, on D. Let E, c E C E, be
Borel sets of D with y,(E,) = p,(E,). Then clearly A(E,) c A(E) C A(E,) and
1(A(Ey)) = m(A(E,)), hence _#(E) is universally measurable.

LeEMMA 2.2.1. A necessary and sufficient condition for y e H to be in E — H is
Pt = §1 5 (v,(Z(s)) ds forall 1= 0} =1
where v,(z) are given in Definition 2.1.2 and I , ;(v,(z)) = 1 or 0 according as
(v4(2)) € AE) or (v,(2)) & A(E).

Proor. If ye E — H is induced by X(7), it follows from Theorem 2.1.4
that (v,(Z(s))) = (h.(X(s))) € F(E), P-a.s. except for s in a Lebesgue-null set.
This means that (v,(Z(s))) e #(E), P,(a.s. in the same sense, hence =
61, 5 (v.(Z(s))) ds, where the integral is defined by choosing Borel sets 4, C
AE) C A, with 0 = E, {{ 1, _, (v,(Z(5))) ds. Conversely, let x,€ E be fixed,
and define a process X(f) on (Q', & (0, o), P,) by

X(n) = 77wl(2(1))) i (va(2(1)) € A(E)
= X, if (v,(Z(r))) ¢ AE).
Then, since (v,(Z(?))) is £ x & (0, t-+)-progressively measurable on X;°[0, 1],
and . maps universally measurable (respectively, Borel) sets of E onto those
of the same type in X7 [0, 1], it follows by a routine check that X(r) is .27 x
Z (0, co)-completion measurable on E. Butsince P {t = ({1 , ;,(v,(Z(s)))ds} =1

and _“ is one-to-one on E, we see that P {4,(X(s)) = v,(Z(s)) for all n and s
outside a Lebesgue-null set} = 1. It follows by Theorem 2.1.4 that

Py.(t) = \eh(X(s))ds forall ¢+ and n} =1.

This implies that X(7) induces the measure y on Q’, and completes the proof of
the lemma.

To complete the proof of the theorem we write the condition of the lemma
in the equivalent form

(2.2.1) t = §§Su q(s, v, d2)] , (5)(v,(2)) ds
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for all ¢ > 0, or equivalently for ¢ arbitrarily large. Since {z: (v,(2)) € A(E)}
is universally measurable (respectively Borel) according to the nature of #(E),
and q(s, y, 4) is a Borel transition function, it follows by considering measures
of the form §{ {x g(s, y, A)x(dy) ds that the right side of condition (2.2.1) is uni-
versally measurable (respectively Borel) in y for each r. The rest of the proof
is now immediate.

Mostly for the sake of completeness, we include here the following

CoOROLLARY 2.2.1. Define X(t, (y,)) on Q' by
X(@) =77 wa(0)  if (wa(0) € AE)
= x if (wa(0) g AE),

where (w,(t)) is given by Definition 2.1.1. Then for every y e E — H, X(f) is
& x F (0, oo)-completion measurable and induces y as in Theorem 1.2.2.

Proor. Since (w,(?)), like (v,(Z(7))) in Lemma 2.1.1, is & x & (0, t-+)-
progressively measurable on X [0, 1], the same check as before shows that
X(?) is always & x & (0, co)-completion measurable. Again, since y,(7) =
(¢ w,(s) ds holds identically, we have by Lemma 2.1.1, P {v,(Z(s)) = w,(s) for
all n, and s outside of a Lebesgue—null set} = 1. It follows that P {%,(X(s)) =
w,(s) for all n, and s outside of a Lebesgue—null set} = 1, hence P, {y,(f) =
{¢ h,(X(s)) ds for all n and 1} = 1. This completes the proof.

It is clear from (2.2.1) and the semigroup property of Q that for y e E — H,
q(t,y, E— H) =1 for every t > 0. To use E — H as a reduced state space,
however, one needs somewhat more.

THEOREM 2.2.2. Under Assumption 2.2.1, for every 5 '(0, t+)-stopping time
T < oo, P{Z(T)e E — H} =1 for ye E — H. If in addition, E is Borel, then
P{Z(t)e E — H forall t > 0} = 1.

Proor. Letting T A n = min (T, n), we have by (2.2.1) and the strong Markov
property of Z(f)

E(TAn+10)=E, 7" ((aq( y, d2)]  5(V.(2))) ds
+ E, 56 (Yu 9(s: Z(T A n), d2)] , (5(v,(2))) ds
Since the integrands in parentheses are bounded by 1, it follows that for all
t>0 /
Pt = §5 (3 405, Z(T A'm), d2) (5, (0,(2))) ds} = 1.
Letting first n — oo and then ¢ — co establishes the first assertion.

If E is Borel, then by Theorem 2.2.1 _#,_g(z) is also Borel, and by [14, 8,

Theorem 16] _#,_y(Z(7)) is well-measurable relative to & (0, r+) with all P, -

null sets adjoined. Consequently, Meyer’s section theorem [14, 8, Theorem 21]
is applicable, and the second assertion is thus a consequence of the first.

ReMARrRk. Even under the condition of the first assertion, one can use £ — H
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as state space for the standard modification
Z'(t) = Z(1) if Z(f)eE—H
=z, if Z(t)e E—H,

where z,e E — H is fixed, and it follows that Z'() is a strong Markov-process
relative to Z (0, t4) when the latter is completed for P,, with transition func-
tion ¢(z, y, A n (E — H)) on E — H. The right-continuity is of course lost.

3. Two applications: X(r) Markovian and X(¢) stationary Gaussian.

3.1. X(f) Markovian. The most immediate question concerning the connec-
tion of Z(¢) and X(¢) if X(r) is Markovian is in the case when X(7) has almost
the same degree of regularity as Z(r), namely

AssumpTION 3.1.1. (Q, . %, F(t+), X(?), P*), x€ E, is a right-continuous
strong Markov process with Borel transition function p(t, x, A) on a compact
metric space (E, &). The resolvent R,f(x) = {5 {; exp —(A0)p(t, x, dy)f(y) dt,
0 < fe &, separates points in E.

REeMARKS. If Eis locally compact with countable base, it may be compactified
by a single point A in the usual manner. Note that we do not assume the nor-
mality condition P*{X(0) = x} = 1 nor the existence of left limits. Under As-
sumption 3.1.1, R, is a Ray resolvent [14, 10, Definition 18] if and only if
R,fe C(E) for fe C(E), since a countable set {R,f,, 0 < f, dense in C*(E)}
separates points. In the following theorem we choose %, € C(E) in order to con-
nect the topologies of E and £ — H.

THEOREM 3.1.13 Let ¢(x), x € E, denote the mapping E— E — H given by
o(x)(S") = P*{Y(+) e S}, §'e F'(0, ). We assume that h, e C(E), and that
{h,} generates a vector space uniformly dense in C(E). The mapping ¢ is one-to-one
and &|5F-measurable. The topology induced by ¢ on E coincides with the given
topology if and only if R, maps C(E) — C(E) (i.e. R, is a Ray resolvent). In this
case ¢(E) is compact, p(t, x, B) = q(t, ¢(x), ¢(B)), Be &, and P*{Z(t) = ¢(X(t))
forallt = 0} = 1.

Proor. If ¢(x) = ¢(y), then the processes v,(Z(¢)) have the same P® and P¥
distributions. Therefore if f(x,, ---, x,) is continuous on R", R, f(h(x), ---,
ho(x)) = E* §5 exp— (Of(0(Z(1)), - -, 0(Z(1) dt = Ry f(n(p), -+, ho(y)). As
n varies we obtain R, f(x) = R;f(y), f'e C(E), and hence x = y since R, sepa-
rates points. Similarly, since E*f(Y\(t,), - - -, Y,(¢,)) is measurable in x, ¢(x) is
&|5# measurable.

Now let E, denote E with the ¢-induced topology. In general, we have

8 It is not difficult to see from footnote 2 and the Section Theorem of P. A. Meyer that all of
the assertions not explicitly involving topology remain true in the general case. Indeed, Theo-
rem 2.1.3 is an instance of this fact. It does not generally follow, however, that X(z—) exists
and equals ¢~}(Z(¢—)) for all ¢ > 0, as is true when the topologies coincide.
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R;: C(E) — C(E,). To see this, note that
E* {2 ho(X(5)) ds = E*(Y,(1,) — Yo(1))
= E?P(yu(t) — ya(tr))
where y,(t,) — y,(t,) is continuous on Q’. Hence

Ryh,(x) = limy o E* 377, exp — (kAZ) §Gi_pa hu(X()) ds

is continuous on E,, since the convergence is uniform in x. But since {4,}
generates C(E) the same holds for R, f, fe C(E). In particular this implies that
the topology of E, is as strong as that of E, for if x, — x in E, then R,f(x,) —
R,f(x), fe C(E), while if a subsequence x,;—y # x in E, then R,f(x) =
R; f(y) would imply that R, does not separate x and y. We also note the con-
sequence that if the topologies coincide then R;: C(E) — C(E,) = C(E).

To prove the converse, we now need only show that ¢(x) is continuous on E.

Lemma 3.1.1. If R,: C(E)— C(E), then for fi, ---,f, € C(E) and 4, - -,
2a > 0, E*(ITi-y §5 oxp — (R Ofu(X(1) dr) € C(E).

Proor. For n = 1 this is true by hypothesis. - For n > 1 the function may be
expressed as

nlE® §5 5§ exp—(As)fi(X(s) - -+ XP — (2, 8,)fu(X(5,)) dsy - - - s,
= n! E* {7 exp — (4, 5)f1(X(s,)) EX 0
X (56 S5 o S0, (ITk-2 eXp — A(f, + s)fu(X(t,))) dty - - - dt,) ds,
= 1Ry 4.5, (fi(*)E* T]i=s §5 Xp — (A )fu(X(D)) 1)

By successive application of this reduction the expression becomes

n! R21+---+2n(f1(x)(R12+---+1nf2(x)(' i f(xn—l)(Rz,,fn(x)) o))

and by repeatedly using the case n = 1 it follows that this is in C(E).
Integrating by parts, we have

(7 exp — (A)h,(X(1)) df = 2 5 (exp— (31) §5 h(X(s)) ds) dt

and since the integral is bounded on Q it follows by Lemma 3.1.1 and
the Weierstrass approximation theorem that the joint distributions of
(o exp — (A1) §& hu(X(s))dsdt, 1 < k < n, are weakly continuous in x. The same

is then also true for any n expressions of the form {& (c, exp —(4,7) + -+ +
c; exp—(4;1)) &k (X(s))dsdt. By the Stone-Weierstrass theorem, the terms
¢, exp —(4,1) + - -+ + c;exp—(4;1) are uniformly dense in C[0, co) (continuous

functions with limit 0 at co), and it follows that, for any g € C[0, c0) and ¢ > O,
the joint distribution of & g,(f) exp — (e2)(§§ hu(X(s)) ds) dt, 1 < k < n, are weakly
continuous in x. Finally, choosing 0 < g,(¢) with supportin ¢, — 9, 7, + and
(& g,(f) dt = 1, where ¢ is small, we obtain the joint weak continuity in x of
{tk b (X(s)) ds, 1 < k < n. As in the proof of Lemma 1.3.2, an application of
Stone-Weierstrass now shows that ¢(x) is continuous.
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In this case, the compactness of ¢(E) is well known, and the identification -
of p with ¢ is immediate. It is easily seen that since X(¢) is right continuous,
Z(0,t+) = F(t+) [1, page 31]; hence we have P{p(X(f)) = Z(r)} = 1 for
each ¢ by the Markov property and the uniqueness in Theorem 1.3.1. Since
both Z(r) and ¢(X(r)) are right-continuous in H, the last assertion follows by
taking right limits in ¢ along the rationals.

In the situation where X(r) has less regularity than in Assumption 3.1.1, we
may still regard Z(¢) as a kind of regularized version of X(r). A particularly
explicit connection is obtained if we choose %, in the manner of [12]. Thus if
we begin with any transition function p(¢, x, 4) measurable in (1, x) for x ¢ E,
where (E, &) is an abstract space with a separable o-field, and assume that the
resolvent R, f separates points, then starting with any generating sequence 4,
as in 1.1 we can consider the family {r;R, k,} where r, is an enumeration of
the positive rationals. If we now form the algebraic closure of this set under
the two operations (i) applications of 7, R, for any r,, and (ii) multiplication,
the resulting set S is still denumerable, although it need not contain {%,}. It
determines a uniform structure (in fact, a metric) on E and the compactifica-
tion of E is denoted by £. We obtain a resolvent on C(E) by extending R, f(x),
feS, xeE, to E by continuity, and observing that C(E) is the uniform linear
closure of the extensions of feS. Since this resolvent separates points it is a
Ray resolvent, and hence we obtain by Ray (1959) a transition function p(z, x, B)
on E, and a canonical Markov process satisfying Assumption 3.1.1 on E together
with the added property R,: C(E) — C(E). Let us state the connection of this
with the original space E as

THEOREM 3.1.2. Let the generating sequence h, consist of an enumeration of the
set S defined above. Then given any <& x & -completion measurable Markov pro-
cess (Q, F, P; X(1)) on (E, &) with transition function p, there is associated a new
process X(t) = lim, _,, X(r), where the limit exists in E along the rationals r at all
t =2 0, P-a.s., and X(t) is a right-continuous strong Markov process on E, with tran-
sition function p. Letting ¢(X) denote the mapping of Theorem 3.1.1 for E, and
Z(1), Z(1) denote the prediction processes of X(r) and X(f), we have P{Z(f) =
Z(t) = p(X(1)) for all t 2 O} = 1. Moreover, the closure of ¢(E) in H is ¢(E).
Thus formation of the prediction processes Z(1) is equivalent to formation of the
associated Ray processes X(t), and the Ray compactification E is (homeomorphic to)
the closure of ¢(E). .

REMARK. If it is known that to each x € E there corresponds a measurable
Markov process X(f) with P*{X(r) € A} = p(t, x, A) and p as transition function,
then we can define ¢(x)(S") = P*{¥(+) e S}, and it follows that ¢(x) = ¢(x),
xe E. Thus one can proceed directly to the closure of ¢(E) in this case. In
general this seems to require some further hypothesis on E.

Proor. The existence of X(r) follows in [12, page 549] from martingale
convergence, and we have P{X(f) = X(r)} = 1 except for ¢ in a countable set



594 FRANK B. KNIGHT

(namely, where one of the countably many f(X(f)), fe S, has a fixed discon-
tinuity as in [5, Theorem 11.2 (ii)]). It follows that X(.) and X(.) induce the
same measure y € H, hence Z(.) and Z(.) are indistinguishable. Since E is dense
in E and the topologies £ and E; coincide (Theorem 3.1.1) the last assertion
is immediate.

3.2. X(r) Stationary Gaussian. Let X(t) be a stationary real-valued measurable
Gaussian process with mean 0 and continuous covariance R(+ — s) = E(X(¢)X(s)),
—oo < t < oo. The prediction theory of such processes has been highly de-
veloped, most recently by H. Dym and H. P. McKean, whose survey (1970)
will provide all of the facts and additional references needed here. We first
remark that since X(¢) is continuous in quadratic mean, the o-fields & (— co, t+)
and % °(++) have the same completion. This follows since, for each ¢, there
is a sequence A, — 0 with P{& (X(¢)) = lim,_, A, (Y,(t + 4,) — Y, ()} = 1.
Moreover, the construction of Z(f) applies without any essential change for
—oo < t < oo. We shall only prove one result, which indicates, at any rate,
that the discontinuities which may be present in X(¢) do not locally carry any
information having nonlocal significance.

THEOREM 3.2.1. P{Z(t) is continuous for t = 0} = 1.

Proor. Set R(t — s) = § expiy(t — s)I'(dr), where I'(dy) is the spectral meas-
ure. It is known (the Szegd alternative) that unless

(3.2.1) § (1 + 7 In (I'()) dy > —oo

where IV denotes the density of the absolutely continuous component of I,
X(r) is perfectly predictable given lim,,_ ., .5 °(f), and hence Z(r) is clearly
continuous.

If (3.2.1) holds, then we can write I' = I', 4 I',, where I'; is the singular
part, and X(r) = X,(f) + X,(¢), where X, and X, are independent, X, is perfectly
predictable, and X, is independent of lim,_, % °(f). Hence for the induced
measures of

Pals) = $3 (Xt + 7) + Xt + 7)) de given Fr+),
the function X,(¢ + r) is nonrandom, and does not effect the continuity of Z(7).
Thus we may assume that X,(f) = 0.

For fixed T'and ¢+ < T we consider the process E(X(T)| & (1)), —c0 < t = T,
also called the Kolmogorov-Wiener predictor of X(T). It is clearly a centered
Gaussian process with orthogonal, hence independent, increments. Moreover
[6, pages 1820-21], we can write I''(y) = |A(7)|?, where he L¥dy, R). Then if
k e L¥dy, R) denotes the Fourier transform of %, we have [6, loc. cit.]

(3.2.2) E(E(X(T)|-Z7(0))) = §5-. [h(s)]* ds .

Denoting this expression by V(T — 1), is follows that E(X(T)|& °(¢)) is
stochastically equivalent to B(¥(T — ¢)) where B(s) is ordinary Brownian mo-
tion. In particular, we may choose E(X(T)|.Z °(f)) to have continuous paths,
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and then E(X(T)|-& (t)) = E(X(T)|-& °(t+)). Taking into account that
E(X(T)| & (t+)) = X(T) for t = T, we obtain continuous paths for —oco <
t < co. The conditional variances E(X*(T)| & °(t+)) — EXX(T)| & °(t+)) are
known to be non-random functions of ¢, equalling {7~* |A(s)|* ds for T > .

More generally, applying the same reasoning to X(7,) — X(T;), we see that
forany I, < T, < --- < T,, given & °(t+) the random variables X(T}), - - -,
X(T,) are jointly Gaussian with expectations and covariance continuous in
t. Thus their conditional joint density varies continuously with ¢. It follows
that for every A >0 and 0 < f(x,, ---, x,) € C", the quantity S,(f) =
E(f(A Xy, hy(X(KA), - -, A 3, b, (X(KA)))| & (14 )) varies continuously with
t,wheren; = [T;A-']. On the other hand, by the classical L* martingale maximal
inequality [5, 7, Theorem 3.4] we have for T > T,

E(maXoc,cr [Sa(f) — E(f(§* m(X(s)) ds, - - -,
(3.2.3) §Zn B, (X(5)) ds)| | (t+))
= 4E(Su(T) — f(§5 I(X(s)) ds, - - -, §om ko (X(5)) d5))?

Let us assume temporarily that the %, are continuous. Then as A — O the right
side tends to O since %;(X(s)) are continuous in quadratic mean. A completely
analogous argument shows also that for -, < T}, ..., 7, < T,, the expression

E(f(§22 hy(X(5)) ds, - - -, §2m Ba(X(9)) ds) | F (2 +))

varies continuously in ¢, and by a simple triangle inequality one sees that the
same is true with 7, = ... = ¢, = tand T, replaced by t + T;, 1 < j < n. By
Theorem 2.1.1 and the uniqueness of Z(r), this means that Z(f) has continuous
paths for any continuous (#,). It follows from Theorem 2.1.2, however, that
continuity of path for Z(f) does not depend on the choice of (%,). Thus the
proof is complete.

Let us consider two final examples to indicate possible lines of further inves-
tigation. Suppose first that

X(r) = B(?) if 011
=B +@¢t-1DXx if t>1,

where B(f) is ordinary Brownian motion and X is a fixed normal random vari-
able independent of B(f). Then X(¢) is a Gaussian process (non-stationary) with
continuous paths. However, it is clear that the corresponding Z(¢) has a fixed
jump discontinuity at t = 1. As a second example, let P(f) be an ordinary
Poisson process on the nonnegative integers (P(0) = 0), and let X(¢) = {} P(s) ds.
Again X(f) has continuous paths, but now the discontinuities of P(f) become
totally inaccessible discontinuities of the prediction process Z(r), in the sense of
Meyer (1966). In this case, it appears that Z(r) gives a more realistic topological
indication of the probabilistic behavior of the underlying process than does
X(1).
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