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THE IDENTIFICATION OF POINT PROCESS SYSTEMS'

By Davip R. BRILLINGER

The University of California, Berkeley

A point process system is a random operator assigning a nonnegative
integer-valued measure to a random nonnegative integer-valued measure.
We define certain parameters for such a system and discuss the problem
of estimating these parameters. We also consider the related problem of
measuring the degree of association of two point processes.

1. Introduction and summary. A (stochastic) point process M is a random
nonnegative integer-valued measure. If a point process M influences an appa-
ratus & (perhaps real, perhaps conceptual, typically incorporating stochastic
features), to give rise to another point process N, we write

N = ¥[M]

and say that the point process N is the output of the system ./ operating on the
input process M. We write M(4) to denote the measure of the time interval 4
for a realization of the input process and N(A) the corresponding measure for
N. In practice M(A) refers to the number of occurrences in 4 of some phenom-
enon of interest and N(A4) to the corresponding number of occurrences of some
second phenomenon. We illustrate with two examples, one specific, the other
more vague.

ExampLE 1. Let M have single points (corresponding to isolated occurrences)
located at ¢, j = 0, 1, - - - and suppose that r; are real-valued random vari-
ables. Then

NA) =4{j:o;+7; in 4}
(i.e., N(A) denotes the number of points ¢; which when moved by 7, lie in the

set 4) defines a point process system. This particular system is called a random
translation or motion.

ExaMpLE 2. The pulse discharges of many nerve cells have large amplitudes
and are of short duration, so that they can be conveniently described as a point
process. If we take two nerve cells that have a certain physiological configura-
tion (e.g. proximity, or electrically connected), then it may be the case that the

Received January 3, 1975.

! Presented at the 1974 Annual Meeting of the Institute of Mathematical Statistics held at
Edmonton, Alberta, August 13-16. Part of the research carried out as a Miller Research Pro-
fessor, part with the support of NSF Grant GP-31411.

AMS 1970 subject classifications. Primary 60G10, 10K35, 62M10, 93B30.

Key words and phrases. 1dentification, system, point process, stationary.

909

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Probability. ®
WWW.jstor.org




910 DAVID R. BRILLINGER

point process M of pulses from one cell influence the point process N of pulses
emitted by another cell. Beyond postulating that N = .“[M], we may have
little notion of the system operator . until investigation is undertaken. We
discuss such a problem in Section 7.

We say that the system is deterministic if . incorporates no random feature.
Its input, M, may of course still be random. We say that the system is rime
invariant when the bivariate process (M, N) is stationary for stationary M.

By the problem of the identification of a point process system we shall mean
that of determining characteristics of the system from observations of inputs and
corresponding outputs. In the case that the system, .27, is stochastic, the most
that we can hope for is to determine average quantities or parameters that char-
acterize the statistical properties of .&. Complete identification is not possible
in general.

In Section 2 we define certain parameters of stochastic point processes. In
‘Section 3 we set down a number of useful parameters for point process systems
and indicate how they might be estimated. In Section 4 we discuss the related
problem of measuring the degree of association of two point processes. In Sec-
tion 5 we consider the identification of systems having multidimensional input
or output. The problem of identification is sometimes taken to be that of deter-
mining an estimate of a finite dimensional parameter that characterizes the be-
havior of a process or system. In Section 6 we present one approach to this
problem. The final Section, 7, presents some results concerning the identification
of the point process system corresponding to a nerve cell with a single input
nerve fibre.

We do not discuss the interesting problems of “on line” (or recursive) iden-
tification, of the identification of systems with feedback, nor of special procedures
for realizable systems. We do not give specific references to well-known results.
These may be found in Bartlett (1963), Cox and Lewis (1966), Lewis (1972).

2. Stochastic point process parameters. Before discussing specific identifi-
cation procedures, we must first introduce certain parameters that describe
stochastic point processes. We will restrict ourselves to parameters of stationary
bivariate processes with isolated points. (In the point process literature, such
processes are referred to as orderly.)

Let (M, N) be a stationary bivariate point process on the real line with differ-
ential increments at time ¢ given by {dM(r), dN(1)} = {M(t, t + dt], N(t, t + dt]}.
The mean intensity, p,, of the process M is defined by

@2.1) E{dM(t)} = p, dt .

Because the points of the process have been assumed to be isolated, expression
(2.1) may be interpreted as

Prob {M point in (¢, t 4 dt]} .

The mean intensity, p,, of the N process is defined in a similar manner.
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The second-order cross product density at lag u, p,(u), is defined by
2.2) E{dN(t + 1) AM(1)} = py (1) du dt , u#0.
Expression (2.2) may also be interpreted as giving

Prob (N pointin (1 + u,t + u + du] and M point in (¢, t + dr]} .
The other second-order product densities, p,, (1), pyy(z) are defined through
(2.2) by equating M and N.

These parameters may be used to define the conditional mean intensity
(2.3) E{N(t + u)| M{1) = 1} = py () dufp,, w0,
which may be interpreted as

Prob {N pointin (¢t 4 u,t + u + du]|M eventat 1}.

As |u| — oo, the increments dN(t + u) and dM(t) are tending to become inde-
pendent for many processes. This phenomenon leads to the definition of the
cross-covariance density
(2.4) Gyu(#) = Pyul() — PP u=+0

which tends to 0 as [u] — co. The autocovariance densities, g,,(#), gyy(1) are
defined similarly.
Provided M points and N points do not occur simultaneously we can write

dCy,(u)dt = Cov {dN(t + u), dM(t)} = gy, (1) du dt .
However in the case of the components themselves we must write
dCy(u)dt = Cov {dM(t + u), dM(t)} = (6(u) + Gyy(n)) du dt
dCyy(u)dt = Cov {dN(t + u), dN(1)} = (6(4) + qyy(u))dudr,
where d(+) is the Dirac delta function, to take account of the singularity at

u=20.
The cross-spectrum of the two process at frequency 4, fy,(2), is now defined by

(2.5) frud) = (27)'§ exp{—iud} dC,,(u)
= (27)7' { exp{—iul} gy, (u) du

for —co < 4 < co, provided the integral exists. The power spectrum of the
process M, f,,(4), is defined by

(2.6) Jun(2) = (27)71 § exp{—iud} dCy,(u)
= (2n)7'py + (27)7' § exp{—iud}q,,(u) du
with a similar definition for f .(2).

We may continue in the previous manner and define higher-order parameters
such as the third-order product density

(2.7 Punn(U, v) = E{dM(t + u) dM(t + v) dM(1)}/dt du dv ,
u+v,u+0,v+£0,
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the third order cumulant density

(2.8) Gunn(, V) = cum {dM(t + u), dM(t + v), dM(t)}/dt du dv ,
u=v,u=+0v=+0,

and even higher-order spectra, see Brillinger (1972).

The parameters defined in (2.1), (2.2), (2.3), (2.7) have the advantage, over
corresponding parameters defined in the case of ordinary time series, of possess-
ing a further interpretation as probabilities.

Given a segment {M(0, 1], N(0, 1]}, 0 < t < T, of a realization of an M, N
process satisfying some regularity conditions, each of the parameters defined
above may be estimated consistently as T — oo, and the asymptotic distributions
of the estimates are known, see Cox and Lewis (1966, 1972) and Brillinger (1972,
1975b). Estimates of third-order densities are given in Brillinger (1975a). In
this section, like Bartlett (1963), we have eschewed the mathematical problems
about existence of mean intensities, autocovariance density functions, etc. Lewis
(1972) contains papers concerned with these issues.

3. System parameters and system identification. Suppose that we are dealing
with a time invariant system with input process M and output process N. A key
element of the character of such a system is provided by

Prob {N pointin (¢, t 4 dt]| M} ~ E{dN(t)| M} .
In connection with it we suppose
(3.1) lim, , Prob {N point in (¢, t + h]| M}k = p,(?)

for given input process M c. /" Let us discuss plausible forms for p,(¢) for a
succession of input processes.

(i) Suppose we take as input to the system M(.) = 0, that is no input events.
Then we might be willing to assume that y,(r) exists and is equal to a constant,

(3.2) flt) = 5,

The system is here assumed to be emitting points at rate s,.
(ii) Next, suppose we take as input to the system, M corresponding to a single
event at time ¢. Then we might alter (3.2) to

(3.3) tu(t) = sy + 5,(t — 0) = 5o + § 5:(t — u) dM(u) .

5,() represents the effect, on the output intensity, of inputting a single point at
time 0. For example, in a service system with service time density g(¢), we have
(3.3) with 5, = 0, 5,(t) = g(?).

(iii) Suppose next we take as input to the system, M corresponding to points
at times g, and g,. Were there no interaction of the two points we might be
prepared to write (3.1) as

3.4 () = so 4 si(t — 0y) + 5(t — 0y) = 5, + § 5,(t — w)dM(u) .
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For example if the service system has 2 or more servers, then (3.4) holds with
5o = 0, 5,() = g(1).
If there were an interaction, then we might write (3.1) as
(3.5) tu(t) = 5o + s(t — 0,) + 5,(t — 0,) + 8(t — gy, t — dy)
=8y + § s:(t —w)dM(u) + §§,., 5:(t — u, t — v)dM(u) dM(v)
where the function s,(+) gives the effect of the interaction. If the service system
above has but 1 server, then (3.1) has the form

AuM(t) = g(t - 01) + S,t,z g('l) - 01)g(t - ’U) d’U B ‘71 < 02 < t’
which is of the form of (3.5).

(iv) It is now evident that we may proceed in a recursive manner building
up a succession of models for (3.1) of the form

(36) ﬁM(t) =5 + ZkK=1 S e Su1,~-~,uk;distincz sk(t - 1{19 R
t — u)ydM(u,) - - - dM(u,)
where the function s,(t — ¢,, - -+, t — ¢,) may be interpreted as the interaction
effect at time + when the input process consists of K events at times a;, - - -, 0.
The expansion of (3.6) is a point process analog of the Volterra expansions
considered in Wiener (1958) for Gaussian processes.
We shall say that the system is linear when K = 1 in (3.6), that is

(3.7)  lim,,,Prob{N eventin (1, ¢+ k]| M}k = s, + § s,(t — u) dM(u) .

By analogy with the terminology of the ordinary time series case, we might call
5i(+) in (3.7), the average impulse response of the system. We remark that (3.7)
is an average property of the system, not a sample path property. We say that
the system is realizable or causal, when s(u) = 0 for u < 0.

ExAMPLE 3. The G/G|co queue. Suppose that the jth customer of a service
facility arrives at time o; and experiences service time y;, j = 0, +1, .- .. Sup-
pose that the y; are random variables with density function g(x). Then,
symbolically,

dN(t) = (Z;0(t — 0, — 1,)) dt
and so

E{dN(t)| M} = (X, § 0t — o5 — 7)9(r) dy) dt
= (T, 00— 0,) di
= (Y 9(t — u)dM(u)) dt .

This is of the form of (3.7) with 5, = 0, 5,(#) = g(1) and an example of the random
translation of Example 1.

EXAMPLE 4. A Hawkes’ process. Suppose the system may be described by
(3.8) ) = ¢+ o a(t — u) dN@) + §. b(t — u) dM(u)

and that it generates a stationary process N(-) when a stationary M(-) is taken
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as input. Expression (3.8) leads to
palt) = v + St e(t — u) dM(x)

where py = ¢ + A(O)py + B(O)py = v + CO)py, C(2) = (1 — A(2))7'B(2); A(+),
B(+), C(-) being the Fourier transforms of a(-), b(-), c¢(+) respectively; see
Hawkes (1972) for further details and references.

ExaMpLE 5. For some a, A > 0
put) = aM(t — A, 1]
The output intensity is here assumed to be proportional to the number of input
points in the immediately previous time interval of length A. This model has
the form of (3.7) with 5, = 0,
s(u) = a, 0<u<A
=0, otherwise.

We now turn to the problem of identifying the linear system (3.7). Provided
the process N(-) is well-defined, the relationship (3.7) leads to the equalities,

Py = S + pu § 5:(u) du
(3-9) Pun(t) = Sopy + $:()py + § 5i(t — w)pyy(u) du
Gun(t) = s (Opy + § it — u)qy (u) du
Sou(A) = Su(A)fuu(2)

where S,(+) is the Fourier transform of 5,(-). These relations suggest the estimates

S‘vl(l) = fANM(Z)fAMM('z)_l
$p =Py — pMSl(O)
5,(1) = (2m)~' § Sy(2) exp{itd} d2

where pM,pN,fMM(Z),fNM(Z) are estimates of p,, py, fuu(A), fyy(2). Details of
this estimation procedure may be found in Brillinger (1974). An example of its

use with neurophysiological data is given in Section 7 of this paper. .

An alternate identification procedure that may be of use in certain situations
is the following. Suppose that it is known that s,(«) vanishes for |u| > A. Suppose
that the input points are spaced farther than 2A apart. Then the individual
terms of

ta(t) = 8o + § 5i(t — u)dM(u) = s, + 21, 5,(t — 7))

do not interfere. This suggests that s, + s,(#) can be estimated, reasonably, by
an expression such as

#llzi — o5 — u] < BY(28M(0, T])

for some small 3, where the 7, denote the times of observed output events from
the system. This estimate is suggested by first principles. It is also suggested
by the second equation of expression (3.9) as p,, () = 0 for |u| < 2A here.
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Even when the model (3.7) is not satisfied, the function s,(+) satisfying (3.9)
is of some interest. It provides the best linear mean-squared error predictor of
the process N based on M. The relations (3.9), most especially the third, suggest
that the simplest way to identify the system is to take Poisson noise as input to
the system, for then ¢, ,(x) = 0 identically, and so s,(f) = g, ,(?)/py. Finally
we remark that (3.8) gives an answer to the interesting question of what sort
of input behavior is most likely to lead to an output point, say at 0. We see
that the increments dM(r) should mimic the shape of a(—7).

The above discussion indicates that, provided one has sufficient data, a linear
point process system may be identified fairly directly. Unfortunately things are
not so nice in the nonlinear case. Consider the model (3.6) with K = 2. Tt is
convenient to set it down in an alternate form. With M’(u) = M(u) — up,,, we
write it as

(3.10)  py(y =ry+ §ri(t — u)ydM'(u) + §§,., r(t — u, t — V) dM'(u) dM'(V) .
Supposing r,(u, v) = ry(v, u), expression (3.10) leads to

Py =Ty + §§ (=, —0)qy (4 — v)dudv
Guu(t) = r()py + § 1t — w)qyy(u) du + 2 § ry(t, t — 0)g,,(V) dv
+ §§ r(t — u, t — V)G (1, v) du dv
Gunn(S; 1) = (s — 0G5 (0) + r()Guu(?) + § 1i(s — W)Guyu(u, t) du

+ 2ry(s, s — Opy’ + 2§ ry(s — u, 5 — 1)g,0,(u) du

4+ 2§ ry(s, s — t — V)gu,(v)dv

+2 SS rz(s —Us—1— v)qMM(u)qMM(v) dv du

+ 25r(s — u, )Gyyu(, tydu + 2§ r,(s — u, s — 1)q 4 (u, t)du

+ §§ (s — uy t — VYGyyun(u, v, t)dudv .
It is not at all apparent how we could make direct use of these relationships
without making further assumptions. We do note that if g, ,(u), gyy.,(4, v),
Gumun(4, v, w) are all identically 0, as would be the case for a process with
independent increments, such as the Poisson, then the relationships give

Ty = Pw
r(#) = quu()/pu
oty V) = Guyu(is 4 — V)[(2py*)

and the functions r, and r, may be identified directly. The above discussion
suggests that we should probe a point process system with Poisson noise whenever
possible. Unfortunately in practise this is often not possible because the noise
generating device has a “dead time”, that is a nonnegligible minimum interval
between points. Other procedures for identifying polynomial systems involving
ordinary time series are given in Brillinger (1970). It is not presently clear if

these may be adapted to the point process case usefully. The Fourier-Hermite
orthogonal polynomials discussed there for Gaussian processes (and introduced
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into the context of system identification by Wiener (1958)) could be replaced
by the Poisson-Charlier polynomials (see Hida (1970)) for Poisson noise.

An alternate nonlinear model for the conditional intensity (3.1) is the mul-
tiplicative model

tu(t) = B 11 6(1 — o))
= expfa + § a(t — u) dM(u)}
with @ = log 8, a(u) = logé(u). If we expand the exponential, then we see that

this corresponds to the model (3.6) with K = co. In the case that M is Poisson,
this model leads to the relationships

Py = expla + p, {[b(u) — 1] du}
Puwn(#) = pypyb(u).
Another nonlinear model of some interest is provided by
ty() = a if Mirt—A1]=k
=0 otherwise
for some A > 0. An output point occurs here only if there are at least k input
events in the previous time interval of length A.
So far we have only discussed models for the first-order system parameter
(3.1). A related second-order parameter is the following,
(3.11) ty(s, t) = lim, , Prob {N points in (s, s + A,]
and (¢, ¢ + hy]| M}/(hh,) .
This parameter would be especially useful were input points stimulating pairs

of output points. From what has been said already we might consider modelling
(3.11) by
r(s —t) + Y r(s — u, t — u)dM'(u)
where M'(u) = M(u) — up,, r(—u) = ry(u), ry(s, t) = r(t, s). This model leads
to the relationships
py = lim,_, ry(u)
Pan(U) = ro(u)
Puwn(S: 1) — Pun(s — Opy = puli(s, 1) + § (s — u, t — u)q,,(u) du .

Denoting the Fourier transform of r, by R, and of the left hand side of the last
expression by P, we see that

Ry(41, 4) = P(Ay, 2)[2afyu(41 + 23)) -

We end this section by mentioning that there is a growing literature concerning
a martingale approach to point processes. (See Segall et al. (1975), Segall and
Kailath (1975), Boel et al. (1973), Van Schuppen and Wong (1974), Dolvio (1974),
for example.) It makes use of the Doob-Meyer decomposition of submartingales
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and results of Doléans-Dadé and Meyer (1970) among other things. It is con-
cerned with formalizing representations of the form

N, 1] = A(t) + w(?)

where A(t), w(t) are respectively a predictable increasing process and a zero
mean martingale on some g-algebras &%, C 3} y).<y- The cases where A(t) is
differentiable are analagous to our assumption of (3.1). The topics covered in
the literature include: detection, control, forecasting, likelihood ratios and the
representation of martingales in the basic process.

4. The measurement of association. A problem of some interest is the meas-
urement of the degree of interdependence of two point processes. This involves
addressing ourselves to the question of whether the input to a point process
system affects the output at all and if it does to what degree?

We begin by noting that

corr {dN(t + u), dM(u)} = (pyy(u) dt du — pyp,, dt du)/(py dt p,, du)}
¢ Pyu(¥) — PxPu -
This remark suggests our considering the measure p,,,(¢) — pyp,. This particular
measure may also be interpreted as
Prob {dN(t +u) =1 and dM(t) = 1} — Prob {dN(t + u) = 1} Prob {dM(t) = 1}
dt du

An equivalent measure is

Puul®) _ py = (Prob {dN(t 4+ u) = 1|dM(t) = 1} — Prob {dN(t + u) = 1})/dt .
Pu
Both of these measures are 0 in the case of independence.
The problem can also be viewed as one of looking for association in the 2 X 2
table:

dM(s)
dN(t + u) Totals
0 1
0 1 py dt 1
1 py du pyulw)dt du pydu
Totals 1 Py dt

A variety of measures of association have been suggested for 2 x 2 tables, see
pages 536-540 in Kendall and Stuart (1961). In the present context, these lead
to

(i) the cross-product ratio

a(u) = pyy(W)/[pypPul >
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(ii) Yule’s coefficient of association
Q) = [pwu() — pxPul/[Pyu(#) + PxPu]
(iii) Yule’s coefficient of colligation
Y(u) = [(pu(@) — (pxPs) I(pru())t + (PwPu)]
(iv) Pearson’s ¢*
#*u) = [pwu(®) — pupul’llPypu] -
The “null” values of these measures occur in the case that p,, (1) = pyp,-

An alternate manner in which to proceed is to look at the degree of correla-
tion of certain combinations of the values of the process. For example if we set

d,7(2) = \] exp{—ik}aM(r),  dy"(3) = §] exp{—itt} dN(1)

then
lim, .. [corr {d,"(2), dy" (A} = lim,_,, |COV (& (1), & (D}
Var d,,“(2) Var d,"(2)
(4.1) = | fun AN (A w (A
= |Ryn(A)* -

This last measure is called the coherence of the two processes at frequency A4.
Its values lie between 0 and 1, with 0 occurring in the case of independence.

S. Multidimensional systems. So far we have been considering the case in
which the system has a single input and a single output. In many interesting
situations, the input and output processes are multidimensional. No great dif-
ficulties appear in extending the linear system of (3.7) to the multidimensional
case. Specifically, we might postulate

(5.1) lim, ,, E{N(t, t + h]/h|M} = s, + | s,(t — u) dM(x)

with the process M being r dimensional, the process N being s dimensional, s,
being an s vector and s,(+) being an s X r matrix. If S, denotes the Fourier
transform of s,, if f,,(4) denotes the spectral density matrix of the process M
and if f,,(2) denotes the cross-spectral density matrix of the two processes, then
the relation (5.1) leads to the equality fy, (1) = S,(2)f,,(2), showing that the
system may be identified through estimating spectral density matrices.

In the multidimensional case we may be interested in certain partial param-
eters. Consider a univariate process M and a bivariate process N with component
N, and N,, corresponding to M being input to two systems .&; and .&; with outputs
N, and N, respectively. In practise, the outputs N, and N, may appear to be
related. However this association may only be due to the fact that the two
systems had the same input M and not due to any further connection. Partial
spectra provide a tool for checking into this possibility. Consider the model

dN(t) = (1, + § a)(t — u) dM(u)) dt + de (1)
dNy(t) = (s + § ay(t — u) dM(u)) dt + dey(1)
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where ¢, and ¢, are processes with stationary increments. This model leads to
the relationships

fejsk('z) = ﬁVij-M(Z)
= fNij('z) - fzvj M(Z)fMNk('z)/fMM('{)

for j,k = 1,2. In the case that the processes ¢, and ¢, are uncorrelated the
partial cross-spectrum fy . (4) and consequently the partial coherence

(5.2) IRy vy (D = R (DI = ey (DP/[f 16y (D) e, (2]

will be identically 0 allowing an examination of the hypothesis through estimates
of these functions. An example of the checking of such a hypothesis for some
neurophysiological data is given in Section 7.

6. Finite parameter models. On occasion we may find ourselves in a situation
where a system of interest is characterized by a finite dimensional parameter 6.
Suppose that in such a situation we may derive the form of the spectral density
matrix assuming stationary input and output processes and that it is given by

[fMM('{; 0)  fun(4 0):] .
fuu(450)  fyn(4:0)
Suppose further that

limy; o, fyu(45 0) = p,(0) limy; ., fun(4; 0) = py(6) -
Set

w45 0) = fuu(X O)ey(0) s w4 0) = fun(45 0)/125(0)
Ivn(A5 0) = fuu(25 0)[(12n(0) 1 (0))E .

Let p, = M(0, T]/T and p, = N(0, T]/T, then under regularity conditions (see
Brillinger (1975b) ) the variate h"() = {d,,"(2)/(px)}> dx"(4)/( px)}} is asymptotic-
ally bivariate complex normal with mean 0 and covariance matrix

a3 0)  Gun(E OF] _
T[gmz; 0)  gunl; 0>} = T8t 0)

for 2 0. This suggests setting down the following approximate “log likelihood”
function :

om0 (a3 0) )

where J7(2) = h”(2)"h?(2), and then estimating @ by 0, the value maximizing
expression (6.1). This procedure is a point process version of a procedure sug-
gested by Whiitle (1953, 1961) for ordinary time series. Under regularity condi-
tions (see Brillinger (1975 b) )it may be shown that the estimate 6 is consistent and
asymptotically normal with mean # and covariance matrix 2z7-'A-%(A + B)A~!
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where A, B are matrices with entries

= 5177 ur (B (e ) )

By = § 20 20 22 204 Car () Coat B)asea(®, —a, — B) da dps

with C,,;(a) the entry in row a, column b of the matrix

() 280 gy

J

Estimates constructed in the above manner cannot be expected to be efficient
as they are based only upon first and second order parameters and statistics. Tt
would be interesting to construct a procedure involving third order parameters
as well.

7. Some examples based on neurophysiological data. The field of neurophys-
iology is an excellent source of problems and data relating to point process
systems. The paper by Bryant et al. (1973) is a good example of recent quanti-
tative work in the field. The data discussed below were provided to this worker
by those authors.

When a microelectrode is inserted into a nerve cell, a changing voltage may
be recorded. Figure 1 is an example of such records for two neighboring cells,
(L10, L3), of the sea slug (Aplysia californica). Here, and in many cases, the
records are made up of pulses of large amplitude and short duration. Conse-
quently the times of the pulses may reasonably be thought of as realizations of
point processes. Figure 2 provides estimates of certain of the parameters men-
tioned in this paper with M referring to the times at which the cell L10 of a sea
slug fired and N referring to the corresponding times at which L3 fired. In all
there were 2548 M events and 1532 N events corresponding to mean rates of
Pn = 2.21 and p, = 1.33 events/sec. respectively. A and B are estimates of
(Pun(@)[pa)ts (pyn()/py)E, 0 < u < 12.5 sec. respectively. The construction of
such estimates is described in Brillinger (1975b). The square roots are taken,
because the estimates then have stable variance, ibid. The graphs have dips near
0 because of the cells’ dead times. (There is a refractory period, after a nerve
cell has fired, during which it cannot fire again.) The horizontal lines of A and
B are at the levels (p,)}, (py)! respectively corresponding to estimates of the
level for processes with orthogonal increments. The L10 cell was here stimulated

| |

FiG. 1.
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to fire in as Poisson a manner as possible. C is an estimate of (py,(#)/p,)*. The
horizontal line is at the level (py)! corresponding to unassociated M and N
processes. The graph suggests that there is a drop in the rate of N events for
up to 5 sec. after the occurrence of an M event. D provides an estimate of the
average impulse response function, s,(-), of (3.7). The estimate suggests that
s,(u) is near 0 for u < 0, in accordance with the neurophysiologists’ understanding
of the relationship between the cells, and it suggests that the rate of L3 pulses
drops for a period after the arrival of an L10 pulse. E is an estimate of the
coherence function, |R, (1), of (4.1). The estimate is significantly different
from 0.0, at the 95 per cent level, for 94 of the 100 points plotted. The apparent
coherence at low frequencies is surprisingly large, considering that coherence
is a measure of degree of linear association and the system is nonlinear here.
(Other such coherences may be found in Figure 3.) Graphs C and D are here
so similar because the input is near Poisson.

Figure 3 presents some of the results of an analysis of the sort described in
Section 5 for a three cell network, (L10, L3, L2), of the sea slug. In the nota-
tion of that section, M corresponds to L10, N, to L3 and N, to L2. Graphs A,
B, C are estimates of the coherences |R, y (1), |Ryy (D)%, |Ry v, (D) respectively.
The horizontal line corresponds to the 95 per cent point of the null distribution
in each case. These graphs suggests that the three cells are intercorrelated. The
neurophysiologists suspected, for these particular cells, that L10 was driving
both L3 and L2 and that there was no direct path between L3 and L2. Graph

10

A -1 cl0~
8 | 8
6 6
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D is in accord with the suspicion. It is an estimate of the partial coherence,
|Ry v, #(A)I*, of (5.2). The horizontal line corresponds to the 95 per cent point
of the null distribution. There is no suggestion that the partial coherence is
not 0.0.
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H. L. Bryant, Jr. of the U.C.L.A. Brain Research Institute for many stimulating
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DEPARTMENT OF STATISTICS,
UNIVERSITY OF CALIFORNIA,
BERKELEY, CALIFORNIA 94720

DISCUSSION ON PROFESSOR BRILLINGER’S PAPER

D. R. Cox (Imperial College, London) My comments concern the statistical
aspects of Dr. Brillinger’s interesting paper. First, when it is required to study
the dependence of a process {N} on an explanatory process {M}, there are often
strong arguments for arguing conditionally on the observed process {m}. In
particular, assumptions about {M} itself are avoided; even its stationarity is not
required so long as the interrelations are time-invariant.

Secondly, some qualification seems desirable of. Dr. Brillinger’s blanket re-
commendation that {M} should, where possible, be chosen to be Poisson. Will
not much depend on the constraints on observation and on the nature of the
interrelations? For instance, one can envisage situations where it would be
more informative to take {M} as a regular sequence of widely spread points, sup-
plemented, perhaps, by some pairs of points close together to examine linearity.

Thirdly, an alternative to the study of interrelations is via the modulation of
simple models for {N} (Cox, 1972). In this the intensity of the {N} process is
modified by a factor depending on relevant aspects of the {M} process. Two
advantages of this approach are that in certain cases likelihood functions can be
obtained and that simple relations, nonlinear in Dr. Brillinger’s special sense,
can be accommodated; for example, the backward recurrence time in the {M}
process may be particularly relevant. An advantage of Dr. Brillinger’s approach
is that special assumptions about {N} are avoided. ’
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P. Z. MARMARELIS (California Institute of Technology) Professor Brillinger’s
well-written paper on the identification of point process systems fulfills, among
others, a long-standing need for such work in the field of neurophysiological
system analysis. I expect that many applications of these techniques on point
process systems (certainly on neural systems) will come to fruition following
Brillinger’s work.



