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MULTIPARAMETER SUBADDITIVE PROCESSES!

By R. T. SMYTHE
University of Washington

Let N be the positive integers. We define a class of processes indexed
by N7 x Nr which we call subadditive (when r = 1 our definition coincides
with the usual one). Under a first moment condition we prove mean con-
vergence of xou/|t| as each coordinate of t — co, where [t| = t1 22 -+« t,. If
the process is strongly subadditive (a more restrictive condition) then the
same first moment condition gives a.s. sectorial convergence. We conjec-
ture (and verify in several cases) that an L(log L)1 integrability condition
is sufficient to give unrestricted a.s. convergence.

0. Introduction and notation. Subadditive processes were introduced by Ham-
mersley and Welsh (1965) in the context of percolation theory. An excellent
account of the properties and uses of subadditive processes is given in Kingman
(1973) (although, as noted by Kingman, his stationarity postulate (S,) is stronger
than that used by Hammersley and Welsh).

To introduce the reader to the essential features of the theory, we will briefly
outline some results in the one-dimensional case.

Consider a family {x,,, s < t} of random variables, where s and ¢ belong to
the set N of nonnegative integers. In Kingman’s formulation, the process {x,,}
is said to be subadditive if the following three conditions hold:

S,. Whenever s < t < u, x,, < X,, + X,,-
S,. The joint distributions of the process {x,,, ,,,} are the same as those of {x,,}.
S;. 9, = E(xy) < o0, and g, = — At for some constant 4 and all ¢ > 1.

We first note that from the theory of subadditive functions and S, it follows
that
0.1) lim,,,g,/t =7 < o0.
The constant y is dubbed by Hammersley and Welsh the “time constant” of the
process.

One of the principal results of the theory, due to Kingman (1968) is that
0.2) ¢ = lim,_, x,,/t existsa.s.andin L', and E¢)=7.

The proof of this result depends on the decomposition

(0.3) xu = yst + zst

where y is an additive process (meaning that there is equality in S,) with
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E(yy) = 7, and z is a nonnegative subadditive process with time constant equal
to zero.

Our goal here is to generalize the theory of subadditive processes to the multi-
dimensional case, i.e., we wish to consider processes {x,,, s < t} where s and t
are vectors in N, equipped with the usual coordinatewise ordering. (We write
s<tifs<tands#tf,andsgrifs, <t,i=1,2,...,n)

First we must develop a suitable definition of the subadditive property analog-
ous to S,. Hammersley (1974) appears to suggest the following version of S, on
page 671:

(0.4) Whenever s< t<u, x,, < X, + X, -

This might be an appropriate formulation in which to study, say, percolation
processes on the square lattice, but it is not the geometrical analogue of S, (as
Hammersley himself recognizes on the following page of [4]). In the one-dimen-
sional case, regard x,, as a random set function assigning a value to the interval
[s, 7); condition S, then expresses the subadditivity over intervals of this random
set function, and the process is additive whenever x,, defines a finitely additive
set function. Extending this approach to dimension 2 (say), the analogous con-
dition would be

S;. Whenevers <uand s, <1, <y, X,y < Xy )0 T Xeop,tpu whenever s < uand
5 <t < My Xy = Xy T Xipspw with the obvious generalization to r > 2.

In many respects this definition would seem to be the most natural extension
of S,. However, at least with respect to the present techniques, it appears to be
too general to yield the strong form of our results. Consider the following re-
formulation of S;: '

S/. Whenever s < t < u, x,, — X, < X.
Obviously S, and S/’ are identical, but consider the two-dimensional analogue
of S,

S/. Whenever s < t < u,

xsu - x(sl,tz)u - x(tl,sz)u + Xiu é xsl .

It is easy to check that S, and S, are not equivalent, but if x,, = 0 whenever
s, = t, or 5, = t,, then S, will imply S,.

Turning next to S,, its extension is straightforward:

S,. The joint distributions of the processes {X(, .1 s, +1,e9} 304 {X(s s, 100, 1540}
are the same as those of {x,,}. ‘

Now consider S,. We have x3, < (xo, + -+ + X, )" < xfh + -+ + X,
(where we used S, in the first inequality). Thus, by S,,
(0.5) E(xg) = tE(x3)

so that, under the condition E(x,) < co, we always have

(0.6) sup, E(?‘) S E(xg) < oo
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Condition S; is therefore equivalent to

0.7y sup, E < 0.

Xor
t

Hence our final condition (where for t = (¢, ---, ¢,), |t| = #, ¢, - - - t,):
S;. sup, E|x,/|t]] < oco.

DEeFINITION 0.1. A process {x,,, s < t}, where s, t € N, is subadditive if S, S,,
and S, are satisfied. If S/, S,, and S, are satisfied, the process will be called
strongly subadditive.

Definition 0.1 extends in the obvious way to processes {x,,} with s, t ¢ N".
To keep the notation manageable we will always work in N?, indicating where
changes need to be made to give the corresponding results in N*.

Here are some examples of subadditive processes.

ExAMPLE 1 (Modification of an example of Hammersley and Welsh (1965)).
Let straight lines be distributed on the plane uniformly and independently at
random (i.e., their directions are uniformly and independently distributed between
0 and 27, and their perpendicular distances from the origin are the points of a
Poisson process on the positive reals.) These lines divide the plane into convex
polygons. Given s, t in N? with s € t, let R,, be the rectangle with lower left
corner at s and upper right corner at t. Let x,, be the number of polygons of
some given class (acute triangles, for example) which intersect R,,. Then {x,,}
is strongly subadditive.

ExAMPLE 2 (Hammersley (1974)). Let d > 0 be fixed. Distribute points in
R"™ according to a stationary point process (e.g., Poisson). Draw a sphere of
radius d around each point and let R,, be defined as in Example 1. Let x,, be
the area covered by the spheres whose interiors are wholly contained in R,,.
Then {—x,,} is strongly subadditive.

EXAMPLE 3. Let . be a family of sets in R?, stable under finite union and
intersection, which contains all the rectangles R,,, s € t. Suppose that for each
fixed § € &, w — C(S, w) is a random variable, and that for each fixed v, S —
C(S, o) is a subadditive Choquet capacity on .&”(cf. Meyer (1966), page 39), i.e.,
C(+, w) is a capacity such that C(S U T, w) < C(S, w) + C(T, w) for S, T dis-
joint. Using the relation

ClPUQUR,0) —C(PUR,0) —C(QUR,0)+ C(R,0) £0,

it is easy to show that the process x,, = C(R,,, ») is strongly subadditive. In
particular if C is nonnegative it will be subadditive in the sense given above, so
that every (measurable) nonnegative random capacity defines a strongly subadditive
process. Example 1 is of this type; but Example 2 shows that not every strongly
subadditive process arises from a capacity, since the process { —x,,} is obviously
not monotonic increasing on rectangles. The (unresolved) question then arises:

which nonnegative, monotonic increasing, strongly subadditive functions on the
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rectangles R,, can be extended to a capacity on some class of sets containing
the rectangles? -

1. The L'-convergence theorem. First we must address ourselves to the ques-
tion of the existence of a “time constant” y for our processes. When we write
“t — co” we shall mean that each coordinate #;, — co independently.

ProrosiTION 1.1. Let {x,,} be subadditive, and let g(t) = E(x,,).
Then lim,_,, g(t)/|t| exists.

Proor. We claim that the limit y above is in fact given by y=inf, ;... g(t)/|t|.
As in the usual proof of the one-dimensional result (cf. for example, Chung
(1967), page 131), start by picking t° = (#,°, £,°) such that

gito)/|te| <7 + ¢, where ¢ > 0.
Given t, write t = (n,1,° + 0, n,,° + 0,) where 0 < 7, < 1,°,0 < 9, < ,°, and
n,, n, are positive integers. Since the function g(t) is subadditive in the sense of
S,, we have g(t)/|t| < 1/|t|{{g(n,1,°, n,1,°) + g(n,t,°, 0y) + 9(d,, ny1,°) + 9(d,, )}
But by stationarity g(n,1,°, n,1,°) < n,n,g(t,), so

(1.1) ilfl—) < El(t—‘ll + ﬁ{g(n, 10, 3) + 900 m 1) + 0(31, 8}
0

Now for any fixed 4, with 1 < 9, < #,° and 9, with 1 < 9, < 1,°, the functions
9(d,, ) and g(u, d,) are subadditive functions of s and u respéctively, by S,.
Therefore the limits lim,_,, g(9,, s)/s and lim,_ g(u, d,)/u exist and are finite
(Chung (1967), page 131). It follows that lim,_,, supy; .- (1/[t))g(n,#,°, 3,) and
lim,_, sUpo;,<r,- (1/[t))9(0,, n.2,°) are both zero, since n, — co and n, — co as
t — oo. Clearly lim,_, g(d,, ,)/|t| = O, so from (1.1) we have

(1.2) lim sup, ., g(t)/|t| < 7 + ¢

Since ¢ is arbitrary, it follows by definition of y that g(t)/|t| — r as t — oco.

In the remainder of this section we will investigate the convergence in L' of z,
as t — co. Here and later in Section 2 we shall need to appeal to several classical
multiparameter ergodic theorems. For convenience we will state and reference
all of them at this point.

THEOREM A (Riesz-Dunford). Let {X,};.,- be an array of random variables
stationary under each shift 0,, 1 < i < r, where 0,: X sigeeniy = Kooty
Let S, = ) ;.. X;and let1 = (1,1, ..., 1).

If X, is integrable, then S,/|n| converges in L.

ProOF. As observed by Dunford (1951), this theorem is essentially a con-

sequence of a mean ergodic theorem of F. Riesz (1938); the proof is implicit
in the proof of the main theorem in [3]. '

THEOREM B (Dunford-Zygmund). Let {X}},. - and S, be as in Theorem A.
If E(|X,|(log*|X,|)™") < oo, then S,[|n| converges a.s. and in L.
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Proor. Dunford (1951) for r = 2; Zygmund (1951) for r > 2, in the con-
tinuous case. It was shown by the author in [11] that the integrability condition
in Theorem B cannot in general be weakened.

THEOREM C (Zygmund). Let {x;};.yr and S, be as in Theorem A. Let T, be
the sector of r-space defined by

T, ={(i, -+, i,)eN|ai, < i Satiy;l =k, 1L,k=1,2,...,r}.
If X, is integrable, then limn_,m;,_”ra S./|n| exists and is finite a.s.
Proor. Zygmud (1951).
Here is our principal result on L!-convergence of z,.

THEOREM 1.1. Let {x,,} be subadditive with time constant y. Then z, converges
in L' to a limit &, were E(§) = 7.

If in addition E(|x,|log* |x,|) < oo for all te N, then limsup,_, z, = & a.s.
The corresponding result holds in N™ if log* |x,,| above is replaced by (log* |x,,|)" .

ProoF. To show that z, converges in L' it is enough to show first that, given
any increasing sequence {t,},., of points in N? such that #,' - oo and #,> — oo
as k — oo, there exists a subsequence on which z, is L'-convergent; and second,
that one obtains the same limit no matter which sequence is selected.

Let such a sequence {t,} be chosen and fix n for the moment. Then

t, = (ni, + 0, nj, + 0,), where 0<9,<i and 0Z9,< ..
We have

(13) xmk é Zi’{=1 ZZ;‘=1 x([rl—lln,[r2—1]n)<r1n,r2n) + x(ikn,jkn)(tkl,tkz)

T X mipmet T Xm0l ipm -
Consider the first term on the right-hand side of (1.3). It is a partial sum associ-
ated with a stationary process which is integrable; by Theorem A, the limit

(1 '4) llmk—wo (lk./k) Zrl—l foa 'x(['rl—l]n,[rz—l]n)(rln,rzn)
exists in L'. Hence we can choose a subsequence from {(i,, j,)};cy (Which we
continue to denote for typographical convenience as {(i,, j,)}) such that i, — co
and j, — oo as k — oo and the limit in (1.4) exists a.s.

Now consider the remaining terms on the right-hand side of (1.3), where k is
restricted to the subsequence chosen above. Define

t2—1
le—l 212-1 (13,19) (1 +1,15+1)

and note that the S,, are partxa‘l sums of an integrable stationary process. Now

(1.5) Xigmigmghed T X0 mapned T Xignowglim = S,k — Sikn,jkn
by subadditivity. By Theorem A, S, Jtland S, . [i,j,n*are L'-convergent to
the same limit as k — oco; since |t,,|/t,,],,n — las k — oo it follows that (S,,

Sinign)/|te] — 0 in L' as k — co. Hence we can pick a further subsequence,
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which we once again denote {(i, j,)}, such that
(1.6)  limsup, ., (7)™ {Xcipm i pmeptitgd T X0, 5 gmrpmtgd T Xiigmaoeylim} = 0 a.s.

We thus have, for each n, a subsequence {(i,, j,)} satisfying (1.4) (a.s.) and (1.6).
Using a standard diagonal argument, we may assume that the same subsequence
satisfies (1.4) (a.s.) and (1.6) for all n. From (1.3), (1.4) and (1.6) we then
deduce that

(1.7) § = lim sup, o, Xo,,/|t| < u,/n*.

Hence E(§) < E(u,/n*) for each n; but if n = (n, n), E(u,/n*) = g(n)/|n|, and since
E(§) < g(n)/|n| for each n, we have E(§) < lim,_, g(n)/|n = 7, by Proposition
1.1. The proof that E(§) = r and that z,, — £ in L'as k — co can now be com-
pleted as in [6], page 502.

It remains to be shown that the limit £ obtained above is the same no matter
which sequence {t,} we start with. This is done much as in [6], page 504. Let
- be the g-field of events generated by the process {x,,} and invariant under
both the shifts 0, : X, 4,00 = Xaprnapegney a0 057 X 0 1) = X ainogigen-
Let @, be a version of the conditional expectation E(x,,|.”). By stationarity,

E(x,|”) = @,
and by subadditivity it follows that, if 0 € t € u,
(1.8) O, <D+ Dyt + Pty + Pisymtyug-tp
for all w in a set of probability one (which can be chosen independent of t and
u). Hence by Proposition 1.1,
¢ = lim,_,, D,/|t|

exists a.s.; we claim that the limit £ found above is a.s. equal to ¢, and hence
independent of the sequence {t,}. To see this note that since x,,,/|t,| — & in L',
then E(x,, /|t,||-#) — E(§|-*)in L'. Butit is easy to show that £ is an invariant
random variable, so that E(§|.7) = § a.s.; thus ¢ = lim,_., E(x,,, /|t |-) = &
a.s., completing the proof of the first statement of Theorem 1.1.

The proof of the second statement follows by applying the same argument to
arbitrary ¢ that was used on the sequence {t,} and using Theorem B instead of
Theorem A. We write

t = (in 4 0,, jn + 0,) where 00, <i, 0<0,<.

If E(|x,,] log* |x,,|) < oo for all te N* we apply Theorem B to get (1.4) (a.s.)
without passing to a subsequence. Instead of (1.7) we then arrive at the state-
ment

(19) n= llm Supl~°° xﬂt/ltl é n—* limi,:i~°° Zi1=1 Z£2=l x([rl—l]n,[rz—i]n)(rln,r.zn) .

This gives < oo a.s., E() < g(n)/|n| as before; the proof that z, — 5 in L'and
hence that = § = ¢ a.s. is virtually the same as before.
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CoroLLARY 1.1. Let {x,,} be subadditive with time constant y, and let S,* be a
sector of r-space as in Theorem C. Then lim sup, s« 2, = § a.s., where § is given
in Theorem 1.1.

Proor. This is proved just like the second statement of Theorem 1.1, except
that here we use Theorem C instead of Theorem B.

2. Convergence a.s. To get a.s. convergence of z, using the present techniques
we need to assume that {x,,} is strongly subadditive. This will enable us to de-
compose {x,,} in a manner analogous to that of (0.3). The proof of this basic
result is modeled on that given by Burkholder (1973) in the one-dimensional
case.

PROPOSITION 2.1 Let {X,,} be strongly subadditive. Then x,, = y,, + w,,, where
{y.} is an additive process with E(y,,) = y and {w,,} is a nonnegative subadditive
process with time constant zero.

Proor. For each k and n ¢ N?, define
1

(2-1) fkn = I“ITI D lsrsn (xk ktr — X+t kgkdr ™ Xhy kgt Dktr + xk+l,k+r) .

For each fixed n, the array {f,,}, 52 is stationary by S,. Note that under the
given hypothesis, each summand in (2.1) is dominated by x, ,,,.
Take t suchthat t =k +-1>s 4 1,and n > t. Then

N fin = Zarisesirn Kie — X (kg4 1,kpye — Xiky kgt T Xi1,r)
=< Dazene (e — Xy 41,kg)e — Xk, kgt D + Xei1,n
+ (mny, — (n — 1)(ny — 1)) X vy -

Hence
n a2, fue
(2.2) é Zn;rgl (xsr - x(al ty)r - x(t1 s)r + xtr)
+ (nn, — (ny — 1)(ny, — 1)) 2R, 22875 Xoen

= mnyX, — (mny — (1, — 4)(n, — B)Hx, — Z;cll_—‘lsl Zkzz;iz Xy k1)

so that

2.3) TH T fan Sk + BRI B, sy
nln2

where v,, = — 2021 20222 X - In particular we have f,, < x,, and by

(2.1) and statlonarlty,
E(fo.) = ﬁ T ieeea [00F) — 9((rs — 1, 1)) — (> 11 — 1))
(2.4) +oo((r — 1,1 — 1)]

=M 5.
|
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Therefore E|f,,| < E|xo| + E(Xoy — fou) < E|xo1| + (9(1) — 7) and the array
{fon}ae »2 is uniformly bounded in L'. We can then apply the theorem of Komlos
(1967) to pull out a sequence n, < n, < - - - of positive integers and an integrable
function f, such that

. 1 . .
(2.5) Ay = _]_ sz=1f0(ni,ni) — fo as. j—oo.
For convenience let n, denote the point (n,, n;). Then by stationarity,
Ak":l‘—Z{:lfkn‘—)fk a.s.as j— oo,
] ]

and {f,}, .y is a stationary array.
Given te N?, let i, = inf {i: t < n;} and define
AG(O) = = T fan
J
with a similar definition of A4,7(f). Clearly A,(t) — f, a.s. as j— oo, for any t
and k ¢ N2
Recalling (2.3), we have

@.6) T, DT, A < x+ v, om0 D B
1= 272 - j t niZ

Passing to the limit as j — co, we have

(2.7) Deska Sk = X0 -

Let y,. = Xl.<x« fis Vs is then an additive process, and it follows as in Burk-
holder’s arguments in [1] that E(f,) = 7.
Let w,, = x,, — y,.- W,, is clearly a nonnegative subadditive process, and

w t
£( . ) = Ez) — EQoith = gt — 7 — 0
as t — oo by Proposition 1.1; this completes the proof of Proposition 2.1.

As a start we can use the the decomposition of Proposition 2.1 and Corollary
1.1 to show a.s. sectorial convergence of any strongly subadditive process.

THEOREM 2.1. Let {x,,} be strongly subadditive with time constant y, and let S, *
be any sector of r-space. Then lim,_,,,. s, 2o = & exists and is finite a.s., and

E¢E) =7.

ProoF. By Proposition 2.1 we can write x,, = y,, + W,,. The process {y,,}
is the partial sum process of a stationary integrable process (Proposition 2.1)
and therefore by Theorem C, y,,/|t| converges, for te S, to a finite limit § as

t — oo, with E(§) = y. Now w,, is a nonnegative subadditive process with time
constant zero. Applying Corollary 1.1 to it we have

lim SuPa—m;aes,a wot/ltl =79 a.s,
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where E(y) = 0. Since w,, is nonnegative this implies that w,,/|t| converges
sectorially a.s. to zero, completing the proof.

Finally we consider the more difficult problem of unrestricted convergence a.s.
Retaining the notation of Proposition 2.1, the remark in the “proof” of Theo-
rem B in Section 1 shows that the condition E(|fy| log* |f,|) < co is necessary
in order to conclude that y,,/|t| converges a.s. as t — co.

THEOREM 2.2. Let {x,,} be strongly subadditive with time constant y and assume
that

(2.8) for each neN?, E(|xga| log* |Xea]) < o0
2.9) E(|ful log* |ul) < oo -

Then z, — £ a.s. as t — oo, where E(§) = 7. The corresponding result holds in N”
if log* is replaced by (log*) .

PROOF. Again write x,, = J,, + W,, as in Proposition 2.1. By Theorem B,
You/|t| converges a.s. to a limit & as t — oo, where E(§) = y. Also, since both y,,
and x,, are X log* X-integrable by hypothesis, so is w,,; applying Theorem 1.1
we have

lim sup,_,, wo,/|t| =7 < oo a.s.,

with E(5) = 0, the time constant of the w-process. It follows as in the preceding
theorem that lim,_,, w,,/|[t| = O a.s.

Theorem 2.2 is not of much use as it stands, since it gives no clue concerning
how to prove the X log* ‘X-integrability of f,. Consider again the decomposition
of Proposition 2.1. Using (2.5), the convexity of the function x — |x| log* ||,
and Fatou’s lemma, it is easily seen that the condition

(2.10) SUP; E(|fon,| 108" | fou ) < 0

is sufficient to give E(|f,| log* |f,]) < co. To shed some light on this condition
consider again the one-dimensional case under the hypothesis that E(x,) < oo
for all ¢. It is easy to show that the condition g, > — At (S, Section 0) is equiva-
lent to

(2.11) sup, E % 251 (X — (X5 — Xyy))| < o0 .

Relation (2.11) makes explicit what is already intuitively clear. By subadditivity,
Xo; — Xy; < X, for any j, with equality if {x,,} is additive, and so (1/n) 3%, (X —
(x0; — Xy;)) is a (local) measure of the departure from additivity of {x,,}. If the
departure is not too severe, we can get an ergodic theorem.

Returning to the two-dimensional case, define, forr > 1, A, = x,, — x4, —
Xq.0r + X1,. From Theorem 2.2 and (2.10) we get a corollary which makes ex-
plicit the analogy with (2.11):

COROLLARY 2.1. Let {x,,} be strongly subadditive and suppose that (2.8) holds,
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as well as (2.12) below:

2.12) {L Tre, (Sor — A,)} is L log* L-bounded.

L te¥
Then z, — § a.s. as t — oo, where E(§) = 7.
The corresponding result holds in N™ if log* is replaced by (log*) .

Again this result seems unsatisfactory since the condition (2.12) is apt to be
difficult to verify in practice. We make the following conjecture:

CoNJECTURE. Conditions (2.8) and (2.12) can be replaced by the single con-
dition

(2.13) sup, E(|z,| log* |z,]) < oo .

In a number of special cases, described below, the conjecture is verifiable.
The difficulty in establishing the general conjecture is that the linearity of the
first moment, which makes things work in the one-dimensional case, does not
extend to linearity of the X log* X moment.

CAsE 1. Suppose that {x,,} has positive increments in the sense that A, = 0
for all r e N*. Then 0 < x,, — A, < x,, and if E(|xy,| log* |Xq,]) < oo, (2.12) is
clearly satisfied. (Example 1 of Section 0 is of this type.)

CaAsE 2. Suppose that {x,,} has “invariant increments” in the sense that A, is
independent of r. Under (2.13), A, is Xlog* X-integrable so that (2.12) holds.
(Example 2 of Section 0 is of this type.)

Case 3. Let .9 be the o-field generated by the process {x,,} and let 4 be the
shift operator which sends x,, to x,,, ,,,. Let f be a random variable measurable
in .7, If the distribution of f(w) — f(fw) is symmetric and (2.13) holds, it can
be shown without difficulty that (2.12) is valid. In particular the conclusion of
Corollary 2.1 will hold if the process {x,,} is subadditive over the entire integer
grid (with coordinates positive or negative) and the distributions of {x,,} are
isotropic, i.e., invariant not only under linear shifts but also under rotations.

Case 4. We saw in Proposition 1.1 that g(n)/|n| — y as n— co. If (2.13)
holds and this convergence is rapid enough, (2.12) will hold. The specific rate
of convergence needed is that

supe o Zoen, 00) = 717D} < oo
This can be shown by a series of manipulations of a fairly elementary nature,
which we will omit. Thus in particular if g(j)/|j| — 7 is O(]i|™), the conclusion
of Corollary 2.1 is valid. :
In closing we remark that the identification of the limiting process and even
of the time constant y continues to be a problem even in the one-dimensional
case; we have nothing new to add. From the proof of Theorem 1.1 we
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can of course deduce that the limiting process § may be characterized as
lim,_,, E(xo,/|t||-*), where _# is the invariant o-field. Hence if _# is trivial we
have & = 7 a.s.; as shown in [5], this will be the case if {x,,} is an independent
process (i.e., if the retangles {Rsi,i}m,z,,,,m are disjoint, then the random variables
{X,;,}i=1,5,...,» are independent).
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