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ON THE CONCEPT OF CONTIGUITY"

By W. J. HALL ‘AND R. M. LoYNEs
University of Rochester and Sheffield University

The interrelationships among conditions for convergence in law of
sequences of likelihood ratios and the concept of contiguity are explored.
Related results of Le Cam (1960), Hajek and Sidak (1967) and Roussas (1972)
are extended, modified and clarified. In particular, it is shown that if like-
lihood ratios convetge in law under the numerator hypothesis, then they
converge under the denominator hypothesis and the hypotheses are conti-
guous (numerator to denominator).

1. Results and discussion. Consider two sequences of absolutely continuous
probability measures {P,} and {Q,} on measure spaces (Q,, <%,, r,) and denote
Pn = dP,[dy, and g, = dQ,/dp,. Define the likelihood ratio as L, = q,/p, if
Pn<Oand =1lor nif ¢g,=p, =0 or q, > p, =0, respectively; the value n
is more convenient than 4 co. The range space of L, is then in R* = [0, o).
Let P,' and Q,’, respectively, denote the induced probablllty measures for L, on
the Borel sets of R+.

Following Hajek and Sidak (1967), we say that {Q,} is contiguous to {P,} if,
for every sequence B, ( € £%,) for which P,(B,) — 0 is follows that Q,(B,) — 0;
this is a kind of asymptotic absolute continuity. This definition is not sym-
metric in P and Q; Le Cam (1960) introduced the concept, and he and Roussas
(1972) adopted a symmetric definition—what might be termed murual contiguity.
Various implications regarding convergence in law of {L,}, and contiguity, are
presented in Chapter VI of Hajek and Sidak (especially Le Cam’s first and third
lemmas) and in Chapter 1 of Roussas. We explore these further.

Roussas implicitly avoids dealing with the possibility of 0 limiting values for
L, by always using log L,; in effect, he treats both extremes (0 and co) of the
range of limiting forms of L, similarly. Additional insight as well as generality
may be obtained by the approach adopted here: we identify the possible difficul-
ties at the origin.

We are motivated by statistical applications such as Hajek and Sidék (note
Hall and Loynes (1975)). In such applications, we wish to consider settings in
which {L,} converges in law under both {P,} and {Q,}. It is apparent in Hajek
and Sidék that contiguity is a sufficient condition to assure that convergence
under {Q,} follows from that under {P,}. (Indeed, the further power of the
method is that the limit laws are simply and explicitly related.) Our primary
new result is the converse: that convergence in law under {Q,} implies both
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contiguity (of {Q,} to {P,}) and convergence in law under {P,} (Theorem 1). In
other words, the only way L, can converge under the “alternatives” Q,, is for
it to converge under the “hypothesis” P, and for contiguity to hold; contiguity
is necessary. Other results appear below.

Our various results are closely related to some in Roussas and in Hajek and
Sidék. But the paper is self-contained. As our interest is in applications, and
for reasons of clarity, our results are stated for convergence: in every case we
may relax this to relative compactness, provided explicit limits that appear are
taken to be limits of convergent subsequences.

We now label nine assertions to be investigated below:

A;: {L,} converges in law under {P,}—i.e., there is a probability measure P on
the Borel sets of R+ for which P,’ — P on P-continuity sets; let L denote a rv
with distribution P.

A, {L,} converges in law under {Q,}; denote the limiting probability measure

by Q.

A;: A and A, and dQ = L dP.

A,: {Q,} is contiguous to {P,}.

A, {P,} is contiguous to {Q,}.

Ay A, and E(L) = 1.

A;: A, and P({0}) = 0.

Ag {L,} is uniformly integrable (dP,).
A Q,(P,=0)—-0.

Whenever A, holds, we can define a measure (not necessarily a probability)
Q* by dQ* = L dP—i.e., Q*(dx) = xP(dx). Under modest assumptions, Q* will
be shown to be the Q of A,. Several properties of Q* are immediate: (i) 0* «
P, (ii) 0*({0}) = 0, and (iii) P« Q* iff P({0}) = 0. Thus, A, implies P and Q* are
mutually absolutely continuous; this is to be expected intuitively when A, and A,
hold. Indeed, according to Proposition 2 below, under A, mutual contiguity
implies A, and hence mutual absolute continuity of P and Q.

PROPOSITION 1. A, = (A; and A,).
The proof is deferred to Section 3.
THEOREM 1. (A, and A,) = A, = A; = A,.

Thus, contiguity and P,-convergence (of L,)are together equivalent to Q,-con-
vergence. That A; = (A, and A)) is labelled Le Cam’s first lemma in Hajek and
Sidak; that (A, and A,) — A, is a version of Le Cam’s third lemma. Some partially
overlapping results also appear in Roussas (especially Proposition 3.1). Theorem
1 is proved in Section 3 below.

That A, is more powerful than A, is explained as follows: under each, escape
of probability mass to infinity is ruled out by the convergence assumptions;
under A,, no concentration of probability at the origin is possible since g, is in
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the numerator of L,, while under A, such a possibility remains; A, is what is
needed to prevent it.

An interesting and important special case is that in which log L, is asympto-
tically normal. One half of the following result is well known (cf. Roussas,
Corollaries 7.1 and 7.2).

COROLLARY. (i) Suppose {log L,} converges in law under {P,} to a normal dis-
tribution N(pt, 6*). Then p < —Lo® < 0. Moreover, {log L,} converges in law (to Z,
say) under {Q,}iff 4 = —}o? and, if so, then Z is N(}0*, 0°) and A,—A, hold.

(ii) Suppose {log L,} converges in law under {Q,} to a normal distribution N(p, o).
Then yt = 40* = 0, and {L,} converges in law under {P,} to a mixture of e* (with pro-
bability p = e=*+4"*) and O (with probability 1 — p) where Z is N(pz — d°, 0°).

We close this section with several subsidiary results, some of which are used
in the proofs and which help to show the exact relationship between results
stated in terms of L, and those in terms of log L,,.

PROPOSITION 2. (A, and A;) = A,.

Proof. (i) A, and A, — A;: We have Q,(L, = 0) < Q,(9, = 0) = 0, so that
by A, P,(L, = 0) — 0 which with A, implies A,.

(i) A,= A, and A;: According to A, we have A, and P(L=0)=0. It
follows easily (cf. the proof of Theorem 2 later) that M, converges under P,
to L-, where M, is the likelihood ratio of P, to Q,. But thisis A, with {P,} and
{Q,} interchanged, so that the interchanged version of A, (which is A;) follows
from Theorem 1.

ProposisiON 3. {L,} is relatively compact (tight) under {P.}.
This is so since P,(L, > A) < $4, g, Pu 8t = A7 $ap <a, In At < AL

ProPOSITION 4. {Q} is contiguous to {P,} if and only if {log L,} (or equivalently
{L,})) is relatively compact under {Q,}.

This follows easily from the earlier results by dealing with subsequences.
Plainly P, and Q, can be interchanged in the version involving log L, (but not
that involving L,). These results show that the relationship between S, and S,
of Proposition 3.1 of Roussas can be split into two natural parts.

2. Joint convergence with a statistic. The real power of the contiguity theory
in applications (see Hajek and Sidék) it that convergence properties of other
statistics can be determined under Q, by proving their joint convergence to-
gether with log L, under P, (Le Cam’s. third lemma in Hajek and Sidak and
Theorem 7.1 in Roussas). In analogy with part of Theorem 1 above, we now
present a stronger version of this result in Theorem 2.

Let S, denote a <%, measurable mapping from Q, to a metric space M. Let p
denote the product space M x R* with its Borel sets—the range space of (S,, L,).
Let P,” and Q,” be the induced probability measures for (S,, L,) on p. Let B;,
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B, and B, correspond to A,, A, and A, with (S, L,) replacing L,, and dQ = L dP
now means Q(du, dv) = vP(du, dv).
THEOREM 2. (B, and A,) = B, and (B, and A;) = (B, and A)).

CoRroLLARY. If {(S,, log L,)} converges in law under {P,} and A, is assumed or if
{(S,, log L,)} converges in law under {Q,} and A, is assumed, then it converges in law
under both, and B,—B, and A,—A, hold.

The proof of the theorem appears in Section 2 below; the corollary also re-

quires the use of Proposition 2. (If L, = 0 we may either take log L, = —oo
and adopt the obvious conventions or arbitrarily redefine log L,, such as for
example log L, = —n.)

Applications of the corollary appear in Hajek and Sidik and in Hall and
Loynes (1975).

Counterexamples showing that no further implications exist (for example that
B, does not imply B,) are easily constructed by letting P, and Q, be (for every n)
uniform distributions on two intervals, one a subset of the other (with S, = L,*
in the particular case mentioned).

3. Proofs of Proposition 1 and Theorems 1 and 2. We first state a necessary
and sufficient condition for uniform integrability (u.i.) for use in several proofs.

LEMMA. Suppose X, is defined on (Q,, &%,, P,) for each n. Then {X,} is u.i. iff
(a) and (b) hold:

(a) sup, E|X,| < oo}

(b) if B, € <, and P,(B,) — 0, then {, |X,|dP,— 0.

This is similar in content to problem 5, page 34, of Billingsley: the forward

part is straightforward, while the converse is easily proved by contradiction.
We now apply this to prove Proposition 1. Observe that

Q.(B,) = SBn dQ, = SBnn(p,,=o> dQ, + SBn L,dpP,,

so that §; L,dP, < Q,(8,) = Q.(p.=0)+ {5 L,dP,. As we also have
{L,dP, =§, .,dQ, =< 1 the proof is an easy consequence of the lemma.
We also need, in later proofs, that either A, or A, implies A,.

(i) A,= A, We have $z,5¢ Lo dP, = 250,050 LaPa Gty < 150 9 Aty =
Q,(L, > a), which under 4, converges to 0 as @ — oo, uniformly in n.

(il) A=A, Ep (L,)=1, >0 Lupadrt,=1, >09.4dp,<1. Butsince liminf EL,>
EL (Billingsley, Theorem 5.3, page 32) and EL = 1, we have EL, — EL; A,
follows (Billingsley, Theorem 5.4). '

We now prove Theorem 1 by showing in turn: A, = A;= (A, and A,) and
A, = (A, and A)); that (A, and A,) = A, is a classical result, whose proof may
be found in, e.g., Roussas.

(iii) A; = A,. Obvious, since Q is a probability measure.
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(iv) Ag=A;and A,. Wehave Q,(p,=0)=1~-0Q,(p,>0)=1-E, (L,)—0
as seen in the proof of (ii) above; use of Proposition 1 is now enough.

(v) A,=A,. We have {p, =0} c {L, = n} U {q, = 0}, but since the Q,
measure of the last set is 0, it follows from A, that Q,(p, = 0) — 0. Now we
may recall (i) and apply Proposition 1.

(vi) A,= A,. According to Proposition 3, and Theorem 2.3 (page 16) of
Billingsley, it is sufficient to show that every convergent subsequence of {L,} has
the same limit. Suppose for some subsequence P, — P, say: then by what we
have already proved dQ = L dP. Hence, on (0, o) dP = L~dQ (i.e., P(dx) =
x~'Q(dx)), while P({0}) = 1 — P((0, 0)). Thus, the limit is indeed the same for
every subsequence.

For Theorem 2, that (B, and A,) = B, is again essentially a classical result.
For the rest of Theorem 2, first note that B,— A, = A, by Theorem 1. The
remainder of the proof is slightly tedious, because we have to take account of
values 0 and oo for likelihoods, but elementary. Let L,* = L, if L, > 0, and
= n~'if L, = 0; let M, be the likelihood ratio of P, to Q,; and let M_* be defined
analogously to L,*. Then M, * = (L,*)~*, and moreover Q,(L, #+ L,*) < Q.(9, =
0)=0, 0,(M, +# M,*) < Q,(L, =n)—0. Then (S,, L,, L,) converges under
{Q.,} and hence in turn (S, L,, L,*), (S,, L,, M,*), and (S,, L,, M,) each con-
verge under {Q,}. But now the result proved at the beginning of this paragraph,
with Q, and P, everywhere interchanged, and S, replaced by (S,, L,) shows that
(S,, L,, M,) converges under {P,}, and a fortiori (S,, L,) converges.
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