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LINEAR BOUNDS ON THE EMPIRICAL DISTRIBUTION
FUNCTION

By GALEN R. SHORACK' AND JON A. WELLNER
University of Washington and University of Rochester

Let I'» denote the empirical df of a sample from the uniform (0, 1) df
I. Let £nx denote the kth smallest observation. Let 2, > 1. Let 4, denote
the event that I', intersects the line .7 on [0, 1] and let B, denote the
event that Ty intersects the line I/1, on [£41, 1]. Conditions on 1, are given
that determine whether P(4, i.0.) and P(B, i.0.) equal 0 or 1. Results for
Ay (for By) are related to upper class sequences for 1/(néa1) (for néns).

Upper class sequences for néng, With k > 1, are characterized.

In the case of nonidentically distributed random variables, we present
the result analogous to P(A4, i.0.) = 0.

1. Introduction and statement of the theorems. Let&), - - -, &, be independent
uniform (0, 1) random variables having empirical df I', and whose ordered values
are 0 <&, < -+ £&,, < 1. The true df is the identity function on [0, 1],
which we denote by 1.

Welet||f]l,* = Sup.<.<s | f(?)], and we simply write ||f||in case @ = Oand b = 1.

Note that T, lies entirely below the line A7 if and only if ||I',/I]| = 2 a.s. for
each n. We can not make I, lie entirely above any line through the origin with
positive slope since I,(t) =0 for 0 <t < &,;; however I, lies entirely above
the line //2 on the interval [£,,, 1] if and only if ||//T",J} < 4. Our main concern
in this paper is bounding I', between straight lines through the origin. More
precisely, we will characterize upper and lower class sequences for the random

variables ||I",//|| and |[7/T",[}; .
“In probability upper and lower linear bounds” are well known (see Robbins
(1954), Chang (1955) and Renyi (1973)); and see Shorack (1972) for applications.
It is known that “a.s. linear bounds” do not exist (see Wellner (1977a)); also
see Wellner (1977a) and (1977b) for applications of “a.s. nearly linear bounds.”
Discussion of our theorems will be facilitated by contrasting them with the

behavior of &,, and £,, that is set forth in Theorem 1.

THEOREM 1. Let k = 1 be a fixed integer.
(i) (Kiefer). If c,™\, then
c k

P(n¢,, <c, i.0.) =0 . e <L
according as n
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(ii) (Robbins and, Siegmund when k = 1). Let c,/n\, and suppose either c, /
orliminf, _c,/log,n > 1. Then

k
P(n c, i.o)=0 o S exp(—c
(e > s ) according as L n P(=¢) <o
=1 = .
THEOREM 2. Let ni, /. Then
. 1
P(|C /1| = 4, i.0)=0 e
(/11 = ) according as L= ni, <
=1 = o0 .

Note that ||I',//|| = max {i/(n§,;): 1 < i< n}is = 2, if né,; is < ¢, = 1/4,.
Comparing the series criteria of Theorem 1(i) with Theorem 2, it is seen that
small values of £,, control large values of |[I',/I||. Note however that ||[",/I|| and
(n€,,)~* have different limiting distributions.

Theorem 2 yields the known result lim sup, ., log ||T,//||/log,n = 1 a.s. In
fact, log 2, = 372} log,n + 7 log, n, with p > 2, is upper class or lower class
for log ||I',/I|| according as = > 1 or = < 1.

THEOREM 3. Let A,/n"\, and suppose either 2, / orliminf,_ 1,/log,n > 1.
Then

. w Ay
by = A 1.0.) =0 Dy 2

P(II/T )R, = .
according as n

exp(—4,) < o

:1 = o0 .

Note that [[f/T',|k = max{nf, ./i: 1 <i<n}is = 2,ifn,is = ¢, = 4,
(Here, and in the following, &, .., = 1 for all n.) Comparing the series criteria
of Theorem 1(ii) with Theorem 3, it is seen that large values of £,, control large
values of ||//T',|| . Note however (see Renyi (1973)) that /Tt and né,; have
different limiting distributions. )

Theorem 3 yields the known result lim Sup,_.. |[/T,|it, /log.n = 1 a.s. In
fact, 1, =log,n + 3 log,n + 372} log, n + 7 log, n, with p > 4, is upper class
or lower class for ||//T',||; accordingast > lorz < 1.

2. Proofs. Robbins (1954) showed that for any n > 1
(1) Pl =z2)=1/2 forall 2>1.

ProOF OoF THEOREM 2. Suppose 3] (n4,)"* < oo. Let n, = int (a*) where a >
1 is fixed, and where int (+) denotes that greatest integer function. Note that

(@) 0 > Jitns Dty (M) Z T (e — me_))(md,,) 7
= constant - 337, (4,,)7".

Let 4, = [max {||I',/I||: n, < n < m,,,} = 2,]; and note that monotoneity of nl",
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and n1, implies _
P(A) = P(Me||Uay 11 2 1 4n,)
= nk+1/(nklnk) by (1)
~ ald,,
so that (a) yields Y3 P(4,) < oo. Thus P(4, i.0.) = 0 by Borel-Cantelli; and
hence P(|T,/I]| = 4, i.0.) = 0.
Suppose }; (nd,)™* = co. Now

UTW/1] = 2] = [sup{Zici fo,a(6:)/1: 0 < 1 < 1} = na,]
S [sup {fo,n(6)/1: 0 < 1 < 1) = n2,]
= [§, = (n2,)71] -
Now the events [§, < (n4,)7'] are independent, and the sum of their proba-

bilities equals ) (n4,)™' = oo. Thus Borel-Cantelli yields P(¢, < (n4,)”!
i.o.) = 1; and hence P(I',/I|| = 2, i.0.) = 1. ]

Before proving Theorem 3, we need the following probability bound. For
all n = 1 we have

) P(IT . = 2) < 164e~*  forall 2> 1.

The probability on the left-hand side of (2) is given in formula (17) on page 34
of Chang (1964); and for 2 > 2 Chang’s next to the last formula on page 17
yields the bound 2¢(ede~*)¥, which when summed yields the right-hand side of
(2). Note that (2) is trivial for 1 < 1 < 2.

ProoF oF THEOREM 3. Suppose 3.7 (4,}/n)exp(—4,) < co. Let n;=
int (exp(aj/log j)) for j =2 with @ > 0 fixed. Let 4, =[M, = 1,] where
M, = |IJT,[;, = maxX,;c, (n€, ,/i); and let B, = (M, = (n;/n;11)4, 1] Note
that
3) M,[n = max,_;,.(§, :41/f) isa , functionof n.

To see this, suppose &,,, falls between &,, and &, ,.,,; then

| | |
| [ | |
0 E»l ‘EM e énk T 5n,k+1 ce emt 1

n»+1

€n+1,i+1 — En,i+1 fol' 1 S l S k _ 1 s €n+1,k+1 — Eu-{-l < en,k-l-l
i i - = k kK = k
and

§n+1‘i+1 Eni

e Eml
i i i—1
so that (3) is established. From (3) and 1,/n \ we get
Ufd,in, < n<npcU({[Mn= AniifMiealiny S n <y} = B,

Thus to establish P(4, i.0.) = 0, it suffices to show Y7 P(B,) < co. Let d, =
A, N 2log,n. Then

(b) dn\,, d,— o and 2 (d}n)exp(—d,) < oo

A

for k+1<i<n
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since d,’exp(—d,) < 2,7exp(—4,) + (2log, n)* exp(—2 log,n). Since B; C
D, = [M,,j = (n;/n;y,) d,,jﬂ], it suffices to show that Y3 P(D,) < co. Now
50 P(D,) S Tea 16(n;/n,.) d, exp(—d,, Jexp (1 — L) d, )
i+l
by (2)
< (Constant,) ¥;7.,4d, exp(—d, ) asin (2.45) of [6]
< oo in complete analogy with Lemma 8 of [6] and using (b).

This completes the convergence half of the proof.
Suppose 317 (4,/n) exp(—4,) = oo. Note that ||[I/T',[}; = n,,, and Theorem
1(ii) shows that P(n§,, = 4, i.0.) = 1. ]

REMARK. Now {n§, ,,,/i: 1 < i < n}is a reverse submartingale. This yields
P(||]/F,,||}fn1 = 2) < inf,,, E(exp(rné,,))/exp(rd) < 142* exp(—4)

for all 2 > 1. This will only yield P(|f/T,|} = 4, i.0.) = 0 in Theorem 3 in
case )7 (4,%/n) exp(—4,) < oo.

ProoF oF THEOREM 1. (i) See Kiefer (1972). (ii) See Robbins and Siegmund
(1971) for the case k = 1. See Frankel (1976) for a statement of this result
when k > 1 and ¢, / oo; Frankel gives references to his 1972 thesis for a proof.
It would appear that Frankel’s technique is similar to that of Wichura (1973);
using diffusion processes and speed measure, Wichura establishes some results
very closely related to the present ones.

The authors’ original version of this manuscript included a very long proof of
Theorem 1(ii); it is available upon request. It uses only elementary techniques,
and is a straightforward generalization of the proof of Robbins and Siegmund;
the details are quite heavy. []

3. The case of arbitrary df’s. Suppose X,,, ---, X,, are independent with
completely arbitrary df’s F,, ..., F,, on (—oo, c0). Let F, =n"'31F,;
denote the average df, and let ¥, denote the empirical df of the observations.

THEOREM 4. Letnd, /. Then ¥.z_, (nd,)™*< oo implies P(||F,/F,||= 4,i.0.)=0.
Proor. By Theorem 1.1.1 and Corollary 1.3.1 of van Zuylen (1976) we have
4) P(|F,/F,|| = 2) < 27%/32 forall 2> 1.

We can now just recopy the proof of Theorem 2, except that an appeal to (4)
replaces the appeal to (1). [J

We did not generalize Theorem 3 to the present case. It is possible to obtain
an exponential bound in place of the bound in van Zuylen’s equation (1.1.4)
by applying a binomial exponential bound to the probability P(3]7_,z, > n —
j + 1) of his proof. However, the resulting bound is not as strong as (2); and
so we omit the resulting weak generalization of Theorem 3 that we can prove
in the present case.
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