The Annals of Probability
1978, Vol. 6, No. 5, 885-890

ON THE INDEPENDENCE OF VELOCITIES IN A SYSTEM
OF NONINTERACTING PARTICLES

By OrLAv KALLENBERG
University of Goteborg

Consider a system of noninteracting particles moving at constant
speeds in a Euclidean space. It is shown that, if at two or more epochs
the velocities are independent of the positions and are independent and
identically distributed, then the positions must be given by a Cox process
of a very special structure.

1. Main result. Consider a particle system in R* (d e N) which is locally
finite at each time, and let the positions at time O be given by a point process
§. Further suppose that each particle moves with constant speed, and that the
velocities at time O are independent of the positions and distributed according
to some common nondegenerate probability measure ;2 on R¢. At first sight,
one might expect the velocities to remain independent and identically distributed
independently of the positions, but it turns out that the independence will nor-
mally be destroyed. In fact, we shall prove that independence with a common
velocity distribution at two or more epochs implies that § is a Cox process (cf.
[2]) of a very special structure. This strengthens a result by Thedéen ((1967),
Corollary 5.1) (cf. Theorem 5.3 in [3]), who draws an equivalent conclusion
under the additional hypothesis of time stationarity of the process of positions
and velocities.

For a precise statement of our result, let S be the support of g, and write H
for the closed additive group generated by S-S. Note that H has more than one
point since ¢ is nondegenerate. The positions and velocities of the particles at
a fixed epoch are most conveniently described by a point process in the phase
~ space R* = R* X R* = {(p, q)}, where p and ¢ denote the velocity and position
of a particle. Itis sometimes helpful to consider the evolution of the system as
a line process in the space-time diagram R*** = R* X R = {(g, t)}. Note that a
time shift corresponds to a p-preserving linear shear in the phase space and to
a translation in the space-time diagram.

THEOREM. Let t = O be arbitrary but fixed. Then the velocities of the particles
at time t are independent of the positions and mutually independent with a common
distribution, iff & is a Cox process directed by some random measure 7 which is a.s.
tH-invariant, apart from a factor of the form e with r e R9.

Note that, if the hypothesis of the theorem is fulfilled for two rationally
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independent values of ¢, then e~"iy(dg) must be a.s. .~°(H)-invariant, where
Z#(H) denotes the linear space spanned by H. In particular, e="?(dq) is a.s.
proportional to Lebesgue measure whenever ~(H) = R*, which occurs when ¢
is truly d-dimensional. In this case it is easily seen by looking at the shears in
the phase space that time stationarity of the process of positions and velocities
is only possible when r = 0. Thus Thedéen’s result follows from ours:

COROLLARY. Suppose that y is truly d-dimensional. Then the system of positions
and velocities is time stationary iff & is a mixed Poisson process.

Various aspects of the asymptotic behavior of noninteracting particle systems
(or the corresponding line processes) have been examined in the literature (see,
e.g.,[1,7,8,9]), usually under the assumption of initial independence between
positions and velocities, a rather dubious condition in view of our theorem.
The case of general dependence will be discussed in [5].

The proof of our theorem will be given in Section 3 below, after some auxil-
iary results of some independent interest have been presented in Section 2. For
the sake of brevity, we refer to [2] for general terminology and notation.

2. Random thinnings and displacements. Our first result applies to point
processes on an arbitrary locally compact second countable Hausdorff space.
Here and below, a slight abuse of language will be convenient. We shall say
that ¢ is a Cox process directed by 75 or an a-thinning of », if its distribution is
that of a Cox process or an a-thinning respectively. Thus such a phrase says
nothing about the joint distribution of § and .

LemMMA 1. Let &, be an a,-thinning of 0, for ne N, and suppose that two of the
following statements hold.

(i) &, —4 some & +,0; (ii) », —, some y =, 0; (iii) a, — some a > 0.
Then the third statement is also true, and & is an a-thinning of 7.

Proor. If £ is an a-thinning of 7, then the corresponding Laplace transforms
L, and L, are related by

©) L(f) = L(—log[1 — a(l — e7)]),

(cf. [2], page 9). Thus the implication (ii) 4 (iii) = (i) with the asserted con-
nection between &, 7, and a follows immediately from Theorem 4.2 in [2], even
without the assumptions » #,0 and @ > 0. (This part of the lemma is actually
a special case of Theorem 8.1 in [2].) To prove that (i) 4 (ii) = (iii) suppose
that a, — a along some subsequence, and conclude as above that (1) holds. But
this determines a uniquely, provided 7 ;0. Finally suppose that (i) and (iii)
hold. If y, —, 7 along some subsequence, then it is seen as above that § is an
a-thinning of 7, and since a > 0, this determines P»~' on account of Corollary
3.2 in [2]. It remains to prove that {5,} is relatively compact in distribution.
But if it wese not, then neither is {£,}, since lim infa, > 0. ]
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We shall write & ~ » whenever £ is an a-thinning of 7 or conversely, for some
a > 0. Note that ~ is an equivalence relation. By Lemma 1, the equivalence
is persistent under convergence in distribution towards nonzero limits.

We shall further need the following extension to the lattice case of Dobrushin’s
theorem, (cf. [8] as well as Theorem 6.4.3 in [6]). Leté&, x, Sand H be such as
in Section 1, and let .7, denote the o-field of those events which are invariant
under H-translations.

LEMMA 2. Let & be H-stationary, and suppose that n = E[§| 7] is a.s. locally
finite. Further suppose that S C H, and let &, &,, - - - be obtained from & by succes-
sive independent displacements of the particles according to the distribution yt. Then
&, tends in distribution to a Cox process directed by 7).

Since this result may be established by exactly the same arguments as those
employed in Section 1 of [4], we omit the proof.

We next state a simple continuity property for random displacements, (which
extends with the same proof to general cluster fields).

LeMMA 3. For ne N U {oo}, let &, be obtained from & by independent displace-
ments of the particles according to some distribution p,. Further suppose that the
u, have uniformly bounded supports, and that p, —,, p.,. Then§, —;¢&..

ProoF. By conditioning, we may assume that ¢ is nonrandom, and by a well-
known theorem of Skorohod, we may further assume that the displacements
converge a.s. Since the boundedness assumption implies that only finitely many
atoms of £ can contribute to {§, B} for every bounded set B, it follows easily
that £, —, £, a.s., which implies the asserted convergence in distribution. []

For the last result, let the subscripts a and ¢ denote the operations of a-thin-
ning and independent displacements according to u, respectively.

- Lemma 4. (&,), =4 (§,)a-

Proor. By Proposition 5.2.4 in [6], it is enough to consider the case when
& = d,. But then the statement follows trivially from the independence between
thinning and displacement. []

3. Proof of the main result. Assume without loss that r = 1 and & #,0,
and further that S ¢ H. (If S ¢ H, we may apply the statement for S < H to
the process defined by using d_, ¢ instead of p for some fixed s S.) Let v be
the distribution of velocities at time 1 (which need not coincide with y), and
use the subscripts a and ¢ as in Lemma 4.

Because of the independence assumption, the position processes of particles
at times 0 and 1 and with velocities in B are distributed like §,; and (§,),
respectively. Hence by Lemma 4, writing By for the restriction of ¢ to B and
assuming that 4B > 0,

(ép)vB =d (EpB)Bp//tB =a (éBy,’/zB)yB ’
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which proves that &,,,., ~ §, whenever B > 0. For any se S, let B {s}
boundedly, and conclude from Lemma 3 and the remark following Lemma 1
that d, x § = E% ~ §&,. Since se S was arbitrary, this proves that

(2) 0,xE~&, he H,
(3) E#""’f‘

Let us first assume that d, « § =, & for all he H, i.e., that § is H-stationary.
Reversing time if necessary, we may further conclude from (3) that §, =, ¢,
for some a < 1. By Lemma 4 we get forallne N

Em = (§)um-1 =4 (Ea)un—1 =4 (En-1)a »
(¢~ denoting a convolution power of r), and hence by induction
(4) Ep" :déa"’ neN.

But by Lemma 2, the sequence on the left is relatively compact in distribution
iff » = E[£|.#,] is locally finite, and in that case

(5) E‘u" —_)df] ]

where 7 is a Cox process directed by 5. Since §,» —, 0 for a < 1, (5) is con-
sistent with (4) only if @ = 1, and in that case (4) and (5) yield & =, %, as
desired.

Next suppose that £ is an a-thinning of 9, x & forsome he Hand a < 1. By
iterating this result, it is seen that & is an g"-thinning for each ne N, and so it
follows by Corollary 8.5 in [2] that & is a Cox process. Then so is the phase
space process &* of positions and velocities at time 0, and if £ is directed by the
random measure 7, than {* is directed by » X ¢. (There are many ways to see this,
one being to verify from the form of the Laplace transforms (cf. [2], page 8) that
an f-thinning of ¢ is a Cox process directed by f7, even with f interpreted as a
function on R¢. It follows that P{¢*B = 0} = Ee~"*#? for arbitrary Borel sets
B — R*, which is enough by Theorem 3.3 in [2].) As pointed out above, the
state (£,)* of the system at time 1 is obtained from §* by a p-preserving linear
shear ¢, and since measurable mappings preserve the Cox structure, it follows
that (§,)* = §*¢~" is a Cox process directed by (y X #)p~'. Applying the same
argument as above to £*¢~, it is seen that, if 5, denotes the directing random
measure of the Cox process ¢, then

(6) (71X e =7, Xv.
We may finally conclude from (2) that, for some positive constants a,, k€ H,
(7 0 %7 =4 a7, he H.

Now H = H, X H,, where H, and H, are isomorphic to R¥ and Z! for some
k,leZ,_ withl £ k 4+ | < d. For convenience of notation, we assume without
loss that the k -+ [ first coordinate vectors &, ---, &,,, of R? span H, and H,.



NONINTERACTING PARTICLES 889

Let r be the vector in R? with components
(8) rj=—logahj, j=1,-- k+1; Fepigr= -+ =r; =0,
and define the random measure { on R? by { = e~"%y, i.e.,
{(dg) = e~"(dg) , geR*.
By (7) we then obtain for any he H
0,8 =0, (e ") = e IMG, xy =, e " Mg, 9 = q,e™{,
SO
(9 by x L =g aent = /L, heH.

Now @,/ =1 for h = h,, ---, h;,, by (8), and furthermore a,” is continuous in
k and satisfies a,,, = a,a,’, so (9) reduces to d, x { =,{, he H, which means
that { is H-stationary.

Since ¢(p, 9) = (p, 9 + p) and hence ¢~Y(p, q9) = (p, g4 — p), is follows from
(6) that

(X plo™t = (77 X p)p™' = e (n X p)p~t = e (y, X v)
= (e7"p,) X (e?v),

so (§ X p)ptis like (n X p)p~' a product measure. Here the factor e"”v may
be unbounded, but we may then consider the measure ({ X Cu)e~?, which ad-
mits a similar factorization with a normalizable second factor, provided C is
bounded with x#C > 0. Letting & be a Cox process directed by { x Cp, it is
seen that  fulfills all the requirements imposed on £*, and that in addition
J is H-stationary. We may then conclude from the first part of the proof and
from Corollary 3.2 in [2] that { is distributed like an a.s. H-invariant random
measure. Since the set of H-invariant measure is measurable, this shows that {
itself is a.s. H-invariant.

This completes the proof of the necessity. To prove the sufficiency suppose
that & is a Cox process directed by y = e"?{, where { is a.s. H-invariant. Then
a.s.

(n X )™ = (€8 X p)p™" = e"""PL(dg — p)(dp) = e"'{(dq)e™""(dp) ,

since {(dq — p) = {(dq) for p e H and outside a fixed null-event. Moreover, the
measure e~"?p can be normalized, say to v, since £, is locally finite by assump-
tion. Hence the velocities at time 1 are mutually independent and independent
of the positions with v as a common distribution. []
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