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SOME LOCAL PROPERTIES OF GAUSSIAN VECTOR FIELDS!

By Jack Cuzick
Columbia University

Formulas for the Hausdorff dimension of the graph, image, and level sets
of Gaussian vector fields are given under general conditions which allow for
different local behavior of the components and for dependence among them.
Conditions for the field to have a local time, to hit any fixed point, and for the
image to have positive Lebesgue measure are given, and relations between these
properties are discussed. Applications of the results are given and include a
discussion of when differentiable planar fields have critical points at fixed
levels.

1. Introduction. In this article, we consider dimension and other local proper-
ties of Gaussian vector fields. There has been considerable recent interest in the
Hausdorff dimension of the image, graph, and level sets of Gaussian fields, and we
refer the reader to Adler (1977) for background and further references. Our results
on dimension generalize those of Adler by allowing different local behavior of the
components of the vector field and also by allowing dependence among compo-
nents. The results depend on the determinant of the covariance matrix of two
neighboring vectors. This determines the maximum value of the joint density
function of the vectors, which is the natural quantity for studying many local
properties of general (non-Gaussian) stochastic vector fields. When the dimension
of the image set equals the dimension of the range space, we give conditions under
which any fixed point in the range is hit with positive probability. The answer
appears to be linked to two other local properties, which we discuss briefly. In
particular, we give conditions under which the field will have a local time. In the
last section, we consider some examples which make use of the above machinery,
including a study of the level sets of isotropic mappings from R? — R. Conditions
are established for the presence or absence of critical points at fixed levels which
improve a result of Belyaev (1970) in this setting. In the former case, the dimension
of the critical points at a fixed level is considered, but the question is not fully
answered.

2. Notation and preliminaries. Let X(t) = (X,(t), - - - , X,(t)) denote a mean
zero Gaussian vector field from R — R?, or briefly, an (¥, d) field. Although it is
not essential for many of the results, to simplify notation we shall always assume
that X(t) has homogeneous increments. Denote the incremental variance of X; by
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0?(t) = E(X,(t) — X,(0))* and say that X; has index q if
a; = sup{a : im supy_lt|"%o,(t) = 0}
= lnf{a : lim inf|t|—»0|t|~aoi(t) = W}
where | - | denotes Euclidean distance. Of course we must have 0 < o; < 1. We
shall usually restrict the domain of X to the unit cube I, =[0, 1} and for
simplicity shall assume that all g,(t) are bounded away from zero on I} = [—1, 1}V
for t bounded away from the origin. It is only essential that this be true for some
neighborhood of the origin.
We shall also need to put some restrictions on the type of dependence between

coordinates. In particular we shall need the following two conditions: there exists
¢ > 0, such that for all t € I} we have

det Cov(X(t) — X(0))

(lA) H‘L,o,?(t) >¢g Or
det Cov(X(t), X(0))
® TACORE

where det Cov(Y) denotes the determinant of the covariance matrix of the vector
Y. Since det Cov(X(t), X(0)) = det Cov(X(t) — X(0), X(0)) < det Cov(X(t) — X(0))
det Cov(X(0)), (1B) is a stronger requirement than (1A), and we shall give a natural
example below where (1A) holds and (1B) fails. However, these conditions are
often satisfied, for example when coordinates are independent. The examples of
Section 5 illustrate a method for verifying them more generally.

In the sequel, we shall use dim to denote Hausdorff dimension, and Im X and
Gr X to denote the image set and graph of (X(t), t € I), respectively.

3. Dimension of the image and graph.

THEOREM 1. Let X(?) be an (N, d) field with coordinates arranged so that their
indices satisfy

) 0<a, <a:-- <ay
If (1A) holds then
d - .

3) dim(Im X) = mm( o N 2,~=01(ad a,))

d

d - .
@  dim(GrX)= min( NA 2t ) yyse - a,.))
d

=dim(ImX) if dim(ImX)<d
=N+3_(1-a) i dimImX)=d

Proor. Clearly dim(Im X) < 4. From Yadrenko (1971) X; is Lipschitz of order
B: < @; and from (2) we can assume 0 < B, < B, < - - - < B,. Split I into 2™
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“cubes” with side 27". By the Lipschitz condition, the image of each cube is
contained in a rectangular solid with sides proportional to 2~"2. Each of these
solids can be divided into 27=%-1(A~A) cubes of side 2~"%. Thus the dimension of
the image is less than the infimum of all A such that

2Nn[2n2‘f-|(ﬁd—&)] 2=nBA _ (),

This is true for all

N+ 3B B)

A>
Ba

Letting B; — a;, we have that

N+ 3% - a
dim(Im X) < 2'—‘;(““ %) |
d

To obtain lower bounds for the dimension, we use the standard capacity argu-
ments as found in Taylor (1955), Kahane (1968), Orey (1970), and Adler (1977). To
show that Im X supports a measure of finite A-capacity a.s. it is enough to show
that :

(5) IS, E IX(t) — X(s)|~* ds dt < co.
We will show the integral (5) is finite for all A < min(d, (N + =9 (e, — ,))/ ).
Since X has homogeneous increments, we need only establish that
-A/2
(6) [RE[(X,(®) = X,(0)) + - - - + (X(0) — X,0))] " dt < 0.

Now make the change of variables Y,(t) = o, (t)(X;(t) — X;(0)), i = 1,- - -, d. By
(1A), we have that det Cov(Y(t)) > &, so that Y(t) has a bounded density and it is
enough to establish that

(7) f[;,fRd[(ylol(t))z 4+ -+ (ydod(t))z]_}‘/z dy dt

is finite. By assumption the o,(t) are bounded away from zero for t away from the
origin so that the integral on I} need only be considered over I,° = [—8§, 81" for
any § > 0. Also

o(t) > K|t|* for |t| <8 forsome § >0,K >0
with B; > a; fora; < 1and B, = 1 whena; = l,and B, < B, - - < B; < 1. Thus
(7) can be replaced by

- — _pA\271—A/2
@) et ™ r yE+ (altlBEY - (plt P P) ] T dy at
The integral dy, can now be estimated and is less than a constant times

- —8,\2 —g\271(—A+1)/2
Jrolt] w'fk"-'[(y2|t|ﬁ2 BY 4o+ (vt ) ] dy, - - - dy, dt.

Now iterate this argument for dy,, - - -, dy,_, and assume A <d so that the
integral dy, is finite. Then (8) is less than a constant times

[ alt| A BB D - (B B )(A+d=D) gy
N
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and this is finite if A <(N + 29_,(B, — B,))/B.. Letting B,la; gives the result.

To prove (4), the same Lipschitz argument as for (3) gives
dim(Gr X) <(N + 2?_,(a; — @;))/a,. Using cubes of side 27" to divide up the
graph gives dim(Gr X) <N +29_,(1 — a;). When dim(Im X) < d, since dim(Gr X)
> dim(Im X), we see that dim(Gr X) = dim(Im X) =(N + Z%_,(a, — ;))/a, <
N + 2¢_,(1 — a). When dim(Im X) = d, the dimension of the graph can be
larger. A use of the capacity argument and similar manipulations as above on the
integral

f1Nf1~E[ 1X(t) — X(s)]* + |t — Slz]_)‘/2 ds dt
will verify that dim(Gr X) > N + 2_,(1 — a). ]

i=1

4. Local properties when dim(Im X) = d. When the image set has dimension
d, it is of interest to consider the following three properties:

(A) Im X has positive Lebesgue measure in R a.s.,
(B) X(t) hits any fixed point u € R with positive probability,
(C) X(t) has a local time.

These properties are related. Property C implies A for any function. For sample
continuous homogeneous Gaussian fields (i.e., d = 1), 4 and B are equivalent. A
Fubini argument shows that a weaker form of 4 is equivalent to a weaker form of
B:

LemMMA 1. P(X(t) hits u, t € I) > O for all u in some set of positive measure <
P(m(Im X) > 0) > 0. (Here m denotes Lebesgue measure in R.)

COROLLARY. P(X(t) hits u) =0 ae. u & P(m(ImX) =0) = 1= X does not
have a local time.

It seems likely that P(m(Im X) = 0) = 0 or 1 and that 4, B and C are equiv-
alent, although the last assertion is open even in the case of stationary Gaussian
processes.

We now give some necessary and some sufficient conditions for X to hit points.
Note that when 2¢_,a; > N, dim(Im X) < 4 so that m(Im X) = 0 a.s. and by the
corollary to Lemma 1, X(t) does not hit a.e. u a.s. A direct argument allows us to
strengthen this to all u.

THEOREM 2. Let X(f) be a homogeneous (N, d) field with det Cov(X(0)) > 0. If
>9_,a; > N, then P(X(t) hits u) = O for all u.

PrRoOF.

P(X(t) =u some t€E )

9) < 2N"P(X(t) =u some t€[0, 2_"]N).
Each X; is Lipschitz of order 8, < o; and we can take =9_, 3, > N. Thus for large n
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(9) is less than
2YP(1X,(0) — u| <278, i=1,---,d)

~ 2V ZBy(u) >0 as n—> oo.
where ¢(u) is the density function for (X(0)).

THEOREM 3. Let X(t) be an (N, d) Gaussian vector field (in general nonhomoge-
neous). If

(10A) [ 1./ 1, det Cov(X(t) — X(s)) "7 ds dt < oo,

then X(t) has a square integrable local time. If X(t) is homogeneous and either (1A)
and (10A) hold or

(10B) [ det Cov(X(t), X(0)) 7 dt < oo,

then X hits any fixed point w with positive probability for t € I,,. If X is ergodic, then
with probability one there exists (a random) t € R" such that X(t) = u.

Proor. The proof of the first assertion is a straightforward generalization of
Berman’s (1970) approach in the case of processes. It consists of establishing that
the Fourier transform of the occupation time measure is square integrable and is
not given. To prove the second part, we use an idea of Klein (1976) and exploit the
kernel space representation of L,(X(t), t € I,). The identification X(t)< R(., t)
yields a Hilbert space isomorphism of L,(X(t), t € I) with inner product gener-
ated by ECX(s), X(t)> and the kernel space H(R) spanned by R(., t), t € I,, with
inner product generated by <R(., t), R(., 8))yry = tr R(t, 5). Note that the mem-
bers of H(R) are d X d matrix functions. Since X(t) is homogeneous, it has a
spectral representation X(t) = fgre™ d§(A) and X,/ (t) = [ pe™ dEA) will ap-
proach X(t) uniformly in q.m. as M — c0. Our assumptions imply that det
Cov(X(0)) > 0 so that det Cov(X,,(0)) > O for M large enough. Further, X,,(0)
corresponds to a matrix R,(., 0) € H(R) which has analytic components. Now
decompose elements in H(R) into their projection onto the subspace spanned by
Ry(., 0) and its orthogonal complement. Upon returning to L,(X(t), t € Iy), we
have

X(t) = ¢()X,,(0) + Y(t)

where Y(t) is independent of X,,(0), and ¢(t) = tr(R,,(t, 0)) is analytic, positive in a
neighborhood N of the origin and V ¢(0) = 0. The same is true for Y(t) = (¢(t)) ..
Now let

Z(t) = Y(O(X(t) — uw) = X,,(0) + Y((Y(H) — u).

If we can show that

(11) S/ det Cov(Z(t) — Z(s)) " ds dt < oo
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for some neighborhood N of 0, then Z(t), t € N, will have a local time, implying
that Im(Z(t)) and thus Im(y(t)(Y(t) — u)) will have positive Lebesgue measure a.s.
Since X(t) hits u is equivalent to Z(t) hits 0 which in turn is equivalent to
X,,(0) € Im(Y(t)(u — Y(t))), the theorem will be true if (11) holds. When (1A)
holds write
_ Xi(t) — Xi(s) L
Y,(t, S) - O}(t _ S) ’ 1= 1, ’ d

and note that the eigenvalues of Cov(Y(t, s)) are all greater than or equal ¢ > 0.
Now Cov(Z(t) — Z(s)) = Cov(y(t)X(t) — X(s)) + X(S){(t) — ¥s))) and since ¢ is
analytic and V ¢(0) = 0, we can make

tr Cov(X(s)(¥(t) — ¥(s))) &
YOI 07t — 5) 2
by restricting s and t to a sufficiently small neighborhood of the origin. It follows
that det Cov(Z(t) — Z(s)) ~ det Cov(X(t) — X(s)) and (11) holds by assumption
(10A). To prove (11) under condition (10B), note that det Cov(Z(t) — Z(s))
det Cov(Z(s)) > det Cov(Z(t), Z(s)) = Y*(t)y*(s) det Cov(X(t), X(s)). [

When X(t) is differentiable in q.m. and satisfies (1A), it has a local time and hits
points when N > d. When N < d, Im X does not have positive Lebesgue measure
in R“ and cannot have a local time. The case N = d requires separate attention
and is handled by the following theorem.

THEOREM 4. Let X(t) be a homogeneous (N, N) field whose first order partial
derivatives exist in q.m. If the support of the determinant of the spectral measure F(\)
of X is not contained in a subspace, then X(t) has a local time and will hit any fixed
point u with positive probability. The condition on F(N) holds, for example, if F has an
absolutely continuous component which is positive definite on a set of positive measure.

Proor. Let JX(t) denote the Jacobian of X at t. We have that E|det JX(t)| <
oo so that [, |det JX(t)| dt exists a.s. and from Federer (1969, page 241) we have

[rldet JX()] dt = [xvIO(X'(u) N Iy) du

where J(° is counting measure (Hausdorff zero dimensional measure). If the set
C = {t: det JX(t) = 0} has Lebesgue measure zero a.s., then the argument of
Geman and Horowitz (1973, Theorem 1) can be used to see that for a.e. u,
X~ ') = {t,- - - ,t,} is finite and

(12) a(m) = Ixcye(u)f 1, nx-1wldet JX(@®)| = dIC)
=3"_|det JX(t,)|"! for w & X(C)

is well defined and is a local time. (See also Federer (1969, page 244)). It remains to
establish m(C) = 0. If not, then

P(m{t: detJX(t) =0} >0) >0
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so that

JI T detsxt, ) = 0} @t dP(w) >0
and a Fubini argument gives

[P(det JX(t) = 0) dt >0

whence P(det JX(t) = 0) is a positive constant by homogeneity. For det JX(t) to
be zero, the gradient vectors (V X;(t), - - - , V Xp(t)) must all lie in a subspace of
dimension < N — 1. Since X(t) is Gaussian, this has probability one or zero
according to whether or not
(13) det Cov(V X (t), - - -, V Xp(t)) =
To show that (13) does not hold, we show the N? X N? matrix 4 = (g, ; ;) With

ailizfljz = E( a_t X’z(t) le Ale(t))

= f}\HAJl dEzlz(A)

is positive definite where F;; are the components of the spectral measure F. For
any complex numbers Xiphh=1-,Nip=1--+,N,

(14) 211 2J|Jz '1’2za'|'21|12
’ jszN(21|>\l '1'2)( 'y .I| Jl.lz) E;J'Z(A)'

Since X, A x; ;. is zero only on a subspace and F is nonnegative definite a.s.
(Rozanov (1967)), our assumptions guarantee that (14) is positive. This completes
the proof of the fact that X has local time.

To show that X(t) hits points we use the Hilbert space methods of Theorem 3 to
write X(7) = ¢()X(0) + Y(t) where X(0) and Y(t) are independent and ¢(t) =
tr R(t, 0) is continuously differentiable and V ¢(0) = 0. Thus

_ | det JX(0)

X(t) — u)
det J ( —_—— = >0 as.
¢(t)  Jli=o $(0)
so that Im(&;)(?;—l—l) has positive Lebesgue measure and the proof is completed

as with Theorem 3. []
To get results on the dimension of the level sets, we are forced to strengthen our
dependence condition (1A).

THEOREM 5. If X(t) is a homogeneous (N, d) field and (1B) holds, then for almost
allu € R?

dim(X~'(w)) = max(0, dim(Gr X) — d)
=0 if dmGrX<d
=N-3",a if dmGrX>d
with positive probability.
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ProoF. The proof follows Adler (1977) closely and is not given.

REMARK. In Theorems 4 and 5, if we replace the domain by R" and assume X
is ergodic, the results will hold with probability one.

5. Some examples.

(@) If X(¢) and Y(¢) are independent stationary Gaussian processes, each with
index a, then the dimension of the range of the vector process is min(a ™', 2).
When a <3, the vector process is a space filling curve and will hit any fixed point
with positive probability. Also dim X ~!(u) = 1 — 2« for a.e. u € R? with positive
probability.

(ii) Let X(#) be an ergodic stationary Gaussian process with index a and assume
that it is locally nondeterministic (cf. Berman (1973) and Cuzick (1977)). Assume
thats,i=1,- - -, d, are distinct and let X(¢) = (X(t + ¢,), - - -, X(¢ + t,)). Then

by applying Theorems 2 and 3 to X(#) we obtain that for any u = (u;, - - -, u,)
PX(t+t)=wu,i=1,---,d some t€R)=0 if a>d’!
=1 if a<dL

In particular the probability of two zeros at a specified separation is unity if a < 3.

(ii)) In this example we consider the level sets of homogeneous (2, 1) fields.
Belyaev (1970) has shown that when X(t) is a twice continuously differentiable
homogeneous Gaussian field, then the level sets X~ !(#) N I are a.s. a finite union
of nonintersecting rectifiable curves. When V X(t) does not exist, under a few
additional assumptions Adler (1977) has proven that dim X~ '(x) > 1 so that the
“contours” are very badly behaved. Adler’s results also establish that when V X(t)
exists in g.m. then the dimension of the level sets is one. Thus it is of interest to
study the structure of the level sets when X possesses one derivative but not two.

Belyaev’s method consists of showing that there are no critical points at fixed
levels. The existence of a critical point at level u is equivalent to the vector field
(X(®), V X(t)) hitting the point (, 0). We shall make use of Theorems 2 and 3 to
determine when this event occurs. For simplicity we assume that

X(¢) is an isotropic (2, 1) field, and with V X = (X, X,) existing, and
(15) o%(t) = Var(X,(t) — X,(0)) is such that
o%(t,, 0) is regularly varying at the origin with exponent 2a, 0 < a < 1.

Our basic estimate is provided by the following lemma.

LemMMA 2.  Under (15), we have that
(16)  det Cov(X(t) — X(0), X,(t) — X,(0),X,(t) — X,(0)) ~ [tPo*(t)
(17) det Cov(X(0), X(t), X,(0), X,(t),X5(0), X,(t)) ~ [t/’°(t)
where f(t) ~ g(t) means that

0 < lim inf,_“,% < lim supt_,o% < 0.
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Before proving Lemma 2, we require two further lemmas. We shall use the
spectral representation of isotropic correlation functions, which for planar fields
yields the representation (Cramér and Leadbetter (1967, page 168))

p(t) = EX(0)X(t) = [5o(|t]A) dF(A)
where J; is a Bessel function.

LemMMA 3. Under (15),as t >0

(i)
|t|20 Z(t) __)wKa - I(¢)}\—(3+2a) d}‘
1

where ¢ = arctan(t,/t,) and
K (¢) = %fﬁf%"cosz(ﬂ + ¢)(1 — cos(A cos )N~ +29 4g dA.
For 0 < a < 1, K (¢p) is bounded away from zero and infinity for all ¢.
PrOOF. Let t* = (#,, 0) and A = (A, A,). Since o, is regularly varying, we have

012(“*) 2

—a t*—0.
o }(t*)
Also
o 2(st* . dF*(\,, A
G0 fymadenn — 1p )
() o *(t*)

where F* is the measure F in rectangular coordinates. If we make the polar change
of variables A; = |A|cos 6, and the substitution |A| - A/¢,, this equals

1 dF( —? )
(OO 1
5 J37 182 cos? B(1 — cos(sA cos 9)) —_tlzolz(t*) db.

However,
K (0)s* = % J27 1A% cos? B(1 — cos(sA cos ))A~C+20) gX df

so that by the continuity theorem

“2)
1
———— K, "1 (0)A~C*2 g},
To establish the lemma for general t write
0) i)
dF| -— dF| —
( i) _ Vi) e2a.0
[tPo*(t)  [to,’(|tl, 0) o, %(D)
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and check that

dF( A

2

(4 (t) 1 2 2 2 Itl
0 1 aerena 002 (1 — cos( cos(8 — 9))) ——al— df
o2t 0) 2,”fo A% cos® (1 — cos(A cos(8 — ¢))) [tPo2(t], 0)

> K (6)K,”'(0) as t—0. 0

LEMMA 4. Assume f, are complex valued analytic functions of N real arguments
and that f, — f uniformly on compact sets. Also assume G, are measures on R" and
that there exists a nontrivial absolutely continuous measure G such that lim
inf, . G,(B) > G(B) for some open set B € R". If

JIf?dG, >0 as n— o0
then
f=0.
ProOF. This is a multivariate version of Cuzick (1978, Lemma 1).

ProOF OF LEMMA 2. The upper bound for (16) is obvious since Var(X(t) —
X,(0)) ~ Var(X,(t) — X,(0)) and the determinant is less than the product of the
diagonal entries. The lower bound uses the method of Berman (1973, Section 6)
and will follow if

(18) lim inf,_, Var(a X(t) = X©) , ,X '(‘)01‘(6" () CXZ(t)ol_(t)XZ(O)) o

implies that a = b = ¢ = 0. The variance in (18) can be written in terms of the
spectral distribution function as

(e™ 1) (e™—1) (e™-1,
Qlg~———= + bA|~——=— + cA dF(|A
fol |t| 1 0]() 2 (t) | (l |)
which, after the substitution A — A/|t|, equals
Al )
dF|
)

Jela(e™ — 1)a,(2) + bA(e™ — 1) + cAy(e™ — 1) ——— o 2(0)

where 7 = t/|t|. By taking a subsequence, we can assume 7 — 7* and an application
of Lemmas 3 and 4 gives bA,(e™™ — 1) + cA,(e* — 1)=0 so that b=c =0
and then a = 0. To prove (17) write it as

(19) o S(t)det Cov| X(0), X,(0), [t 03 (:)X 10}

o O T
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where X[t, s] = (X(t) — X(s))/|t — s|. Again all terms in the covariance matrix of
(19) are bounded which gives the upper bound. The lower bound is verified in the
same manner as above. (See Cuzick (1978) for a similar derivation.) []

We can now return to the level sets of X(t). When a >3, the image of
(X(t), X,(t), X,(t)) has dimension 4 — 2a < 3 so that this vector does not hit points
and the level sets X~ '(«) consist of a finite number of nonintersecting rectifiable
arcs. When a <3 the point (u, 0, 0) is hit with positive probability and thus critical
points do occur at the level # and X~ !(u) is a topologically more complicated
object. Since (1B) is not satisfied, we cannot apply Theorem 5 to give the
dimension of critical points at a.e. level. However the same arguments can be used
to give the bounds

max(0, 1 — 3a) < dim(X~'(x) N VX7!(0)) < max(0, 1 — 2a)

for a.e. u. The upper bound would appear to be the correct dimension, but
Theorem 5 is limited because it requires (1B) instead of (1A).
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