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ON THE TAIL BEHAVIOUR OF RECORD-TIME DISTRIBUTIONS
IN A RANDOM RECORD PROCESS

By MARK WESTCOTT

Division of Mathematics and Statistics, CSIRO

Consider a sequence of independent and identically distributed random
variables attached to the points of an independent point process P. The random
record process is the epochs of successive maxima in this sequence. In this
paper necessary and sufficient conditions are found to ensure a certain tail
behaviour for the distributions of times to successive records, and interrecord
times, when P is a renewal process with relatively stable partial sums for its
intervals.

1. Introduction. Let P be a renewal process on [0, c0) with interval sequence
{(Y3i=1,2,---), 50 §=3_,Y(j=1,2,---) is the jth point of P. The
common distribution function of the Y; is denoted by F, with mean p € (0, oo].
For convenience we assume P has a point at 0, of index 0, i.e., S; = 0; such an
assumption is not essential. Associated with S; is an independent real-valued
random variable X;. The {X;}(j=0,1,2,---) are assumed to be iid. with
common continuous distribution function G.

The (upper) records in the sequence {X;} are the successive maxima, so that X; is
a record if X; > X,(k =0, 1,- - -,j — 1). This definition is unambiguous by the
continuity of G. The point process of epochs of records in the sequence {X} is
called the random record process.

Define, forr=1,2,: - -,

T,

r

7.=T —

Note that X is not counted as a record.

The random record process was introduced by Gaver [3] and studied further by
Westcott [7]. Many of its properties are simple consequences of results for
sequences of record times, corresponding to the degenerate case Y, = 1, due to
Chandler [1]. In particular, it follows from his work that E(r,), hence E(T,), are
infinite for each r whether or not p < co. Thus it is especially of interest to
examine the tail behaviour of the distributions of 7, and 7,.

The obvious attack is through transforms, but if we take the Laplace transform
of Pr(r, > ), for example, it transpires that as its argument s — 0 the transform is
asymptotically p log(s ') when p < co. This is precisely the situation when stan-
dard Tauberian theory (Feller [2], page 447; Seneta [6], page 59) breaks down.

time to rth record;

T,_,, the rth interrecord time (7, = 0).
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However it suggests the conjecture that Pr(r, > ¢) ~put~! as t — o0, a result
certainly true for every known example (cf. [3]). This conjecture was verified in [7]
under the extra hypothesis that E(Y'*?) < oo for some & > 0. It implies that, in
some sense, E(,) is “only just” infinite.

In this paper we derive a necessary and sufficient condition for such tail
behaviour when r = 1, as a corollary of a more general theorem which treats the
case of { S;} relatively stable (Gnedenko and Kolmogorov [4], page 139). This is the
content of Section 2, and the results are extended to arbitrary r in Section 3. The
situation when 1 — F(?) is of dominated or regular variation with index in (—1, 0)
is treated in [7]; in the case of regular variation the Tauberian theory is now
applicable.

Since this work was completed, Dr. N. H. Bingham has pointed out to me that a
recent extension by de Haan [5] of standard Tauberian theory to cover certain
cases of — 1-varying functions may be applicable to this problem. A discussion is
given in Section 4.

2. Behaviour of Pr(r; > t). Itis easy to show ([3], [7]) that
1) Pr(ry > 1) = 22, (J(j + D} " P(S; > 1),

In order to study the behaviour of (1) as ¢t— oo we recall some necessary
machinery. Define u(?) = [§y dF(y) (¢ > 0).

(i) The sequence {S;} is relatively stable if there exist constants {a;} such that
a lSj — 1 in probability as j — 0. A necessary and sufficient condition for this
([2], page 236) is that u(¢) vary slowly at + oo or, equivalently,

2) p(2)/t{1 — F(t)} - o ast — 0.
Defining o, = inf{o : su(s)s™' < 1,5 > o}(+ > 0), we may take g = o
(J=12,--.); note that

(3) o, = t“’(“t)’
(ii) It is easy to see that o, is regularly varying of index 1 at + o0, i.e.,
o, = tL(1)

where L(f) is slowly varying at +oo. Now for any such L there is a conjugate
slowly varying L* such that, as 1 — oo,

(a) L(t)L*{tL(1)} > 1,
(b) L*(t)L{tL*(2)} - 1,
(© L*(¢) is asymptotically unique

(Seneta [6], page 25). Since tu(zL(t)) = tL(¢), from (3), we may take L*(t) =
{ (1)} ~" by (2) and (©).
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(iii) If
Y, =Y, (Y,<1)
=0 (¥,>1)
then forn >0,¢>0,;=1,2,- - -
@ Pr(|s; — JE(Y)| >} < 22y {1 = F(»)} d — (302 = {1 = F(1))
([2], page 235).

THEOREM 1. If, in the random record process, P is a renewal process and {S;} is
relatively stable, then as t — oo,

Q) Pr(r, > ) ~ u(2)t~!
if and only if
(6) t{ w(2)} ™' Qlog{t/w(H}{1 = F()} > 0.

Proor. For any & > 0, split the range of summation in (1) into
(1, [tL*()/ (1 + s)]), ([L*()/ (1 + e)] + 1, [tL*()/ (1 - e)]),
([tL*()/ (1 —e)] + 1, )

where [-] denotes integer part. Call the sums X,, 2,, ¥, respectively, and define
u, = tL*()/(1 + €), u_ = tL*(H)/(1 — ¢).

35t Clearly
(7) Pr(Spy > O[u_]"' <y <[u_]7"
But
®) Pr(Sy, > 1) = Pr( SRR V) )
! o, ~ L*t)L(u.)

and as ¢ — oo the right side of (8) — 1 by (ii) (b) and the relative stability of {S;}.
Thus as ¢t — oo,

) 12,/ () > 1.

2,: We have ‘

S, <uil—(u_+1)7"

whence
(10) 2,/ () < 3¢
for ¢ sufficiently large.

2,: Here,
(11) 2, < 2Pe{UG + DY Pr{]S; — (@] > ¢ = ju(0)}

< BEAUG + DY Pe(lS; — ()] > et/ (1 + )}
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So, from (iii),

(12) S, < St + 1)"{2(1 + e i p(1 - F(»)) db
_ {(11'8)2-1}{1-p(o}}
(13) < Cllog{t/u() N~y {1 - F(»)) &b

for some positive constant C, since the second term in (12) is negative. Now
if (6) holds, then for any § > 0 the integrand in (13) is dominated by &u(y)
(log{y/u(»}~" for y > 1,(8). Thus the upper bound in (13) is asymptotically
bounded by C8u(#)t ™" as t — oo ([2], page 281; [6], page 53), whence

(14) 12,/ m(f) <e
for ¢ sufficiently large. Then (9), (10) and (14) establish the desired sufficiency of
©. ‘

Further, since the {Y;} are nonnegative and independent,
Pr(S, > 1) > j{1 - FO)}{F(H)Y ™,
which implies
(15)
12,/u(r) > {1 = F()}{ p(2)} "2l + DT'FY()
> t{1 = F()}{ (1)) ™" log(u, ) {F(1)}**
> {1 = F()){p(r)) " log{1/m0})(1 = £{1 = FO)}{ w(1)(1 + )} ")
since (1 — x)* > 1 — nx. By (2) the last bracket — 1 as t - c0. Combining this

with (9) and (10) shows that (5) necessarily leads to (6), which completes the proof
of the theorem.

COROLLARY 1. Ifp < oo, then for Pr(t, > £) ~ ut~" it is necessary and sufficient
that t(log t){1 — F(£)} >0 as t > .

COROLLARY 2. For Pr(ry > t) ~ ™" it is sufficient that E(Y log *Y) < oo,
where log *y = max(0, log y).
For
E(Ylog *Y) < o= [y logy dF(y) -0  ast— oo,
= t(log ){1 — F(£)} -0 ast— 0.

Corollary 2 weakens the “extraneous” moment condition imposed in [7]. This is
very nearly the ultimate possible reduction; an example follows to show that (6) is
not implied by E{(Y log *Y)/ {log(k)+Y}l+5} < o0 (6 > 0,k any positive in-
teger), where f,, means the k-fold iterate of a function f, and a fortiori is not
implied by E{Y(log *Y)*} < oo (a < 1).
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EXAMPLE. F is discrete with

Pr(Y = j) = C{expy, (n) expu-—1y (n)) ifj = expyy (n) n=0,1,2,-- -,
=0 otherwise.
Clearly the above moment is finite, yet

1 - F(exp(k) (n) —) > Pr(Y = exp(k) (n)) 7
so that 7 log #{1 — F(¢)} > C when ¢ = {exp, (n) — } and (6) cannot hold.

3. Behaviour of Pr(z, > t),Pr(T, >t). We have,forr=1,2,---,t>0,
(16) Pr(r, > 1) = 5244, Pr(S; > 1),

J J
where g, ; is the probability that the difference of the indices of the (r — I)st and
rth records in { X} equals j. Repeating the previous proof on (16) rather than (7) it
is clear that g, ; enters only through Q, ; = 27°_;q, , (at (7)) and O/ ; = Yearkd,, k

(at (12) and (15)). It is known that, as j — oo,

(17) 0, ; ~ (logj) ™" /j(r = 1!
([7]), and hence
(18) Q/ i~ (logj)/r\.

Further, for Pr(7, > {) the probability corresponding to Q,; gives the same
asymptotic behaviour as at (17), (18). This proves

THEOREM 2. If, in the random record process, P is a renewal process and {S;} is
relatively stable, then as t — oo,

Pr(r, > t) ~ {log(t/u(t)} ™ w(t){t(r — )1}~
if and only if

t{ w(1)) ™ (log {2/ (D} (1 = F(r)} > 0.

The theorem remains true if T, replaces ,.

COROLLARY. If u < oo, then for Pr(r, > t) ~ (log t)" ™ 'u/{t(r — 1)!} it is neces-
sary and sufficient that t(log ty {1 — F(¢£)} >0 as t—> co. This is ensured by
E{Y(log *Y)} < 0. The same is true if T, replaces T,.

4. Generalizations and discussion. Independence of the {Y;} is important in
both the necessity and sufficiency parts of the theorems. Uncorrelated would do
for the sufficiency but this is perhaps not much improvement.

To relax the assumption of identical distributions, we would seem to need the
Gnedenko and Kolmogorov version of the relative stability theorem ([4], page 141),
which covers this extension. We conjecture that the tail behaviour is like 0,7},
where o, is derived from the appropriate norming constants in a manner analogous
to (3), though possibly further conditions will be required.

As mentioned in the introduction, the recent paper by de Haan [S], which gives a

necessary and sufficient condition for — 1-variation of the upper tail of a distribu-
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tion function in terms of its Laplace transform is in principle relevant to our
problem since u(¢) is slowly varying in (5). However, although in the special case
p < oo the sufficiency of (6) is fairly easy to establish by this route, the general
problem appears to require a formidable amount of analysis. Further, the expres-
sion for the transform of Pr(r, > ¢) for general r involves an integral (cf. [7],
equation (6)), making the proof of Theorem 2 relatively unwieldy, while generaliza-
tions as previously discussed will be very complicated in a transform setting. For
these reasons, it seems most useful to follow the methods of this paper.
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