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A CHARACTERIZATION OF VITALI CONDITIONS
IN TERMS OF MAXIMAL INEQUALITIES!

By ANNIE MILLET AND LOUIS SUCHESTON
Ohio State University

Vitali conditions ¥, ¥, ¥,, 1 < p < o0, on c-algebras indexed by a di-
rected set, are shown to hold if and only if the maximal inequality
() P(essential lim sup X, > a) < K lim supE(X,)/a
holds for all adapted positive processes (X,), and all positive numbers «. Here X
is a constant which may be taken equal to 1, and T* is the appropriate directed
set of stopping times: for ¥, T™* is the set of simple stopping times; for ¥, T* is
the set of simple ordered stopping times; for Vp, T* is the set of multivalued
stopping times with overlap going to zero in L,. The inequality (1) is true
whatever be the o-algebras, provided that essential lim sup is replaced by
stochastic lim sup.

The Vitali conditions V (= V), V', and V, 1 < p < o0, on o-algebras indexed
by a directed set J, are shown to hold if and only if maximal inequalities of the

form

0)) P(e lim sup X, > A) < —g

hold for all adapted positive processes (X,) and all positive numbers A. Here
e lim sup is essential lim sup, and C is a constant of the form X lim sup~E(X,),
where K is a constant which may be chosen equal to 1, and essential lim sup is
taken over the appropriate directed set of stopping times: for V, T* = T, the set of
simple stopping times; for ¥/, T* = T”, the set of simple ordered (i.e., the range is
ordered) stopping times; for ¥V, T* = M,, the set of “multivalued stopping times
with overlap going to 0 in L?”. Precise definitions are given below.

The asymptotic character of the maximal inequality (1) should not surprise,
because Vitali conditions are asymptotic, but also the more usual (but not more
useful in convergence proofs) form of (1), with sup replacing lim sup, is briefly
discussed, and shown to correspond to nonasymptotic variations of Vitali condi-
tions. The inequality (1) seems new even for martingales and submartingales, for
which the right-hand side simplifies, but a particular case—martingales with
countable index set—was recently proved by Gabriel [9].

Vitali conditions are introduced to insure essential convergence of classes of
random variables-martingales, submartingales, appropriate classes of amarts, etc.
(see [12], [10], [1], [15], [16]). Stochastic convergence holds for the same classes
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whatever be the structure of the o-algebras, and therefore a stochastic maximal
inequality may be expected to hold without any Vitali conditions. Such an
inequality, featuring the stochastic lim sup, is indeed proved in Section 1. In
Section 2 we continue to look at the stochastic lim sup, in particular observing that
for “stochastically closed” classes of random variables, stochastic convergence
implies a stochastic maximal inequality. This is only a slight modification of
Burkholder’s elegant theory [2] connecting a.s. convergence to a.s. maximal in-
equalities, but also some applications are given. In Section 3 maximal inequalities
with essential lim sup are shown to be equivalent with ¥V; so is the relation:
stochastic limzsup X, = essential lim,sup X,. Analogous results for " and V,, 1 <
p < o0, are given in Section 4.

1. Stochastic maximal inequalities. Let J be a directed set filtering to the right
(i.e., a set of indices partially ordered by <, such that for each pair ¢, 7, of
elements of J, there exists an element ¢, of J such that 7, <¢; and ¢, < #;). Let
(R, %, P) be a probability space. Sets and random variables are considered equal if
they are equal almost surely. Let X = (X,) be a family of random variables taking
values in R. The stochastic upper limit of X, X = s lim sup X,, is the essential
infimum of the set of random variables Y such that lim P({Y < X,}) = 0. The
stochastic lower limit of X is s liminf X, = — slimsup (—X,). If A=(4) is a
directed family of measurable sets, the stochastic upper limit of A, A = s lim sup 4,,

is defined by: 1, gup 4 = s limsup 1.
In the following discussion the word “set” is often used for “measurable set”. It

is easy to see that A4 is the smallest set C such that
2) lim P(4,\ C) = 0,
ie., (2) holds iff A C C. Another characterization of A is as follows.

Lemma 1.1. 4 = slim sup A, is the largest set A such that for every nonempty
subset B of A,

3) lim sup P(4, N B) > 0.

PROOF. Assume that B C A, and (3) fails. Since P[4, \ (A \ B)] < P(A \ A) +
P(A4, N B), applying also (2) with C = A we obtain that lim P[4, \ (A \ B)] =
hence B = &, because A4 is the smallest set C satisfying (2). Conversely, let 4 be
such that (3) holds for every nonempty subset B of A. Then P[A, N (A \ A)] <
P(A,\ A) - 0 implies A \A=02.

LEMMA 1.2. Let A = s lim sup A,, and let (s,) be an arbitrary sequence of indices.
- Then there exists an increasing sequence of indices (t,) such that s, <t, and
AcCun,.

ProOF. Define on subsets of 4 a function y by y(B) = lim sup P(4, N B). Set
B, = A, and choose #, > s, such that P(4, N B,) >3Y(B,). Set B, = A\ 4, and
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choose #, > t;, 1, > s,, such that P(A,z N By > ;y(Bz) We define (#,) and (B,) by
induction as follows: given t,*--,t,and B, -, B, set B, |, = A\ Uigicnd,
and choose 1, | > £, t,.1 > S,4; and such that P(A ,NB,.)> 1v(B,. ). Since
NB,=A\U 4,, 1t suffices to show that N B, = @ The sets B, N 4,,n € N, are
pairwise disjoint, hence

lim sup y(B,) < 2 lim sup P(B, N 4,) = 0.

It follows that y(N B,) = 0, hence, by Lemma 1.1, N B, = &. []
A stochastic basis (9,) is an increasing family of sub o-algebras of &. A process
= (X,) is a family of rv X, such that each X, is %,-measurable. The process is
called integrable (positive) if for every t, X, is integrable (positive). A family of sets
= (A,) is adapted if for every t, A, € F,. A stopping time is a function 7 : @ — J,
such that for every t € J, {1 = t} € F,. 7 is called simple if it takes finitely many
values; let T denote the set of simple stoppmg times; 7 is filtering to the right for
the order < . An ordered stopping time is a simple stopping time 7 such that the
elements #;, ¢,, * - -, ¢, in the range of 7 are (linearly) ordered. Denote by 7" the set
of ordered stopping times. For any stopping time

X, =21 =nX, 4, = U:[{'r =1}nN Ar]’

g, ={4€eFNtes,An{r=1} €F}.
We at first show that for every adapted family of sets A, s lim sup 4, can be
approximated by A4, with 7 € T, v arbitrarily large. This may be interpreted to

mean that the strongest “stochastic Vitali condition”—the stochastic analogue of
the condition ¥'—holds for every stochastic basis.

PROPOSITION 1.3. Let A = (A,) be an adapted family of sets. For every ¢ > 0 and
to € J, there exists a v € T’ such that v > 1, and P(s lim sup 4, A4,) <e.

Proor. Given ¢ > 0, choose a sequence of indices (s,) such that s, > ¢, and
t > s, implies P(4, \ A) < e2~®*D, Let (z,) be a sequence obtained by application
of Lemma 1.2, and choose k such that P(4 \ Uicick4,) <&/2. Set 7 =1, on
A \NU;c A4, forn <k, and 7= 4, on (U;¢,x4,) Then P(ApA,) <e. [

We are now ready to prove the main result of the present section, a stochastic
maximal inequality. Recall that 7’ is the smallest class of stopping times we
consider—the class of simple ordered stopping times.

THEOREM 1.4. Let X be a positive stochastic process. For every A > 0,
P[{slimsup X, > A}] < %hm sup, = -EX,.

Proor. For every a >0, {slimsup X, > A} C s lim sup{X, > A — a}. In-
deed, let 4, = {X, > A — a}. Since 4 is the smallest set C such that lim P(4,\ C)
= 0, A¢ is the largest set B such that lim P(B N {X, > A — a}) = 0. Hence on A°
we have X < A — a < A, so that A° C {X < A}. Given ¢ > 0 and s € J, choose
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T € T’ such that r > s and P(ff \ 4,) < & (Proposition 1.3). Then 4, = {X, > A —
a}, hence,

P(A) < P(4,) + ¢ <

1
P EX_ + e
We deduce that for every e > 0, a >0 and s € J,

~ 1
P(X > A7) < msupOsEX, + e

The maximal inequality follows on letting s — 00, a =0, e — 0. []

For submartingales and supermartingales, the net (EX,), ., is monotone, and
lim,. EX, = lim EX, exists as an extended real number. Hence the corollary:

COROLLARY. Let (X,) be a positive submartingale or positive supermartingale.
Then for every A > 0

P(s lim sup X, > A) < %lim E(X,).

2. Maximal inequalities and convergence. Let X be a family of random vari-
ables. The essential upper limit of X, X* = e lim sup X,, is defined by X* =
e inf (e sup,,  X,). The essential lower limit of X, X, = e lim inf X,, is —e lim
sup(— X,). The directed family X is said to converge essentially if X* = X; this
common value is then called the essential limit of X,elim X,. If A=(4,) is a
directed family of measurable sets, the essential upper limit of A, A* =
e lim sup 4,, is defined by 1,. = elimsup 1.

In [2] Burkholder proved that maximal inequalities for sup X, could be deduced
from almost sure convergence of the sequences (X,) belonging to stochastically
convex classes. The following generalizes Theorem 1 in [2]; the proof, similar to
Burkholder’s, is omitted. We consider processes (X,) indexed by a fixed directed set
J. The null process X = 0 is defined by X, = 0 for every . Given two processes X
and Y, we write X < Y iff X, < Y, for every ¢, and X ~ Y iff X and Y have the
same joint distribution.

THEOREM 2.1. Let F be a map from the set of positive processes into the set of
measurable functions taking on values in R* U {+ o0 }. Assume that:

(i) for every positive process X, F(X) is measurable with respect to the o-algebra
generated by the family of v’s X,, t € J;

(i) FX) K FY)if X< Y;

(iii) for any a > 0 and X > 0, F(aX) = aF(X).

Let C be a class of positive processes such that for every sequence (X,) of elements
of C, there exists a sequence (Y,) of processes satisfying the following conditions:

(a) the processes Y, are stochastically independent;

®) forevery k =1,2,- - -, X, ~Y,;

(c) for any sequence of positive numbers (o) such that Z¥_ e, = 1,
P[ {sup o, F(Y;) < o0}] > 0.
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Then there exists a constant K such that for every A >0 and every X €
C, P{FX) > A\}) < K/A.

It is easy to see that the maps F defined by F(X)= esup X, F(X)=
e lim sup X,, and F(X) = s lim sup X, satisfy the conditions (i), (i) and (iii) of the
theorem. Notice that the conditions (a), (b) and (c) on the class € hold if C is a
stochastically convex class satisfying the finiteness condition P({ F(X) < o0}) >0
for X € C. A class C is called stochastically convex if it satisfies the conditions (a),
(b) of Proposition 2.1, and the following condition (d): for any sequence (a,) of
positive numbers with =_,a, = 1, there exists Z € C such that Z ~ Z¢_,a,Y,,
(see [2]).

As an application of Theorem 2.1, we consider the case of weak martingales, i.e.,
sequences (X,) such that E(X,|X,) = X, for all n,p € N, n <p (cf. Nelson [19)]).
The class of positive weak martingales such that E(X,) =1 is stochastically
convex; Burkholder’s proof of stochastic convexity of martingales also proves this.
Since L! bounded weak martingales converge stochastically (this nontrivial result
was proved by F. Knight; for Burkholder’s somewhat different proof see [19]), it
follows that there exists a constant K such that for every positive weak martingale
X and every constant A > 0,

P(slim sup X, > A) < %E(X,).

We now derive a stochastic maximal inequality for Cesaro averages of iterates of
contractions of L'.

PROPOSITION 2.2. Let (R, F, P) be the unit interval with Borel sets and Lebesgue
measure. There exists a constant K such that for every linear contraction T of L', for
every function f € L', and for every constant \ > 0,

P[{s lim sup[—II;E',?;(}Tifl > )\}] < i—(Elfl

Proor. Krengel [11] showed that for every linear contraction T of L' and any
function f € L', the sequence (1/n)2%_.T* converges in probability. Consider-
ing, instead of the operator 7, its modulus (cf. [4]), we can assume, without loss of
generality, that 7T is positive. For a positive sequence X = (X)), set F(X) =
s lim sup X,,. Let C be the class of sequences (Tf), where 0 < f, Ef < l,and T'is a
positive linear contraction of L' (which may change from sequence to sequence). If
the class C is stochastically convex, so is the class @ of Cesaro averages of T"f
under the same assumptions on f and T (cf. [2], Theorem 3). The proposition is
then deduced from Theorem 2.1 applied to F and C. The proof of stochastic
convexity of € is similar to the proof of Theorem 5, [2], and is therefore omitted. []

"It would be of interest to give a direct proof of Proposition 2.2, independent of
Krengel’s theorem which at present can be only derived using deep pointwise
results, e.g., the Chacon-Ornstein theorem. Such a proof may also give the best
value of the constant XK.
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3. Vitali condition ¥ and maximal inequalities. A stochastic basis (%,) satisfies
the Vitali condition V(= V) iff for every adapted family of sets (4,) and for every
& > 0, there exists a simple stopping time 7 € T such that P(e lim sup 4,\ 4,) <.
This condition, introduced by Krickeberg [12] (in an obviously equivalent form not
involving stopping times; see also Neveu [20], page 99), may be characterized in
terms of convergence of various classes of random variables (cf. [1], [15], [18]). Here
we characterize ¥ by maximal inequalities involving the essential lim sup; also
other equivalent conditions are given. Recall that 4* is the set e lim sup 4,.

THEOREM 3.1. Let (%,) be a stochastic basis. The following properties are equiv-
alent.
(1) (9,) satisfies the Vitali condition V.
(2) For any adapted family of sets A and any ¢ > O, there exists 1 € T such that
P(A*pA) < e
(3) For any adapted family of sets A and any ¢ > 0, there exists v € T such that
P(4*) — P(4,) < e.
(4) There exists a constant a, 0 < a < 1, such that for each adapted family of sets
A, there exists T € T such that P(A* N A,) > aP(A*).
(5) For each adapted family of sets A,
s lim sup, o, 4, = e lim sup 4,(= e lim sup,c,4,).
(6) For each stochastic process X,
s lim sup, < 7X, = e lim sup X,(= e lim sup,X,).

(7) For each positive stochastic process X,

VA >0, P[{elimsup X, > A}] < %lim sup,crEX,.
(8) There exists a constant K > 0 such that for every adapted family of sets
A=(4),

P(e lim sup 4,) < K lim sup, c-P(4,).

ProOOF. Obviously (2) = (1) and (1) = (3). It is easy to see that given any s € J,
we may require the stopping times given by the conditions (1), (2) or (3) to be
larger than s. (Set B, = A, if t > s, and B, = & otherwise.)

(3)=(2). Given e > 0, choose s € J such that P[e sup,,, 4, \ A*] < e. Then

P[A*AA4,] = P(A*\ 4,) + P(4,\ 4%)
< P[esup,,,4,\ 4,] + P[esup,,,A4,\ A*]
< Plesup,,,4,] — P[4,] +¢
< P(A*) = P(A4,) + 2e < 3e.

(1)=(5). Since elimsup A, = e lim sup, o4, O s limsup,.,4,, we only
have to show that e lim sup 4, C s lim sup, c;4,. Assume that A* # &, and let B
be a nonempty subset of 4*. Given any ¢, 0 <& < P(B), and any s € J, there
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exists 7 € T such that P(B\ A4,) <& Hence P[B N A,] > P(B) — ¢ so that
lim sup P[4, N B] > P(B) — ¢ > 0. Lemma 1.1 now implies e limsup 4, C
s lim sup, c 74,.

(5)= (6). Similarly, since e lim sup X, = e lim sup,,X,, we only have to
prove that e lim sup X, < s lim sup X,. Using (5), we easily obtain that for every A

{elim sup X, > A} C e lim sup{X, > A} C s lim sup,c{X, > A}
C {s lim sup, X, > A}.
This implies that e lim sup X, < s lim sup, X,

(6)= (7). Apply Theorein 1.4 to the process (X,),c 7> adapted to the stochastic
basis (%,). Since T'(%,) c T(%,), one has for each A > 0

P[{slimsup X, > A}] < hm SUpy (5 EXy.

Given any simple stopping time 6 of the stochastic basis (¥,), there exists a
stopping time o of the stochastic basis (%,) such that (X,), = (X,),: set for each s,
{0 =5} = U,e7l{0 = 7} N {r = s}]. Hence, for any positive process (X,) and
any A > 0,

P[{elimsup X, > A}] = P[{slimsup X, > A}] < Xllm sup, c rEX,.

(7)=(8). Apply (7) with (X,) = (1,) and A = 1.

(8)=(4). We may and do assume that K is > 1, and that given the family
A, A* # . Choose ¢ with 0 <& < P(4*)/3K, and let s be such that P(4*) >
P(e sup,,,A4,) — €. Choose 7 € T such that 7 > s and |P(4,) — lim sup,c P(4,)|
< e. Then

P(A4* N A4,) > P[esup,, 4, N A,] — P[esup,,,4,\ A*]
> P(A,) — ¢
> lim sup, ¢ P(4,) — 2¢
> (1/K)P(A*) — 2e > (1/3K)P(A*).

(4)=(1). Letr, € T besuch that P(4* N 4,) > aP(4*). Let 5, be larger than

7, and set A = A, \ A, for t >s5, and A} = @ otherwise. Since A*\ A4,
e lim sup 4, there emsts 7, € T such that 7, > s, and P[(4*\4,) N 4, ] >
aP(A*\ A, ). One defines by induction a sequence (7,) of stopping times satlsfymg
the relations 7, > s,, and P[4*\ U, ,] < (1 — a)"P(A4*) for all n. Given ¢ > 0,
choose n such that (1 — a)"P(4*) <e. Choose s > 7,. For every j < n and every
t € R(r), set {tr=1t}={1,=1}N A N Urg4,)5 set T=s on (Urc,4,)"
Then 7 € Tand P(A\A4,) <e. []

- REMARK. Theorem 3.1 gives an alternative proof of the necessity of the Vitali
condition V for the essential convergence of L*-bounded amarts proved by
Astbury [1]. An integrable stochastic process X is an amart iff the net (EX)),cr
converges. Let (¥,) be a stochastic basis such that every L*®-bounded amart
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converges essentially, and let A be an adapted family of sets. Set X, =
e sup,,, P %4_; since for each ¢ € T there exists a sequence 7, € T, 7, > o, such
that X, = lim ~ ngA,", the net (EX,),cr is increasing. Thus, (X,) is an amart. (In
fact, it is also a supermartingale with the optional sampling property.) Hence X,
converges essentially, so that we deduce from Theorem 1.4 that

P[{elim sup X, > 1}] < lim sup, ., EX,.
Since X, > 1, for every ¢, P[4*] < lim;EX,. For every ¢ € T such that ¢ > s,

there exists a sequence 7, of stopping time such that 7, > s and EX, = lim ~
P(4, ). Hence sup,, ;EX, < sup, P(4,), so that

P(A*) < lim,cEX, < lim sup, c,P(4,),
which shows that the conditon (8) of Theorem 3.1 is satisfied.
PROPOSITION 3.2. If V holds and (X,) is a martingale taking values in a Banach
space with norm | |, then for each A > 0,
1
A

Proor. If (X,) is a martingale, so is (X,), < 7~ hence (| X,|), <7 is a submartingale;
therefore lim sup E|X,| = lim E|X,|. Now apply (7) to the positive process (| X,[). ]

P({elim sup|X,| > A}) < < lim E|X,|.

4. Vitali conditions ¥’ and V,,1 < p < oo. In this section we prove that the
Vitali conditions V’(resp. ¥,) can be characterized in terms of maximal inequalities
for X_, where 7 is an ordered (resp. multivalued) stopping time. Also nonasymptotic
regularity conditions similar to Vitali conditions are shown to be equivalent to
maximal (nonasymptotic) inequalities.

A stochastic basis (¥,) satisfies the ordered Vitali condition V' if for every
adapted family of sets (4,) and for every ¢ > 0, there exists an ordered stopping
time * € T’ such that P[e lim sup 4, \ 4,] < e. This was shown by Krickeberg to
be sufficient for essential convergence of L!-bounded submartingales (cf. [10]); it is
necessary and sufficient for essential convergence of L'-bounded ordered amarts
([15], [18]). Given o, 7 in T, we write ¢ < | < 7 if there exists s € J such that
o < s < 7. For the partial order < | <, 7" is a directed set filtering to the right.

THEOREM 4.1. Identical to Theorem 3.1, with V' replacing V, and T’ replacing T.

PrROOF. Analogous to that of Theorem 3.1. In particular, (6) = (7) still holds,
because if § is an ordered stopping time for the stochastic basis (%,),c then o
defined by :

{o=s}=U,er{0=71}n{7=5s}
is an ordered stopping time for (%,). [
Denote by ¢ the set of finite subsets of J. A multivalued stopping time is a map 7

from Q to ¢ such that for every t € J, {7 = t} = {w € Q|t € 7(w)} € F,. Denote
by M the set of multivalued stopping times; if 0 and 7 are elements of M, we say
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that ¢ < 7 if Vs, Vt,{6 = s} N {r = ¢} # & implies that s <. Let 7 € M; the
excess function of 7 is e, = Z,¢,1(,_,, — 1; the overlap of order p of 7,1 < p < oo,
is 0,(7) = |le|l,- If X = (X)) is a stochastic process, let X, = X, ,1,_,X,. For an
adapted family of sets A = (4,), 4, = U [{7 =t} N 4,]. Set

lim sup, ¢ 5, EX, = inf,c; o50SUp{ EX,|r € M, 7 > 5,0,(7) < a}.

Similarly, s lim sup, ¢ 5, X, is the essential infimum of the set of random variables Y
such that

lim,,,eM, OP(.,.)_,()P[ {X'r > Y}] = 0,

(ie., Ve > 0,3a > 0,3s € J such that for every r € M satisfying 7 > s and
0,(r) < a, we have P[{X, < Y}] <e). Furthermore, e lim sup, mX: =
einf, g ;e,lesup X, 7 € M, 7 > 5, 0,(7) < a]. A stochastic basis (F,) satisfies the
Vitali condition V,, 1 < p < oo, if for any adapted family of sets A = (4,) and any
¢ > 0, there exists 7€ M such that 0,(r)<e and P[e lim sup 4, \ 4,]<e. These
conditions are sufficient (Krickeberg; see e.g., [10], page 169), and necessary ([10],
page 170 and [14]) for the essential convergence of L?-bounded martingales, and
necessary and sufficient for the essential convergence of L'-bounded amarts for M,
[16], [17]. The following theorem characterizes V), in terms of maximal inequalities.

THEOREM 4.2. Let (9,) be a stochastic basis, and let 1 < p < oo. The following

properties are equivalent:

(1) (%,) satisfies the Vitali condition V.

(2) For any adapted family of sets A and any € > 0, there exists T € M such that
0,(7) <eand P(4*\ 4,) <e.

(3) For any adapted family of sets A and any ¢ > 0, there exists T € M such that
0,(1) <eand P(4*) — P(4,) <e.

(4) There exists a constant o, 0 < a < 1, such that for each adapted family of sets
A and every € > O, there exists 1 € M such that 0,(1) < e and P(A* N 4,) >
aP(A*).

(5) For each adapted family of sets A,

s lim sup, ¢y, 4, = e lim sup 4/(= e lim sup, ¢y, 4,)-
(6) For each positive stochastic process X and for every A > 0,
P[{elimsup X, > A}] < —}I:Iim SUp, 5, X,
(7) There exists a constant K > 0 such that for every process (1,),
VA >0, P[elimsup 4, > A] < %(lim Sup, e P(4,).

PrOOF. The proof is similar to that of Theorem 3.1. We only observe that also
for multivalued stopping times with overlap converging to zero, one has that if
T > 5, then 4, C e sup,, 4,, and e lim sup,ep A, = e lim sup 4,, e lim SUp. e p, X,
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= ¢ lim sup X,. A point where the proof is now slightly different is in the implica-
tion (4) = (1): In addition to other properties, the sequence (r,) has now to be
chosen so that 0,(r,) <e27" []

We finally introduce nonasymptotic analogues R, of Vitali conditions. The
o-algebras (%) are said to satisfy the regularity conditions R,(R]) where a is a fixed
positive number, if for every ¢ > 0 and every adapted family of sets A = (4,), there
exists 1 € T (resp. 7 € T"), such that P(4,) > aP(e sup 4,) — «.

PROPOSITION 4.3. A stochastic basis (%,) satisfies R, (resp. R)) if and only if for
every positive stochastic process (X,) and every A > 0,

P(esup X, > A) < ﬁsup,epEX,,
where T* = T (resp. T* = T).

PrOOF. Assume (%,) satisfies R, (R]). Given A > 0 and ¢ such that 0 <& <A,
set A, = {X, > A — ¢€}. Then there exists 7 € T* such that P(4,) > aP(e sup 4,)
— &. Hence

P(esup X, > M) < %P(A,) + f < sup, e - E(X;) + {

1
a(A — €)
The maximal inequality follows on letting ¢ — 0. Conversely, the maximal inequal-
ity applied to the process (X,) = (1 4) With A =1 gives: aP(e sup 4,) <
sup, e +P(4,). Given ¢ > 0, choose 7 € T* such that sup,c P(4,) — P(4,) <e;
now P(A,) > aP(esup 4,) — &. ]

If J=N, then T = T’ and R, holds with a = 1. The corresponding maximal
inequality was in that case observed in [5].

Added in proof. One can show that all L'-bounded real valued martingales
converge essentially if and only if for every real martingale (X,) and every a > 0,
one has a P(e lim sup|X,| > a) < lim E|X,|. See our paper “On convergence of
L'-bounded martingales indexed by directed sets”, to appear in the first volume of
the new Polish J. Probability Math. Statist., 1980.
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