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THE SHAPE OF THE LIMIT SET IN RICHARDSON’S GROWTH
MODEL!

BY RicHARD DURRETT AND THOMAS M. LIGGETT

University of California, Los Angeles

Let C,, be the limiting shape of Richardson’s growth model with parameter
p € (0, 1]. Our main result is that if p is sufficiently close to one, then C, has
a flat edge. This means that C, n {x € R*x; + x» = 1} is a nondegenerate
interval. The value of p at which this first occurs is shown to be equal to the
critical probability for a related contact process. For p < 1, we show that C,
is not the full diamond {x € R%||x || = | x:| + | x2| < 1}. We also show that C,
is a continuous function of p, and that when properly rescaled, C, converges
as p — 0 to the limiting shape for exponential site percolation.

1. Introduction and statement of results. In [10], Richardson introduced a dis-
crete time growth model which may be described as follows:

(i) at time 0, all the points in Z? are colored white, except the origin, which is colored
red;

(ii) if a site is red at time n, it remains red at all future times;

(iii) if a site z € Z? is white at time n and all of its neighbors z + (1, 0), z + (0, 1), z +
(=1, 0) and 2z + (0, —1) are white at that time, then 2z remains white at time n + 1;

(iv) if a site z € Z? is white at time n and at least one of its neighbors is red at that time,
then it becomes red at time n + 1 with probability p and remains white with probability
1-p.

Decisions in (iv) at different times and different sites are made independently. Richard-
son’s main result in [10] is that the set of red sites has an asymptotic shape as n — . In
order to state this result precisely, replace “red” and “white” by “1” and “0” respectively,
and regard his model as a discrete time Markov process n, with state space {0, 1}7".
Thinking of 7, as a {0, 1} valued function on Z?, extend its definition to R? by letting
7n(x) be the value of 7, at the z € Z* which is closest to x, taking the maximum in case of
ties. Let A, = {x € R%,(x) = 1}. The asymptotic shape result is then

THEOREM 1. (Richardson). For any p € (0, 1), there is a norm ¢, on R? so that for
any € > 0,

lim, o P({pp<1—¢€} C%C {gpp=1+¢€})=1
The norm in this result is defined by

9 (%) = inf, .y 22X

n
where £(y) = inf {m:n.(y) = 1} is the first time the “infection” reaches y. It seems to be
very difficult to use the above expression to compute ¢,(x) for any x #% 0 and p € (0, 1),
and as far as we know, no one has succeeded in doing so, or even in saying very much
about the norm in a qualitative way. In this paper we will prove some qualitative results
about the unit ball C, = {@, < 1} by exploiting the relationship between Richardson’s
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model and three other processes: percolation processes, contact processes, and branching
random walks. Our results are described in Sections 1.1-1.3, and are organized primarily
according to the auxiliary process which is used in the proofs. Several of the proofs are
deferred to Section 2.

1.1 Continuity results. Richardson used computer simulations to get an idea of the
shape of C, for various p’s. On the basis of these pictures, which are included in [10], he
conjectured that “as p varies from 1 to 0 the unit ball of the associated norm varies from
a diamond to a circle.” As was observed by Cox in [2], one can use the connection between
Richardson’s model and certain percolation processes to prove the first part of Richardson’s
conjecture.

To describe this connection, we will now introduce planar site percolation processes. (In
[2], Cox studies bond percolation, which is somewhat different). Let {o(2), z € Z%} be a
collection of nonnegative i.i.d. random variables, where o(z) is interpreted as the time
required to penetrate an obstruction at z. A path r = (xo, + -+ x,) is a finite sequence of
points in Z? such that || x; — x;_1|| = 1 for 1 < i < n. The travel time associated with the
path r is defined by

Hr) = Yi-1 o(x;).
The travel time from x to y for x % y is
t(x, y) = inf(¢(r): r is a path from x to y},

while #(x, x) = 0 by convention. The connection with Richardson’s model is that if o(z) is
chosen to have a shifted geometric distribution with parameter p, that is the distribution
with P(a(2)) = k) =p(1 —p)*!, k = 1, then

{200, 2), 2 € 2%} = 5{te(2), z € Z?).

To prove this, let #;,(2) = min{t(y):|y — 2| = 1}, and observe that from the definition of
Richardson’s model, {#(z) — #(z), z # 0} are i.i.d. random variables with the shifted
geometric distribution. Therefore it suffices to show that £(0, z) = £(2) as for z € Z2 where
the percolation process is constructed using o(z) = t(2) — t5(2) for z # 0 and ¢(0) some
shifted geometric random variable which is independent of the others. If r = (z, - - -, 2,)
is a path from 0 to z 5% 0, which can be taken without loss of generality to satisfy z; % 0 for
i =1, then

tr) =Y 0(z) = $i1[to(z:) — ts(2:)]
=Y [to(2) — to(zi-1)] = to(2),

so that £(0, z) = ¢o(2). On the other hand, a path r from 0 to z can be chosen by letting z;_;
be determined from z; by the requirement that #(z;_;) = #(z;). This construction
terminates at 0 after at most ¢(0, z) steps since o(z) = 1 a.s.

We will need the following two theorems from percolation theory. To simplify their
statements, we have assumed that the distribution F has finite mean and satisfies F(0) =
0. Theorem 2 is a part of Theorem 3 in [3], and Theorem 3 is Theorem 1.14 in [2].

THEOREM 2. (Cox and Durrett). Let A, = {x:t(0, x) < t}. Then there is a norm PF
such that for each € > 0,

P({gr=1—¢€} Ct7'A: C {pr =1 + €} for sufficiently large t) = 1.
THEOREM 3. (Cox). Suppose that

(i) F, converges weakly to F, and
(ii) there is a distribution U with finite mean so that

1—-F.(s) =1—U(s) for all n and s.
Then or, (x) — @r(x) for all x € R2.
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The proofs of these results in [2] and [3] are carried out for bond rather than site
percolation, and in the case of Theorem 3, only for x = (1, 0). The proof of Theorem 2
carries over immediately to site percolation. The proof of Theorem 3 for x with rational
coordinates is essentially the same as that in [2]. To extend this to general x, one can use
the relation

|or(x) = pr(y)] = [ f u dF<u>] 1% =1,

which is a consequence of the subadditivity of the travel times for the percolation process.
Using these results, we obtain immediately

THEOREM 4. For all x € R?, ¢,(x) is a continuous function of p in (0, 1].

Continuity at p = 0 in this form is not of very much interest, since as p — 0, @, (x) —
o for x % 0 and hence C, — {0}. With an appropriate rescaling, however, the geometric
random variables converge to exponentials. Thus Theorems 2 and 3 imply also

THEOREM 5. Let H(x) = (1 — e *)*. Then

lim,_.0 pgp (%) = Qu(x)
for all x € R

For Richardson’s full conjecture to be correct, it would have to be the case that gz (x)
is a constant multiple of (x3 + x%)*/% This would mean that the exponential distribution
and the lattice structure of Z* would have to combine to produce a limit shape which is
invariant under rotations. It appears that most people who have thought about this
possibility now believe that it is unlikely to be the case.

1.2. The flat edge result. The results which were given in Section 1.1 were obtained by
exploiting the relationship of Richardson’s model to percolation processes. In this section,
we will prove our main result by identifying an embedded contact process. For x € Z, let
£.(x) = nn(x, n — x). Since a site on x; + x2 = n which is infected at time n must have just
been infected by a site on x; + x; = n — 1, £, is a Markov process which operates according
to the following rules:

(i) if £u-1(x) = &n-1(x — 1) = 0, then &,.(x) = 0;

(i) if £,-1(x) = 1 or £&,—1(x — 1) = 1, then &,.(x) = 1 with probability p; and

(iii) in the transition from &,-; to £,, the decisions at all the sites are made independently.

The above process is, in the terminology of Harris [6], a discrete time contact process.
It is known [7] that there is a po < 1 so that if p > po, then P(Q.) > 0, where Q. = {£, #
0 for all n}. Since

{x € Z%nu(x) =1} D {(3, n — Y):ba(y) = 1}

P(Q) > 0 implies that C, n {x:x: + x; = 1} # &, and by symmetry that (%, %) € C,.
Since @,(x) = @i1(x) = |x1| + | x2|, we have proved the following, in which p.. = inf{p:
PQ.) >0} <1.

THEOREM 6. Ifp > p, then (%, %) € C, and ¢, (%, %) = 1.

More can be said if we use stronger results on contact processes. Theorem 7 below is a
consequence of results in Section 6 of [4] (note that for this process, hypothesis (a) in [4]
is satisfied). A continuous time analogue of Theorem 8 is proved in [4]. For the discrete
time version, a new computation is required, so that a proof is given in Section 2. To state
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these theorems, we need the following notation:
rn = sup{y:é.(y) = 1}
b = inf{y:£.(y) = 1}
Q. = {& # 0}

THEOREM 7. (Durrett). If P(Q.) > 0, there are constants a and B so that
I lg, — alg_, and
n

l

;" lg, — Blg,
almost surely and in L'.
THEOREM 8. (Durrett). If p > per, then a — B = 2[p — pe:].
Our main result is now an immediate consequence of Theorems 7 and 8:

THEOREM 9. If p > pc, then dC, N {x:x1 + x2 = 1} is an interval of lerigth =22
[p - pul

We conclude this subsection with two observations. The slightly weaker version of this
theorem which would assert that for p sufficiently close to one, dC, N {x:x; + xo =1} isa
nondegenerate interval could have been obtained with some additional work by using
Theorem 12.2 in [7] in place of Theorems 7 and 8. Secondly, even though we have proved
Theorem 9 only for Richardson’s model, simple comparisons give similar results for other
growth models. For example, one could let the probability of a white site turning red if it
has % red neighbors be a function p, of k. One natural choice is pr = 1 — (1 — p)*. We
would again get a flat edge result for p sufficiently close to one.

1.3. Upper bounds; equality of critical values. In this section, we will discuss results
which can be obtained by comparing Richardson’s model with some branching random
walks. For the first results, consider the branching random walk in which a particle at x at
time n gives rise at time n + 1 to a particle at x with probability one and to a particle at
each of the four neighbors of x independently with probability p per neighbor. Let N, (x)
be the number of particles at x in this branching random walk when initially there is a
single particle at the origin. Then N, and 7, can be coupled so that N, (x) = 5.(x) for all
n and x. Therefore {x:N,(x) =1} D {x:1.(x) = 1}, so that the set of occupied sites in the
branching random walk gives an upper bound for A, in Richardson’s model.

Biggins [1] has proved a result which describes the asymptotic shape of multidimen-
sional branching random walks. In order to state it, we need some notation. Let m,, be the
measure which assigns mass 1 to (0, 0), mass p to each of the points (1, 0), (0, 1), (=1, 0),
(0, —1), and mass 0 to the rest of R2. This is the mean measure of the branching random
walk described above. Let

k(9) = log(J' e (0 dmp(x)), and

k*(y) =inf{k(8) + (6, y):0 € R?}.

We have used the fact that our functions %2 and £* are well behaved to simplify the
following statement:

THEOREM 10. (Biggins). Let H, be the convex hull of {x:N,(x) > 0}, and let D = {y:
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k*(y) = 0}. Then

liminfﬂ'f=limsupg:=D.
n n

While this gives an “explicit” upper bound for C,, it is hard to use because of the two
dimensional minimizations required in the computation of D. However, the information
we want can be obtained by projecting D first on the line x, = 0 and then on the line x;
= x2. By doing this, we obtain problems concerning the one-dimensional branching random
walks with respective mean measures

(a) m@) =1+2p, m(-1)=m()=p,
and
(b) m(0) =1, m(=1) = m(1) = 2p.

The asymptotic shapes of these branching random walks can be computed in principle
from the one dimensional version of Theorem 10. The computations are still difficult, so
we will use the following result, which is proved in Section 2.

THEOREM 11. If a one-dimensional branching random walk on the integers has a
mean measure with m(A, ) =0, m({A}) <1, and m(—», A) < x, then the limit set D is
an interval lying strictly to the left of A.

Applications of Theorem 11 to the branching random walks with mean measures in (a)
and (b) above give respectively the following results. The first of these was mentioned to
us by H. Kesten.

THEOREM 12. If p <1, then sup{x1:x € C,} < 1, so that C, is not the full diamond
{|x1| + |x2| =1}.

THEOREM 13. If p <, then sup{|x:| + |x:|:x € C,} < 1, so that C, lies strictly
inside the diamond {| x:| + | x2| = 1}.

Let pr=sup{p:C, n {x:| x1| + | x2| = 1} = J}. By combining the results of Theorems
6 and 13, it follows that

Y% < Pr < per.

The lower bound can be improved if we follow 5 for two units ofjtime before making the
branching random walk approximation. To see the estimate that gives, note that P[n,
(0,2) =1]=p[n2(2,0) = 1] = p? and p[n2(1, 1) = 1] = 2p* — p*, so that the mean measure
of the projection on the line x; = x, has m(2) = 4p® — p*. This is less than 1 if p < (2 -
V3)V2 5o that P; = .518. This procedure can be continued, of coure, but the lower bounds
for pr increase very slowly and require large amounts of computation. Let p, be the
supremum of the lower bounds obtained by observing 7. for increasingly long periods
before making the branching walk approximation. Then clearly p; < p; < Der. We will
show that equality holds throughout by using the following result which is due to Griffeath
[5]. We will give a proof of his result in Section 2 because it as yet unpublished.

THEOREM 14. (Griffeath). If p < pe, then there are numbers A < o and b > 0
depending on p so that

P[&, # 0] < Ae™ b,
THEOREM 15. pjy = pr= pe.

PRrOOF. Let |£,| = | {x:£:(x) = 1} |. Since | é»| = n, Theorem 14 implies that for p <
Per, lim, . E|§:| = 0. Choose an N so that E|év| < 1, and apply the branching walk
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approximation after 7, has evolved for N steps. This gives p < p,. Since p < per Was
arbitrary, ps = p., which proves the result.
Note that we now have the following situation:

Con{xxi+x=1}=0 if p<pe

C, n {x:x; + x2 = 1} is a nondegenerate interval if p>pe.
2. Proofs. This section is devoted to the proofs which were omitted from Section 1.
THEOREM 8. Ifp > pe,thena— B =2[p — pe].

Proor. The proof follows the outline of that of the analogous result for continuous
time contact processes in Section 4 of [4]. The key to that proof was an additivity equation
which was a consequence of a graphical representation of the process [7]. To introduce the
corresponding construction in discrete time, let V be the graph Z x {0, 1, 2, ...} with
directed edges from each (m, n) to (m, n + 1) and to (m + 1, n + 1). Each vertex (m, n)
with n = 1 is independently marked open with probability p and closed with probability 1
— p. The contact process {4 with initial cc Ziguration 14 can then be defined on this
structure by letting £7 (x) = 1 exactly if there is a path along directed edges passing
through open vertices from some point (., 0) with y € A to (x, n). This family of processes
has the additivity property

£avP (x) = £2 (%) v &7 (%),
where a v b =max{a, b}. Let ri = sup {x:£4 (x) = 1}. The proof of Lemma 4.1 in [4] can
now be used to show that if B C (—o, 1] is infinite, then
Er® —r}) =1,

so that adding a one to the right of all the ones in the initial configuration has the effect
of increasing the expected location of the rightmost one at time n by at least one.

Using the above fact, we can complete the proof by following the proof of Lemma 4.2
in [4]. Let £5 denote the contact process with parameter p and initial value 1(-«,;, and let
r8 =sup(y:£5(y) = 1}. If § > 0, £5*° and £% can be constructed on the same state space in
such a way that ££%%(x) = £2(x) for all n and x, so that r2*® = r%. Let 7 = inf{m = 1:rj*’
> r2}. To compare r2*® and r4 on {r =< n}, it is convenient to introduce a process
£, which agrees with £2%° for m < 7 and evolves according to the rules of £; for m > .
Since 7 is a stopping time, £, can be constructed on the same space with £5"° and £, in
such a way that £57° = £, = &2, for all m < n. Letting 7, = sup { y: £.(y) = 1}, it then follows
that

E(r5 —r8) = E(Fo— 1r5; 7 < n).
On the other hand, as shown above,
E(fyn—1r&;7<n)=P(r<n).

Since the probability of a birth at 75*% + 1 in £5*° is always 8 greater than the probability
of a birth at %, + 1 in £, we have P(r=n) =1 — (1 — §)", so that

Erg®—ri)=1—-(1- 8"
Replacing § by 8/k and summing gives

Eri—-ri) = k[l - (1 —%) ]

' %E[rf,*‘* -ril=s,

Letting £ — o gives
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so that a(A + 8) — a (p) = 8. Here we have used the fact that just as in the continuous
time case, the a which occurs in the statement of Theorem 8 is equal to lim,_.(1/n)Er,
when p > p.. Since a + B = 1 by a symmetry argument, the result follows.

THEOREM 11. If a one dimensional branching random walk on the integers has a
mean measure with m(A, ©) =0, m({A}) <1, and m(—o, A) < o, then the limit set D
is an interval lying strictly to the left of A.

Proor. By monoticity, it suffices to consider the case m( {A}) =p<1land m({A -
1}) = M < oo, with m putting no mass on the complement of {A —1, A}. In this case,

fe—0x dm =pe—0A + Me—0(A—1)’

S0
k(6) + 8y =log[ pe " + Me™*4~V] 4 gy
= log[ pe?>™ + Me®0+1-4),
Pick 6 < 0 so that Me/?® < 1 — p and pick yo € (4 — %, A) so that
p(eoo(yo—A) _ 1) <1 -p— Me(l/z)o".

Then if y > yo,
peﬂo(y—A) + Meﬂo(y—AH) <1,

which gives £*(y) < 0. Therefore D C (—, y,].

THEOREM 14. Ifp < p.., then there are numbers A < © and b > 0 depending on p so
that

P&, % 0] < Ae™*".

PROOF. Let £7 and £ be contact processes with initial values ¢& = 1m0 and &5 =
1po, =, and put 77 = sup { y:£5(y) = 1} and [, = inf {y:£% (y) = 1}. By results in Section 6 of
[4], there are constants a and 8 with —o <a=<1and 0 < B = »sothat 7,/n — aand I,/
n — B as. These are the same constants which appear in Theorem 7 when P(Q.) > 0.
Note that still « + 8 = 1 since r, = n — I, in distribution. By using the construction in the
proof of Theorem 8, £7, £F and £, can be constructed on the same space in such a way that

on &, = {£& # 0},

*) £(x) = &n(x) = £R(x) for I,<x=<F,
and (x)=0 for all other x’s.

Since P(Q.) = P(¢, # 0 for all n) = P(, < 7 for all n), it follows that & < 8 implies P(Q.)
= 0 and « > B implies P(2.) > 0. We are now prepared to obtain the following useful
characterization of p.. which was discovered by Griffeath:

LeMMA.  If ax(p) = (1/n)EF, and p, = sup{p:an(p) < 1%}, then p.: = sup, p,.

ProoF. Let g = sup, p. a(p) = inf, an(p)/n, so p < p, implies a(p) < % and B(p) =
1 — a(p) > "%, and hence P(Q.) = 0. This shows that p., = g. Now if p >p’ > g, then a(p’)
= '4. By the proof of Theorem 8, this gives a(p) — a( p’) =p — P, so that a(p) > %, and
hence p > p... Hence p.: = q.

Returning to the proof of Theorem 14, assume p < p... By the lemma, there is an N so
that p < pn. Let £7 be a process with initial configuration 1(_.¢ which evolves like a
contact process except at times kN, k=1, 2, .. .. At those times, after the transition from



RICHARDSON’S GROWTH MODEL 193

time £N — 1 has been made, the process is reset to 1 at-all points to the left of the rightmost
one. (This is one of the reset processes used in [4]). Let7Y =sup{y:£Y(y) = 1}. Asa
result of the choice of N and the resetting, 7y = 7,, and the increments {Fiy — 751N, &
= 1} are independent and identically distributed random variables with mean p, < N/2.
Since the distribution of 7% is bounded above by N, a standard large deviations estimate
([9]) shows that if p > pv, there is a C <  and a d > 0 which depends on p so that P(iiy
= pk) < Ce %, A similar estimate holds for /iv. Combining these two with (*) completes
the proof of the theorem.
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