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GROWTH OF RANDOM WALKS CONDITIONED TO STAY POSITIVE

BY GRANT A. RITTER

University of Florida

For random walk S; = Y%, & let T be the hitting time of the lower half
plane. By conditioning the process {S:}i- relative to [T > n] we create a
“random walk conditioned to stay positive.” Sample paths of such processes
tend to grow rather quickly. In studying this growth we find that except for a
set of probability e all such sample paths have as lower bounds any sequence
of the form {6k"};-, where n € (0, %) and § < &8(e, 5). Applications of this
result to sample path behavior of a random walk as it approaches or leaves
the lowest of its first # values are also given.

1. Introduction. Recent work concerning random walks includes the study of such
processes when they are conditioned to be positive. From a classical set-up with S, =
Y &1 & where the &s are iid. r.v.’s with mean p and finite variance o7 one creates these
processes by defining the Markov time 7 = min {k = 1:S, < 0} and conditioning relative
sets of the form [T > r]. Weak convergence for such processes have been established when
the drift is negative (Iglehart (1974a)) and when it is zero (Iglehart (1974b) and Durrett
(1978)). In studying the latter Iglehart states “conditioning to stay positive serves to
eliminate from the probability space all those smallish sample paths which are ‘flirting
with the zero level’.” Just how flirtatious can a sample path be without facing elimination?
In Section 2 of this paper we try to answer this question. We find that sequences of the
form {8k"};-, for small § and € (0, %) lie under most of the sample paths. In a sense this
result is a discrete analogue to Millar’s findings concerning Brownian meander (1976). In
Section 3 of this paper we give a simple application of our theorem, describing random
walk behavior near the index where a maximal or minimal value is obtained.

2. Theorems of lower bounds. Since flirting is not an intrinsic mathematical
concept we must somehow translate it into a more quantitative expression. One such
possibility is with the use of positive arrays. Define an array {an}ick=nicn<e as lower
bounding if and only if uniformly in n

linl(s_,o)P[infksn(Sk - Bak,,.) > OI T> n] =1.
With this definition we have

THEOREM 1. Let S, = Yi-1 & be the sum of ii.d. random variables with mean 0 and
variance o®. Let T = min(k > 0:S, < 0). For every y > 0 the array (@) ist=n1<n<e is lower
bounding where

. = 0 k < [yn]
TR kz[ynl.

PrOOF. Let X,.(¢) = Syimi/on'/? 0 < t < 1. From Durrett (1978) we know that under the
conditions the theorem (X.(¢) | T > n)” W*, where the limiting process W™ is strictly
positive for ¢ € (0, 1] and has continuous sample paths with probability 1. It follows that
for y > 0 and € > 0 there exists a § > 0 such that
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P[W*(@#)>8 forall te[y,1]]=1—e.

Thus for n sufficiently large,

P[X.(t) >8 forall t€[y,1]]=1— 2

and the theorem readily follows. O

The shortcomings of this result are obvious. The array remains for a time at zero and
then takes a jump. Our intuition of the sample path is that it starts to climb immediately.
It seems appropriate to seek a result reflecting this.

In a second attempt at finding a mathematical equivalent of flirting we use positive
sequences instead of arrays. Define a sequence {a:}i-1 as lower bounding iff uniformly in
n

lims_,0)P[inf.<. (S — 8ax) > OI T>n]l=1
In studying Brownian meander, Millar (1976) has proved that
P[W*(t) > t'*f(t) for sufficiently small ¢]

is 0 or 1 according as [§ f(£)¢"'dt is infinite or finite. From this result our intuition is that
for a,’s of the form &", the sequence {ax}i-; will be lower bounding if n < % and will not be
lower bounding if n = '%. This proves to be the case.

THEOREM 2. Let S, = Y & be the sum of i.id. r.v.’s with E{; = 0 and E; = gl < oo,
The sequences {k"}3-1 are lower bounding for n < % and are not lower bounding for n
= K,

ProoF. Taking the second part of the theorem first, let n = %. From results of Durrett
(1978) and Millar (1976) we kno that for any § < 0

limy oo Plinfizs=n (Sk — 8kY2) > 0| T > n]

- St 6 [tn]1/2 1
=lnn,,_mP[(W—;—nm— >0 forsome tE€E I_l , 1

= P[W*(t) — 8 t'2> 0 for t € (0, 1]]
g

's
=0 since f —tldt=oo.
00'

This confirms that the sequence {k/?}i-; is not lower bounding and thus neither will be
{k"} %=\ for any 7 greater than Y. ,
To prove the first half of the theorem we need to start with several lemmas.

LEmMMA 1. Under the conditions of the theorem there exists a constant ¢ such that
c

P[T>n]~nTI,2,

ProoF. This is a result first proved by Spitzer (1960).

LEMMA 2. Let S, = maxo<i=n(—S;). Under the conditions of the theorem there exists a
constant M, > 0 such that for all x = 0:

- +1
PS, <x]=MiZpr.

Proor. This is Theorem A of Kozlov’s (1976).
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LeEMMA 3.  Under the conditions of the theorem, for all integers 1 = a < b < n and for
all nondecreasing sequences {x;}}=q+1:

P[Uieas1 (Sk < xz, T> (1 + €)n)] = M, bithe P[T > al.

Proor. Let Agi1 =[Se+1 < Xe+, T>a +1]andfork € {a +2,a + 3, .- b} let As
=[Sy < xp, T> k] 0 (U%L1 Aj)°. Let 6, be the shift operator £:(6xw) = &i+x(w). Since each
Ak is ak-measurable (Uk = G(Sl, Sz, oo Sk))

P[Ai, T > (1 + €)n] = P[Ar, maXe<i(1+en](Sk — Si) < Sk]
=< P[A}, maxe<i=[1+en)(Sk — Si) < xx]
= P[A4, Sta+oni-+0k < xi)
= E[E[Sta+ani-+°0s < x| 0x]; As]
< E[P[Sta+oni-r < Xx]; Ax]

xp+ 1
[en]”

Since the A,’s are disjoint and contained in [7" > a], the lemma follows by summing.

=M,

P[A,].

LEMMA 4. For n € (0, %) there is an M, > 0 such that for sufficiently large ko and any
n> ko,

P[S.<k" forsome k€ {ko+ 1, k+2 ---n}|T>(1+e€)n]

1/2
st (1 + 6) k8—1/2
€

ProoF. Letting x, = k" and applying Lemmas 1, 3, and 4 we have for sufficiently large
aandn=b>a

"1
P[U2=a+1 (Sk < Xp, T> (1 + e)n)] = MI%WP[T> a]

Let ¢ be any number greater than 1 and let s be such that for any a > ¢* the above
inequality holds. For any choice of n > ¢* and any r e{s, s + 1, s + 2, -+ - [In n/In c]} We

know:
(r+1)"

PlUSZ: (Sk< B, T> (1 +e)n)] < M

Summing r from s to [(In n)/(In ¢)] gives
PlUiss1 (S < k", T > (1 + €)n)]

c+1 ("

= 2CIM1 * [€n]1/2 ° 1-— c‘n—l/2
1 ~ C1

==. . ()2

<5 M o (@)

where M, = My/1 — ™2 . (" + 1).
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The rest of the proof is fairly straightforward. Note
P[S.<k" forsome kE{c+1,c+2,..-n}|T>(1+en]

_ PlUk41(Se < k", T > (1 + €)n)]
B P[T> (1 + ¢)n] )

We have found an upper bound for the numerator of this fraction and by Lemma 1,

1/201

P[T> a+ e)n] Zm

1+e€

1/2
Therefore the fraction is bounded by Mz( ) (c*)" 2, This gives the needed result

when £k, is of the form ¢*, (M depending on ¢ but not s). To obtain the lemma in the more

general case note that for k between ¢” and ¢

PlUpakr1 (S < B, T> (1 4+ €)n)] C P[Ui-crs1 (Sp < &', T > (1 + €)n)]
1/2
< MZ(I +e€ ) (cr)q—l/Z
€

1+ e
€

=< M2 . cl/Z—v' (cr+1)v,—1/2

1/2
5M2<1 + e) B2

€

where M, = M, - ¢/
Theorem 2 will easily follow once a few last details are handled.
LEMMA 5. Under the conditions of the theorem for € > 0 and n €(0, 1/2) there exists

a k1 = ki(e, m) such that for all n = k,,
P[S, < k" for someke€ (k1 + 1, k+2,---n}| T>n] <2

ProoF. From simple inclusion considerations we know
P[S.<k"forsomek € {ki+ 1, ki +2,---n}|T>n]

_P[Sy<k'forsomek € {ki+ 1,k +2,---n}|T>(1 + €)n]
P[T>n|T>(1+e€)n].

From Lemmas 1 and 4 we know that we can choose k; sufficiently large to assure that for
all n = k, the numerator is bounded above by € and the denominator is bounded below by

1 — e. This proves the lemma since for € < 1/2, l—i—; =< 2¢, while for € > 1/2 the claim is

vaccauously true.
We’ve taken care of the indices above %, so the theorem follows if we can show that
some M; > 0 and for all € > 0 there is a § = 8(¢) such that Vé € (0, 4.):

P[S, <8k for some k € {1, 2,3, --- k)| T > n] < Mze.

We begin by noting that for all £ = 0, P[S; <0, T > k] = 0. Since N0 [Sk < %", T > k]
= P[S,. =0, T > k], 38 € (0, 1) such that V& € (0, d»)

1 V2 e
n —_—
P[Sk<8kk,T>k]s(k1+1) oF -

If 8(¢) = min{8;:1 < k < k,}, then for k <k, <n and § € (0, 8(¢)),
P[S, < 8k", T > n] = P[S: < 8k", Su-ro0r < Si]
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= E[E[Sn_k°0k < Sk|Sk]; Sk < 8k", T > k]
< E[P[S,_s < 8k"]; Si < 8k, T> k]

ST+ 1
=M, . ———— . P[S, <0k, T
1 (n—k)1/2 [Sk k , >k]
ST+ 1 n'2 12 ¢
< . . . o —
=M -— 7 =k k+1 2F
SRT"+1 €
=M

Together with Lemma 1 this implies
2M, SkT"+1 c

P[Sk<8k_"|T>n]S —_—
C1 2

Letting M3 = 4M, /c; and summing over k € {1, 2, - .- k;} gives the needed result and the
theorem follows.

3. An application. As mentioned in the introduction, theorems concerning random
walks conditioned to stay positive can be useful in describing the behavior of partial sums
near their maximal and minimal values. Here as an example we show how Theorem 2 can
be applied to describe a minimum rate of climb (or descent) for a sequence of partial sums
as it leaves the lowest (or highest) of its first n values. By considering the sequence of
random walks S}, , = S, — S,— and noting that (S, ., S, - - - S.») is distributed the same
as (81, Sz, - -+ S»), one may use the same argument to describe how a sequence arrives at
its lowest (or highest) value.

. THEOREM 3. Letv(n) =max{k=0:S;=S; for alli<n}. Ifn € (0, 1/2), then uniformly
inn
limso P[Sk+simy — Soimy > 0k" forall k=n-—»(n)]=1.

Proor. The proof takes advantage of the following representation of the set

[v(n) =1
[v¥(r) =j1=[S:=S; Vi=jl[Si=S, Vi, j<i=<n]
=[Si=S Vi=<jl[T6;>n—-j]
To simplify notation define
As = [Svpy+r — Sviy > 8k forall k=n— v(n)]
and
Asj = As[r(n) =Jj].
This leads to
P[A;] = X1 P[As)]
= X551 P[As,|v(n) = j1P[ () = j].
Both sets A;j and [T6; > n — j] belong to 0(Xj+1, Xj+2, - - - X») and thus are independent
of [S;=S; Vi=j]whichisino(Xi, Xs, -+ X;). It follows that
P[As;|¥(n) =j]1= P[As;| T°6; > n —j]

and
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P[A;] = Y31 P[As,;| Te6; > n — j1P[v(n) =j].
By the Markov property
Pl[A;;|T°0;>n—j]=P[S, >8k" forall k=n-—j|T>n-/]

For € € (0, 1/2) use Theorem 2 to determine ad. > 0 and a.n.(e) so that Vé € (0, é.),

Vm = ni(e)

P[S.>6k"VE=m|T>m]l=1-e
By letting m = n — j and summing over j € {1, 2, --- [(1 — €)n]} we obtain
P[A;]= (1 — €)P[v(n) < (1 — €)n].

By a simple application of the invariance principle (Donsker (1951)), for sufficiently large
n

Plr(n) <(1—¢€)n]>1-—¢,
and thus
P[As]>1 — 2e.

From here the corollary follows by a standard argument.
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