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MARKOV FUNCTIONS

By L. C. G. RoGERs AND J. W. PITMAN'

University College of Swansea and University of California, Berkeley

A simple condition sufficient to ensure that a function of a time-homo-
geneous Markov process is again a time-homogeneous Markov process is
proved. This result is then used to study a number of diffusions; in particular,
an extension of a result of Pitman is proved, from which it is possible easily to
deduce the path decompositions of Williams.

1. Introduction. The focal point of this paper is the following theorem, which implies
the path decompositions of Williams (1974).

THEOREM 1. Let (B,, t = 0) be a Brownian motion on the line with drift p and B, =
0. Let

Mt = MaXo<s<¢t Bs, Yt = 2Mt - Bt.

Then the process (Y, t = 0) is a time homogeneous diffusion identical in law to the
radial part of a three dimensional Brownian motion with drift of magnitude | .|, started
at the origin.

The special case of Theorem 1 with no drift was established by Pitman (1975) using
random walk approximations, and this result was recently reproved by Jeulin (1979) using
techniques from the theory of enlargement of filtrations. Here we give a short proof of
Theorem 1 based on general criteria for when a function of a Markov process is again
Markov. These criteria, which are presented in Section 2, complement those of Dynkin
(1965), Kemeny and Snell (1960) and Rosenblatt (1971), none of which is applicable to the
example at hand.

2. Criteria for a function of a Markov process to be Markov. Throughout this
section, let X = (X, ¢ = 0) be a continuous time Markov process defined on a probability
space (2, &, P), with measurable statespace (S, &), initial distribution A, and transition
semigroup (P, t = 0) with P, the identity. Let (S’, &’) be a second measurable space, and
let ¢:S — S’ be a measurable transformation.

Consider the question of when ¢ o X is a Markov process. Dynkin (1965), Kemeny and
Snell (1960), Rosenblatt (1971) give conditions for ¢ ¢ X to be Markov, either for all initial
distributions A, or for an invariant A. But we are particularly concerned here with the
situation when there may be no invariant initial distribution, and ¢ > X may be Markov for
some, but not all, initial laws A.

We shall formulate a condition in terms of a Markov kernel A from S’ to S, that is, a

map

A:(y,A) > A(y,A),yES AE Y
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such that for each y € S’, A(y, -) is a probability on S, and for each A € &, A(-,A) € b,
the space of bounded measurable functions on S’. The kernel A will also be viewed as an
operator taking f € b¥ to Af € b, where Af(y) is the A(y, -) integral of £.

The role to be played by A is made plain by the following simple observation. If for
eacht=0,A € 9,

(1) PX;€A|lpoX,,0=s=<t)=A(p°X;, A) a.s.,

then ¢ ° X is Markov with transition kernels @, defined by

() Q.f = AP.(f° ¢), fELY.
In more compact notation using composition of kernels

3 Q= AP.D,

where @ is the Markov kernel from S to S’ which is induced by ¢ according to the formula

4 Of=f-¢, fEbLY.

The criterion (1) is unsatisfactory in two respects. Firstly, one has to be able to calculate
the conditional distribution of X, given the whole history of ¢ o X up to time ¢, and
secondly, the resultant kernels @, may not form a semigroup because the Chapman-
Kolmogorov equations need only be satisfied with exceptional null sets. These difficulties
are overcome by the following theorem.

THEOREM 2. Suppose there is a Markov kernel A from S’ to S such that
(a) A® = I, the identity kernel on S’,
(5) (b) for each t = 0 the Markov kernel @, = A P,® from S’ to S’
satisfies the identity AP, = Q.A.

Let X be Markov with semigroup (P,) and initial distribution A = A(y, -), wherey € S’.
Then (1) holds, and ¢ - X is Markov with starting state y and transition semigroup (Q:).

Proor. Condition (b) implies that the family (@;) of kernels is a semigroup. Condition
(a) implies that for f€ b, g € b,

(6) A(@f)g = fAg,
and together with (b) this implies
(7 AP,(Pf)g = Q:fAg, t=0.

Note that the concatenations of kernels and functions now appearing should be read
from right to left, unless indicated by brackets. For example, the left side of (6) is the
function in %" obtained by multiplying g by ®f, and then operating with A. An obvious
induction using (7) now implies that for ¢, .-+, £, =0,f1, ---, , EbS’,and g € b%,

AP, (®f)P,(Df2) -+ - Pr (Dfn)g = Qu,[1Quf2 - - - Qo A&,

and the conclusions of the theorem are evident.

REMARKS.

(i) Apart from forcing ¢ to be onto, condition (a) is a natural regularity condition for A
acting as a conditional distribution for X, given ¢ o X,. Assuming that singleton sets {y}
are in &, (a) simply says that

Ay, o {3} =1, yES"
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(ii) As is plain from the identity (7), when (a) holds, condition (b) is equivalent to the
following condition:

PX;€Alp° X)) =Ape° X, A) a.s.

whenever X, has distribution A = A(y, -) forsomey € S, A € %, t=0.
(iii) If instead of (5b) one has simply

8 P.® = 0Q,, t=0

for some kernel @; on S’, that is to say, if the P,(x, -) distribution of ¢ depends only on the
value of ¢ (x), then ¢ o X is Markov with semigroup (Q;) for all initial distributions A. This
is the well known criterion of Dynkin (1965).

(iv) Both Dynkin’s criterion and the criterion of Theorem 2 have obvious extensions to
inhomogeneous Markov processes, by the trivial device of considering the space-time
chain.

(v) When Dynkin’s criterion applies, the process ¢ o X is Markov with respect to the
larger o-fields generated by the underlying process X, meaning that at each instant of time,
the past of X and the future of ¢ o X are conditionally independent given the present of
¢ ° X. This does not usually happen when Theorem 2 applies; however, ¢ ° X is Markov
with respect to the o-fields of X when time is run backwards, for (1) implies that the future
of X and the past of ¢ ° X are conditionally independent given the present of ¢ o X. Kelly
(1981) identifies the condition of Theorem 2 as the time reversal of Dynkin’s condition in
the case of inhomogeneous discrete time Markov chains, and develops these ideas.

(vi) The difference between Dynkin’s criterion and that of Theorem 2 is well illustrated
by the following example from renewal theory, which was pointed out to us by Martin
Jacobsen.

Let Ly, Ly, - - - be independent identically distributed nonnegative random variables, to
be thought of as lifetimes. Let S, = -, L,. Define the age process A and the residual
lifetime process R by

A, =t — max{S;; S; = t}, t=0;
R,=min{S,-; Si>t} -t t=0.

Consider also the bivariate process (A4, R) = ((A;, R:), t = 0). It is well known that each of
the three processes A, R, and (A, R), is Markov with stationary transition probabilities.
Viewing A and R as functions of (A, R), R is Markov by Dynkin’s criterion, while A is
Markov by the criterion of Theorem 2, with A(a, -) the conditional distribution of
(a, L, — a) given (L; > a).

(vii) With suitable topological assumptions, such as those in Lemma 1 below, it is easy
to deduce a strong Markov form of the above Theorem, but this is left to the reader.

To conclude this section we record two Lemmas which can save much labour in
checking Condition (b). i

For the first Lemma suppose that S and S’ are metric spaces equipped with their Borel
o-fields.

Say a collection of probabilities % on a metric space is determining if for two bounded
continuous functions fand g, Af = Ag for all A\ € ¥ implies f = g.

Call a kernel continuous if it maps bounded continuous functions to bounded continuous
functions, and say that a semigroup (P,) is Feller if each P, is continuous.

. LEMMA 1. Suppose that (P,) is Feller, and that both ¢ and A are continuous. Let X
have a fixed initial distribution \, and let q. be the distribution of ¢ o X,. Suppose further
that

(i) for each t = 0 a conditional distribution for X, given ¢ - X, =y is A(y, ),y € S’;
(ii) the collection {q.; t = 0} is determining.
Then conditions (5a) and (5b) hold, ¢ X, is Markov with initial law qo and transition
semigroup (Q:; t = 0), which is the unique Feller semigroup on S’ such that q; = qoQ:,
t=0.
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ProoF. According to (i), AP; = q:A, and q, = A P,® by definition, so
AP, = AP,®A, t=0.
This implies that for each bounded continuous function f on S’,
q:f = AP, ®f = AP, OADf = q,ADf.

The continuity assumptions, condition (ii), and the metrisability of S’ imply A® = I. Proof
of the condition (5b) is by repeated application of the identity AP, = AP,®A and the
semigroup property of (P;) to justify the following computation; for s, ¢ = 0,

qsAP, = APDAP,
= \P,P,
= AP,
= AP+, @A
= AP,P,®A
= AP,®AP,®A
= q;@Q:A, where Q.= APQ.

Now integrate a bounded continuous function f on S to conclude that AP,f = @.Af for
all such £, using (ii) and the continuity assumptions. Thus (5b) holds, and the uniqueness
assertion for (@) is easily checked by a similar computation.

LEMMA 2. Let (P;, t =0), ¢ and A be such that (5) holds. Let f be a strictly positive
measurable function on S such that for some a

9) e ™P.f=1, t=0,

and such that h = Afis everywhere finite on S’. Let (P} ) be the semigroup of transition
operators on S defined by

P} (x, dw) = e”*'f(x)"'P:(x, dw) f(w),
and let
A*(y, dx) = h(y)"'A(y, dx)f(x).
Then (5) holds for (P}), ¢ and A*, and QF = A*P}® is related to @, = AP,® by
Q:(y, d2) = e *'h(y)7'Q:(y, d2)h(2).

Proor. This is quite straightforward.

3. The Bessel process of drifting Brownian motion. For a Brownian motion X in
R* with no drift and arbitrary initial distribution, it is well known that the radial part | X |
is a diffusion on [0, ), the k-dimensional Bessel process, BES(k), with transition density
qx (¢, x, y) which can be expressed in terms of the modified Bessel function of the first kind
I,, where v = Y%k — 1 (see Itd and McKean (1965), Section 2.7). Taking ¢(x) = | x|, x € R*,

this is a typical example where the criterion (8) applies. The criterion (5) is well illustrated
by the following theorem, where it is essential to start at the origin if p > 0.

THEOREM 3. Let X be a Brownian motion in R* started at the origin, with a drift of
magnitude p = 0. Then the radial part | X | is a time homogeneous diffusion process on
[0, ) with transition density

(10) Qru(t, %, ¥) = Ry (ux) 7 qr (¢, X, ¥) i (1Y),



MARKOV FUNCTIONS 577

where
he(y) = (y/2)"'T(v + 1)L (y), v=(k/2) - 1.

ProoF. Fix k, and for u = 0, let (P#) be the semigroup of Brownian motion in R* with
a drift of magnitude u in the direction of the first coordinate axis, write P, instead of P?,
and define f: R* — (0, ) by

f(x1, X2, « -, x2) = '™,
Then’
e ?Pf=f, t=0,
and
Pi(x, dw) = e™**f(x) " Py (x, dw) f(w).

Let (Q, t = 0) be the BES(%) semigroup on [0, ), and for y = 0 let A(y, -) be the uniform
probability distribution on the sphere of radius y in R*. As is obvious by symmetry,

AP, = QA, t= 0.
Lemma 2 implies
A*PY = QLAY t=0,

where A*(y, -) is the (von Mises) distribution on the sphere of radius y with density
proportional to e*™, @ (x, dy) = gs,.(¢, x, y) dy, and we have used the fact that the integral
of e**' with respect to the uniform probability distribution on the surface of the sphere of
radius y in % dimensions is A (uy). Theorem 3 now follows from Theorem 2.

Call a diffusion process on [0, ®) with transition density g, and starting state r a
BES'(%, 11). The above argument goes on to show that the von Mises distribution A*(r, -)
on the sphere of radius r is the hitting distribution of that sphere for the drifting Brownian
motion X started at the origin, and that if X is given initial distribution A*(r, -) then | X|
is a BES'(k, u). See Pitman and Yor (1978) for further development including a Brownian
motion proof of the result of Hartman and Watson (1974) that the von Mises distribution
on the circle is a mixture of wrapped normal distributions.

The generator G of BES(k) with no drift is the radial part of %4,

Gold b1d

*T2dr” T2r ar’

and the generator Gy, of the BES(%, p) can be calculated from (10) as
| d d

(11) Gk,“ =G+ hk(yr) II:E‘ hk(ﬂr):] E‘ .

For odd dimensions % the Bessel function I, can be expressed in terms of hyperbolic
functions, and in particular for £ = 3 one finds that

(12) hs(y) =y 'sinhy if y?‘p
=1 if y=0,
whence for p > 0
2 d
(13) G, = 23 + u coth }H‘E‘.

The transition density gs, of BES(3, p) can be explicitly obtained from (10) and (12)
together with the following well known formulae for gs:
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_ 28y, if x=0
(14) %6 %) = {x“p"(t, %Yy x>0
where
15 &(y, t) = (2nt®) 7y exp(—y*/2¢),
(15)

p(t, x,y) = 2mt)"/? exp(—(x — y)2/2¢t)
is the Brownian transition density, and
po(t, X, y) =P(t, X, .}’) _p(t, X, -.y)

is the transition density for Brownian motion killed at zero. As observed by McKean
(1963), Knight (1969), and Williams (1974), (14) can be interpreted by saying that for p =
0, BES(3, ) is Brownian motion with drift u on [0, ») conditioned to hit « before 0, where
the conditioning is to be understood in the sense of Doob (1957). It is easy to show, using
the above formulae, that the same is true also for u > 0, where the conditioning can now
be interpreted in an elementary manner provided that the motion starts at a level r > 0.

4. Proof of Theorem 1. Let B = (B,, t = 0) be defined on a space (2, &) equipped
with probabilities P,, p € R, such that under P, the process B is a Brownian motion with
drift u started at zero. Let

M, = maxo<s<: Bs, Y: = 2M, — B,,
X;=M, - B;,,M;), soY,=¢°X,, whereo(u,v)=u+uv.

As is easily verified, the process (X, ¢ = 0) with statespace [0, ©)? is Markov under P, with
Feller semigroup (P, ¢ = 0) which may be described thus: for u, v = 0, P{((u, v), -) is the
P, distribution of

(M, v u)— B, v+ (M, —w)").

For u = 0 the joint distribution of M, and B, may be obtained using the reflection
principle (see for example Freedman (1971)), and one finds that for u, v = 0, and g(y, t) as
in (15),

(16) Py(M; — B: € du, M, € dv) = 2g(u + v, t)dudv.

But, according to the Cameron-Martin formula,

dP,
dTﬁ:_ = exp(uB; — pt/2) on %,

where %, is the o-field generated by B, 0 < s < ¢t (see McKean (1969), page 97, or
Freedman (1971) Section 1.11). Thus (16) implies

(17) P,(M, — B, € du, M, € dv) = 2g(u + v, t)e"*™ "> dud.
For y > 0let A,(y, -) be the probability on [0, «)? which concentrates on the line segment
{y,v):u+v=y,u,v=0}

with density at (x, v) proportional to e*“~*, and let A,(0, -) be a unit mass at (0, 0). As is
obvious from (17), A,(y, -) serves as a P, conditional distribution for X, = (M, — B., M;)
given Y; = y, and an easy integration using (17) shows that the P, distribution of Y, =
(M, — B;) + M, is

(18) q4(dy) = 2yhs(wy)g(y, t)e ™ *dy,

where A3(y) was defined in (12). But the uniqueness of Laplace transforms implies that for
each p the laws {q#, ¢t = 0} on [0, ) are determining, so Lemma 1 and Theorem 2 of the
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previous section imply that under P, the process (Y;, ¢ = 0) is Markov with the unique
Feller semigroup (@, ¢ = 0) on [0, ) such that

Q40, dy) = q(dy), t=0.
The proof is now completed by an inspection of (10), (14) and (18).

5. Consequences of Theorem 1. Call a one dimensional Brownian motion with drift
u a BM(p), and call the radial part of a three dimensional Brownian motion with drift u
= 0 a BES(3, ), where the starting position may be indicated by a superscript. Theorem
1 implies that corresponding to every relation between BM(u) and BES(3, 1) described in
Williams (1974) and Pitman (1975) for p = 0, there is an analogous relation for every pu =
0.

To start off, let B be an arbitrary process with continuous paths, and let Y = 2M — B
be defined as in Theorem 1. The transformation from B to Y can be interpreted geomet-
rically as reflection in the level of the past maximum. Thus if the value of M, = sup; M, is
known, the transformation can be inverted according to the formulae

(19) M, = inf{M,, Y,, s=t}
(20) B, =2M,-Y..

COROLLARY 1. Fix u =0, suppose that Y is a BES(3, p), and define
M{ = inf{Y,, s= ¢}, B =2M; - Y,,
op=sup{s:Y, < b}, ,/=inf(s:BF > b}.
(i) B* is a BM"(p);
(i) M{ = sup{B;,0=s=<t};

(ili) 0, = 7o for all b= 0, as,; _
(iv) For each b > 0 the post-o;, process Y defined by

Y@ =Y +u -0, u=0
is a BES®(3, u) independent of the pre-c; process
(Y(¢),0=<t=o0s)
which has the same law as

(b—B*(rs—t),0<t=<r1).

Proor. It evidently suffices to prove these assertions for any particular BES(3, )
process Y. So appeal to Theorem 1 and take Y = 2M — B where M is the past maximum
process of a BM’(u) process B. Since u = 0, M., = « as., so (19) and (20) imply that the
processes M* and B* defined in (i) are a.s. identical to M and B respectively. This proves
(i) and (ii), and (iii) follows easily. Turning to (iv), the strong Markov property of B at
time 75 implies that the post-r; process. B defined by

Bw) =B(r+u - b, u=0,
is a BM°(p) independent of the pré-n process
(B(t),0=t=<r).

Since ¥ = 27 — B, where M is the past maximum process of B, Theorem 1 implies that
Y is a BES’(3, u), independent of (B(t), 0 < ¢ < 7,) and hence of (Y(¢), 0 < ¢ < 0,). The
last assertion can be deduced from Theorem 1 using a time reversal argument involving
the process with stationary independent increments (7., 0 < a < b) and the excursions of
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B below M, but it seems to be more trouble than it is worth to try and make this argument
rigorous. Rather it is simpler to mimic the proof of Theorem 3.4 in Williams (1974), which
is the present result for p = 0.

REMARKS.

(a) The time reversal of excursions linking Williams’ Theorem 3.4 and Theorem 1 of
this paper was what originally suggested the results of Pitman (1975).

(b) Part (iv) shows that the last exit process (o5, & = 0) associated with BES’(3, p)
process Y has stationary independent increments, and one can easily obtain formulae for
the distribution of o, from known results for 7,. For example, the expectation of o is b/p.

(c) To obtain a more general formulation of the last exit decomposition (iv) for a
transient diffusion Y see Theorems 2.4 and 2.5 of Williams (1974). Assuming that Y starts
at zero and escapes to + , the last exit process (o5, b = 0) still has independent increments.
Moreover, the last exit process has stationary increments only if Y is a BES®(3, u) after a
rescaling of time. To see this, consider the reversal of Y from o;, defined by

Yt = b - Y(ab—t)vo t= 0’

for some fixed & > 0. Then the last exit process of Y becomes the first hitting process of Y
and the fact that Y is a time-homogeneous strong Markov process, coupled with the fact
that the first hitting process of Y is a Lévy process, implies that ¥ is a BM(u) stopped on
first hitting b, for some p = 0. Since b was arbitrary, this determines Y, and the fact that
a BES’(3, p) reversed from o, is a stopped BM(y) (Corollary 1 (iv)) proves the assertion.

The next consequence of Theorem 1 is a path decomposition of downward drifting
Brownian motion at its maximum, which is a slight refinement of Theorem 2.1 of Williams
(1974). For more general but less explicit decomposition of Markov processes in a similar
vein see Millar (1977) and (1978).

COROLLARY 2. Let B be a BM®(—pu), where p. > 0. For 0 < t < o let M, = supo=s<: B,
and put p = sup{t:B; = M..}. Then .
(i) M. is exponentially distributed with rate 2u, independently of the BES’(3, p)

process Y = 2M — B.

(i) Let M} = inf{(Y,, s = ¢}, B} =2M; — Y, Then B* is a BM’(1) independent of
M., p = inf{¢:Bf = M..} a.s., and the processes (B;,0 <t =<p) and (Bf,0=<t=
p) are a.s. identical.

(ili) The process (M. — B,+y, u = 0) is a BES’(3, p) independent of (B, 0 <t < p).

ProoF. It was shown in the last section that for B, M and Y as above, the conditional
distribution of M, given (Y., 0 =< s < t) has density proportional to e ** for x in the
interval [0, Y,]. Since Y, — « a.s., (i) results by martingale convergence, and (ii) and (iii)
follow quickly using Corollary 1.

A further corollary of Theorem 1 is the extension of Theorem 4.1 of Pitman (1975) to
BES(3, n) processes for all u = 0. This implies a path decomposition at the minimum of a
BES®’(3, u) process Y which extends Theorem 3.1 of Williams (1974). For p > 0 this
decomposition can also be derived quickly from Corollary 2, since if B is a BM%(—p) with
maximum M., as in that corollary, the remarks at the end of Section 3 show that (b — B,
t = 0) conditional on (M., < b) is a BES®(3, p). The details are left to the reader.

6. When is 2M — B a diffusion? For which regular diffusion processes B is 2M — B
again a time homogeneous strong Markov process? We now mention two families of
examples in addition to Brownian motion with drift. Further examples can be obtained by
obvious rescalings, and there is the trivial example of a diffusion B which never rises above
its initial value, but recent work of Rogers (1981) proves that there are essentially no more.
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ExampLE 1. Let B be a BM°(—u) conditioned never to hit b, where b > 0, u = 0, and
for p = 0 the conditioning should be interpreted in the sense of Doob (1957). Put another
way, B, = b — R, where R is a BES®(3, w). Then 2M — B is a BES’(3, p). For p > 0 this
follows from Corollary 2(i), by conditioning Y = 2M — B on M. < b and using independence
of M., and Y, and the result extends easily to up = 0 by weak convergence. Alternatively,
the conclusion can be obtained for any g = 0 from the path decomposition of BES*(3, )
as its minimum which was mentioned at the end of the last section.

ExaMPLE2. Letu=0,0<p=<1,q=1—p.Let Bbeapand g mixture of BM’(1) and
BM(—p). That is,

B, =ZB/, t=0,

where X is a random sign, equal to +1 with probability p and —1 with probability ¢ =
1 — p, and B* is a BM°(u) independent of =. It is immediate from Theorem 1 that 2M —
B is then a BES(3, p) though it is not so obvious that B is itself a time homogeneous
diffusion. To see this, consider the process X defined by X, = (, B/), t = 0, which is
Markov with statespace S = {—1, 1} X R, and transition semigroup (P¥, t = 0) derived in
an obvious way from the BM(u) semigroup. Define ¢: S — R by ¢(s, b) = sb, so ¢(X;) =
B,. For u = 0 it is plain that B = ¢(X) is a BM°(0) independent of =, and therefore the
condition of Theorem 2 is satisfied by (P?, ¢ = 0) with the kernel A defined by

Ay, -) =pd(, y) + qé(-1, y),

where (s, b) is a unit mass at (s, b). For u > 0 define £,:S — R by f.(s, b) = e**®. Since P}
is derived from P, through f, as in Lemma 2, that Lemma implies that when B* has drift
p >0, B = ¢(X) is Markov with transition semigroup

Q“(y, dz) = e ™R, (y)'p(t, ¥, 2 (2) dz,
where p(-, -, -) is the transition density of BM(0) and
hu(y) = Afu(y) = pe” + ge™.
It follows easily that B is a regular diffusion.
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