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LARGE DEVIATIONS FOR BOUNDARY CROSSING PROBABILITIES'

By D. SIEGMUND

Stanford University

For random walks s,, n = 1, 2, - - - whose distribution can be imbedded in
an exponential family, a method is described for determining the asymptotic
behavior as m —  of

P{s,>mc(n/m) forsome n<m|sm=mpuo}, po<c(l).

Applications are given to the distribution of the Smirnov statistic and to
modified repeated significance tests.

1. Introduction. Let x;, x2, --- be independent, identically distributed random
variables and s, = x; + - -+ + x,,. Given a positive function c(t), t = 0, and m > 0, define
the first passage time

(1) T=T,=inf{n:s,>mc(n/m)}.

The purpose of this paper is to describe a method for studying the asymptotic behav10r of
the conditional probabilities

(2) P{T<m|sn=mpm}, m<c(l),

which under conventional assumptions on the function c¢(-) and the distribution of x;
converge to 0 exponentially fast as m — .

A number of methods have been developed for approximating the uncondltlonal
probabilities P{T < m} under various conditions on c(-) and the distribution of x;, cf.
Borovkov (1962, 1964), Daniels (1974), Ferebee (1981), Jennen and Lerche (1981), Lai and
Siegmund (1977), Lalley (1980), Siegmund (1978), and Woodroofe (1976b, 1978). Some of
these methods seem adaptable to an investigation of the conditional probabilities (2). In
principle, knowledge about the conditional probabilities (2) can be translated into knowl-
edge about P{T = m} by integrating out uo, although a rigorous justification of this
approach leads to questions of umformlty in go which may involve additional technical
difficulties.

This paper gives a new technique for studying (2). Although the problems of approxi-
mating P{T < m} and P{T < m| s, = m po} differ in important respects, there seems to
be enough similarity to warrant an informal comparison of the method introduced here
with the techniques of the papers mentioned above. The method of this paper permits a
fairly broad class of functions c(-) and has the aesthetically pleasing feature of making a
minimal distinction between random walk and Brownian motion. In contrast, the methods
of Borovkov and Woodroofe are directly applicable only to random walk; those of Daniels,
of Ferebee, and of Jennen and Lerche apply to an extremely broad class of functions c(-)
but seem limited to the intrinsically simpler case of Brownian motion. The Lai-Siegmund
method is general with regard to processes but limited with regard to functions c(-). Like
the methods of Woodroofe, Lai-Siegmund, and Lalley, the method described below seems
to adapt readily to certain multidimensional problems, although no results in this direction
have been developed in detail. For linear ¢(-) it is particularly simple. In a very special
case it was used by Siegmund and Yuh (1981) to give an easy derivation of Anderson’s
(1960) results for Brownian motion. In addition to these technical aspects, the method
provides a different perspective towards boundary crossing problems, which will become
apparent during the development of the paper.
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582 D. SIEGMUND

A glance at the literature mentioned above shows that systematic theory for problems
of this sort is exceedingly technical. Hence the following discussion is restricted to two
examples which are important in applications and which seem to indicate the scope of the
method. The case of linear c(-) receives a reasonably general and rigorous treatment in
Section 2. As an application one obtains the large deviation probabilities of the Smirnov
statistic, which are shown numerically to provide excellent approximations even for “small
deviations.”

A simple but illuminating non-linear example is provided by normal random walk and
the stopping boundary c(t) = Bt"/%. The stopping rule T is closely related to Armitage’s
(1975) repeated significance test. This example is discussed in Section 3, and the results
are applied to give an asymptotic approximation to the error probabilities of a modification
of this test suggested by Peto et al. (1976) and Siegmund (1978).

2. The linear case. Assume that the distribution F of x; can be imbedded in an
exponential family, i.e. for all  in some neighborhood of 0 exp[y(8)] =: [ exp(fx)F (dx) is
finite, so exp[fx — ¥ () ]F (dx) defines a family of probability distributions indexed by 6. It
is well known (and easy to see) that the mean and variance of these distributions are
respectively y’(6) and ¢”(f) = 0. Hence p = ¢’(0) is a one to one function of 4 (unless F is
degenerate). It will be convenient to regard this family of distributions as indexed by u and
write F, (dx) = exp[fx — ¢()]F (dx). To emphasize that 8 is a function of y, the notation
8 (u) is occasionally used. Let P, denote the probability according to which x;; x2, - - - are
independent with P, {x, € dx} = F,(dx), (k=1,2, .--).

An additional technical assumption is required to insure that conditional probabilities
are well defined and that local limit theorems apply. This assumption can be either that
F is arithmetic or that it has a well-behaved density. Only the latter case is explicitly
considered here. A convenient assumption is that for all u there exists an n such that

(3) J | E, exp(iAx;) |* dA < oo,

This implies that the P, distribution of s, has a bounded density f, » which obeys a standard

local central limit theorem (Feller, 1966, page 489). To avoid some uninteresting calcula-

tions, it is also convenient to assume that the P, distribution of x; has a bounded density.
Let &% = #(x1, - -+, x,) and P,, denote the restriction of P, to %, so

(4) dP,.n/dPsn = fon/frn = exp{(@ — §)s, — n[¥(0) — v (61},

where § = (). Form=1,2, ... and A € %, let P{” (A) = P.(A|sn = mé), and for
n < m let P{™ denote the restriction of P{™ to %,. By sufficiency of s, P{™ does not
depend on p.

The main result of this section is the following.

THEOREM 1. Let { > 0 and po € (-, {). Define 7 = inf{n:s, > m{} and 7. =
inf{n:s, > 0}. Assume that there exist p» < 0 < u; (necessarily unique) such that

(5) V(0 (p2)) = (0 (1))
and
(6) 1=pr'¢+ |p2| 7 — po).

Let ;= 6(w;) and o> =¢”(8:;),i =0, 1, 2. Then as m — o
) P™{r<m} ~ K(, po)exp{—m[(6y — 6:)¢ + (82 — Go)po — ¥(62) + (60)]},

where

8 K(§, mo) =

°0|#2|1/2Pu2{7+ = oo} {1 N Ufl.uzlas" -1/2
o211 (01 — 02)( — o) *E,, 74 opi(§ —mo) )
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REMARKS.

(i) It is usually routine to verify the existence of w; and pe and to compute them. For
example, if Y (#) and ¢’(8) both diverge (continuously) to + as  approaches the endpoints
of its interval of definition, a simple picture demonstrates the existence of u; and
satisfying (5) and (6).

(i) The quantities P, {r+ = »} and E, 7. must usually be computed numerically. See
Woodroofe (1979) for a Fourier inversion technique to obtain the ratio P, {7, = ©}/E, 7.
and for several examples.

(iii) It is not difficult to generalize the Theorem to allow { and wo to depend on m and
converge at suitable rates. The details of this generalization have been omitted, although
the example of the Smirnov statistic given below uses such a result.

EXAMPLES.

(a) Suppose that the P, distribution of x; is normal with mean y and variance 1. By
symmetry p; = —piz, and it is easy to see that yu; = 2{ — yo. The proof below shows that this
value of y; is tantamount to the standard reflection principle. Easy algebra and known
random walk theory (Feller, 1966, Chapter XVIII) show that the right hand side of (7)
becomes .

[2(2¢ — po)®] 'exp{—2 X ¥ n7'®[—n""*(2{ — po) [} exp{—2m{({ — po)}.

The final exponential factor in this expression is the well known, exact probability for the
corresponding problem with Brownian motion instead of random walk. The first two
factors account for excess over the boundary.

(b) If F,, (x) denotes the uniform empirical distribution function, the well known represen-
tation of the uniform order statistics in terms of sums of independent exponential random
variables (e.g. Breiman, 1968, page 285) shows that

P{supocs<i(x — F,(x)) > {} = P(maxigjzn (W —j) 20§ — 1| Woy — (n + 1) = -1},

where W, =y, + --. + y; and y1, ¥2, - - - are independent standard exponential. This is
almost in the form required by Theorem 1 with m = n + 1 and s, = W, — k&, except that
m¢ has been replaced by (m — 1){ — 1 and po = —1/m depends on m. Minor changes in the
calculation which yields Theorem 1 give as n — «

P{Sup0<x<1(x - Fn(x)) > .{‘}

9) N exp{—n[(8, — 62)¢{ + 6: + log(1 — 6:)]}
{§16217'Q = )[1 + (] 6:167)°(1 — 6,)(1 — 6,) '}’

where 0: < 0 < 0, satisfy 6; — 6, = log[(1 — 6:)/(1 — 6;)] and 67 + | 6:| ' = {"*. Bahadur
(1971, page 15) has determined the exponent on the right hand side of (9). It is not
immediately obvious that his answer is the same as that given here, but a simple calculation
shows that the two agree.

The exact distribution of sup.(x — F.(x)) is known (Birnbaum and Tingey, 1951),
although it is inconvenient for numerical calculation when n is large. For small values of
n, Table 1 compares some exact probabilities with approximations obtained from (9). The
classical Smirnov approximation, exp(—2n¢?), is also included. Once can easily see that (9)
provides a very good approximation even for small ¢, for which the probability in (9) is not
close to 0.

Proor oF THEOREM 1. Let f, denote the density function of s,.. Recall that f, . denotes
the P, density of s, and 6, = 6(w.). (Hence f, = f;., where 8(i) = 0.) For arbitrary p; > 0
andn<m



584 D. SIEGMUND

TABLE 1.
Exact and Approximate Tail Probabilities for the Smirnov
Statistic. In each cell the first entry is the exact probability. The
second and third are approximations given by (9) and by e ***

respectively.
n
4 ¢ =.04395 .2565 .5652
P =950 .500 .050
957 .510 .049
.985 .593 .078
9 ¢ =.03730 .1804 4796
=.950 .500 .010
952 499 .010
975 .557 016
(10) dP\® /APy, n = fr-n(mpo — Sn)exp[—0is, + ny (01)]/fn (muo).
By (4)
(11) fn(mpto) = fuom (mpo)exp[—mbopo + mi (65)]

and for a yet to be specified
(12) fn-n(mpo — 82) = fupm—n(mpo — 8,)exp[—0:(mpo — s,) + (m — n)y (02)].

If w2 < 0 < u; are chosen so that (5) holds, substitution of (11) and (12) into (10) leads to
the basic identity

P (r < m) = exp(—m[(8: — 0)po + ¥(8o) — Y(62)]} -

(13) Foumes(mpto — 5,)exp[—(0: — 028,/ fuum (mpio)) dP,.

{r<m}

The condition (6) can now be understood as putting my, — s, at approximately the center
of the distribution f, n—.. Since P, {r/m — {/m} =1 and s, = {m on {r < m}, the proper
centering is determined by pz(m — m{/w) = m(uo — §), which is equivalent to (6).

Let R,, = s, — {m. Then (13) may be rewritten

P (1 < m)exp{m[(6: — 62)§ + (6 — Go)po + ¥(60) — ¥ (62)])
14
o = J' {exp[—(0) = 02) R ) fym—-[m (i — §) — Rn]/fuum (mpso)} AP,
{r<m}
By the assumption (3)
(15) from (mito) ~ (27mad)™""%, m — oo

Since f,,m—- is bounded (uniformly in m — r) by assumption, Lemmas 1 and 2 given below
imply that the integral\in (14) may be replaced by an integral over

(16) {r<mui'(l+e), R, < (log m)*}

plus terms converging to 0 as m — . (Here ¢ > 0 is arbitrary subject to {ui'(1 +¢) < 1.)
It follows from (3) and (6) that uniformly on the event (16)

fu-_»vm—r[m(lio - f) - Rm]
= 03'(m — 1) ([2(r — m§/m) — Rn]/02(m — 7)""*} + o(m™"").
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Hence the integral in (14) has the same limit as m — o as
(27)%0005" j exp[—(0: — 62)R,,]
{r<miu;'(1+e€),R,<(logm)*}
-1 = 7/m) ™2 {ua(r — m¢/m)/02(m — 1)} dP,,.
Keeping in mind that P, {m ™'t — {ui'} = 1 and using the known limiting joint distribution
of R, and (r — m¢/m)/m"? (e.g. Siegmund, 1975), one may evaluate the limit of this
integral as m — o and hence complete the proof of Theorem 1.
LEMMA 1. Letpu, e > 0. Then
Pr>miu "1+ ¢} =o(m™?).
ProoF. Let n denote the least integer greater than m{u "(1 + ), so {r > m{u (1 +

€)} C {sn—1 < nu/(1 + ¢)}. Standard exponential Chebyshev inequalities show that the
probability of this event is actually exponentially small.

LEMMA 2. Let u> 0. Then P,{r <m, R, > (log m)*} = o(m™"?).

Proor. The proof follows easily from
P,{r <m, R, > (log m)*} = mP,{x: > (log m)*}

and standard estimates.

3. Repeated significance tests — a non-linear example. Assume now that xi, x.,
... are independent N (u, 1) random variables and that for given b > 0

a7 T = inf{n:|s,| > dn'/?}.

Form=1,2, ... let 77 = min(7T, m). The stopping rule 7" defines the repeated significance
test of Armitage (1975): to test Hy: u = 0 against H; : u # 0 stop sampling at 7’ and reject
H, if and only if T'< m. The power function of this test is P,{T < m}, for which asymptotic
approximations have been given as b — o, m — o and bm ™2 = 8 (e.g. Siegmund, 1977,
1978). Peto et al. (1976) and Siegmund (1978) suggested a modification of this test in which
there is given a number ¢, 0 < ¢ < b, and one rejects H, if either T'< m or T > m and | s, |
> cm'2 The power function of the modified test is
P AT =m) + P.{T > m, |sm| > cm'/?)

(18)

=P.{|sm|>cm'?} + P,{T < m, | su| < cm'?}.

The second probability on the right hand side of (18) may be rewritten
(19) f PT < m)e(m' (uo — w))m*? dpo.
IE
Letting ¢ have the same asymptotic normalization as b, i.e. cm /2 = y for some 0 <y < 8

and appealing to the following theorem gives asymptotic expressions for (19).

THEOREM 2. Assume b— o, m — o and bm ™2

K of (0, B), uniformly for po € K
P (T <m} ~ exp{ —Yam(B* — ud)} Bus'v(B%us"),
where v(x) = 2x %exp{—2 Y7 n”'®(—Y%xn2)).

= f>0. For each compact subinterval
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COROLLARY 1. Suppose m — » and bm™"* = =y =cm ™" Then
Po{T < m,|sn| < cm'?} ~ Bm'/%e /2 /m)'/? J' x 7' (x) dx.
By

COROLLARY 2. Suppose m —  and bm™"* = 8>y = cm ™. Then for p # 0

plm (B —|u))]

2_—1y p.,—1,—m|u| (B—y)
14 ,8 B e .
|p.| /2 (B By

P {T<m,|sn|<cm'?} ~

REMARK. The case ¢ = b is included in Corollary 1 but not Corollary 2. This seemingly

innocuous distinction provides considerable insight into the asymptotic relation between

the conditional probabilities (2) and the unconditional probabilities P{7 < m}. An informal
attempt to elucidate this relation is given at the end of the paper.

INFORMAL PROOF OF THEOREM 2. Consider first the case of a fixed o > 0. The question
of uniformity will be considered later. For po > 0 it is easy to see that
P™(T < m, sy <0} = o(P{T < m, sr > 0}),
and hence without loss of generality one may assume that T'is defined without the absolute
value—as it is in Section 1. The main idea of the proof is to approximate the curve Bt'/* by

its tangent { + 7t at a suitable value & € (0, 1). For the line { + ¢ the appropriate value
of py is 1 = 2({ + ) — po, and the identity (13) becomes

PM™{T < mYexp[2m({ + 1 — po)]

_ _ —1/2 _ _ sr—§m—T _E(ST—,UAT)2
0 Lm)(l iy e 25w |-ty an

where p, = 2({ + 1) — po. The point of tangency ¢ is chosen so that P AT/m— t} =1
(Simple algebra gives to = (uo/B)% ¢ = po/2, m = B*/po, and n = B?/2u0.) A Taylor
expansion yields

st — ¢tm — T = sy — bT* + m{B(T/m)"* — { — nT/m}
= sp —bT"% — BY(T — mo)*/8uim + 0, (1),
where mo = mt,. Similarly
m sy — i T)? = BT — mo)?/4pdm + O,[(sr — bT?)/m'*] + 0, (1).

Hence the integrand in (20) becomes

1/2 2pn-2 6 2
_ _12 g2 2 st — bT _1(1—2,11«0,3 )BT — mo)
o (1= T/m) e"p{ wo (B “0)[ 1-T/m ] 27 401 — T/mpim
+ 0,(1) + Op[(sr — le/z)/m‘/z]} .
The limiting joint distribution of sy — dT"/? and (T — mo)/m"* may be obtained as an
application of Theorem 2 of Lai and Siegmund (1977) or Theorem 4.3 of Woodroofe
(1976a). Substituting (21) into (20) and integrating with respect to the limiting distribution
of (st — bT?), (T — mo)/m'”?, and T/m produces the expression given in Theorem 2.
When po > 2728, the function of (T — mo)/m"* in (21) which must be integrated is
unbounded, and hence some care is required to justify taking the limit inside the integral
in the preceding paragraph. However, straightforward estimates show that

PU{(T < m) ~ PiP{mo — Am"? < T < mo + Am'?},

where A tends to +o arbitrarily slowly with m. By replacing the event {7'< m} in (20) by
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the smaller event
{mo— Am'2 < T <mo+ Am'? sp— bT'* < (log m)?*},

one may make the preceding argument precise. The details have been omitted. See
Siegmund (1978) for a similar argument spelled out in detail.

To see that the preceding argument holds uniformly in po provided yo is bounded away
from 0 and B (hence ¢, is bounded away from 0 and 1) requires a tedious review of the
various steps of the proof to see that each holds uniformly in uo. Perhaps the only non-
obvious step is the classical renewal theorem, which must be applied to the ladder height
renewal process determined by the distribution of s, (v = inf{n:s, > 0}). The Fourier
analytic proof, given for example by Breiman (1968, page 218) seems well adapted to using
boundedness of higher moments of s, to prove the required uniformity. The details are
omitted.

To prove Corollary 1, note that the theorem immediately implies for 0 <e<y <pf

,825*1
(22) Po(T <m, em < |s,| < ym} ~ Bm"? e #*™/*2/m)'/? j x " w(x) dx.

g2y
Obviously, for 0 <d <1
Py{T<m,|sm| <em}) < Po{T=06m} + Po{0m<T<m,|sm|<em}.
It is easy to see that for small §,
Po(T < 6m) = Ypsm Po{|s.| = bn'?)

is small compared to the right hand side of (22); taking ¢ so small that 86> — ¢ > 0 and
using standard arguments one sees that Po{6m < T <m, | s, | < em} is also small compared
to the right hand side of (22). This proves the corollary when y < 8, and a similar argument
to estimate Po{T < m, (1 — &)Bm < | s | < Bm} handles the case y = 8.

The proof of Corollary 2 is almost immediate, for when p # 0, the entire contribution to
the integral in (19) comes from the immediate neighborhood of po = cm ™",

4. Discussion. It should be apparent from the preceding examples that the method
given here is valid for fairly general random walks and curved boundaries. For example, it
seems reasonably straightforward to consider curves c(¢) = Bt* for 0 < y < % and
exponential families as in Theorem 1 to obtain a simultaneous generalization of Theorems
1 and 2. Since the calculations are messy and the author is unaware of interesting
applications, this generalization has not been pursued.

In considering extensions to more complicated curves, the important requirement is
that the appropriate approximating tangent line have its point of tangency Z, at neither 0
nor 1. Unfortunately these boundary cases can arise for a variety of reasons. The most
obvious is that o may be a boundary case, e.g. po = c(1). However, for normal random
walk and c(¢) = Bt* with %4 < y < 1, the “appropriate tangent” is at £, = 0 for all o < ¢(1),
so the method breaks down completely.

Corollary 1 to Theorem 2 with y = B yields the known asymptotic expression for
Po{T < m} by “unconditioning” P {T < m}. In general this is not an effective method
for obtaining approximations to the corresponding unconditional probabilities, because the
important values of yo in the unconditioning integral may be boundary cases, for which the
methods of this paper fail or are not particularly appropriate. For example, for c(t) =
Bt'? and normal random walk with positive mean y, the important values of yo in the
unconditioning integral

PAT <m, s, <mp} = J P {T < myo[m'*(no — ) Im'* dyo

ro<B

are values po = B — ¢/m, for which the appropriate tangents are at # = 1. Hence the
methods of this paper do not apply directly, although a modification can be made to work.
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The essential ingredient is to consider the process to be running backward in time from
time m to time 0. For the reversed process the role of m{ is played by £ which does not
tend to +, and hence the subsequent calculation is almost trivial. And in fact for these
values of o the limiting behavior of Py’ {T < m)} can be inferred by almost trivial
arguments (e.g. Siegmund, 1978). Thus, although the methods of this paper give heuristic
insight into the behavior of the unconditional probability P,{T < m}, they do not appear
likely to replace previously developed methods for obtaining mathematically rigorous
results.
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