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We investigate the cluster set C({S./a.}) under conditions necessary for
the bounded law of the iterated logarithm, and obtain necessary and sufficient
conditions for the LIL in spaces satisfying a certain comparison principle. In
particular, these results settle some previously unanswered questions in the
Hilbert space setting.

1. Introduction. Let B denote a real separable Banach space with topological dual
B* and norm || - ||. Throughout X, Xj, X5, - - are independent identically distributed B-
valued random variables, and asusual S, = X; + - . - + X, for n = 1. We write Lx to denote
the function max(1, log x) and we write Lyx to denote L(Lx). The classical normalizing
constants in the law of the iterated logarithm (LJL) are

a, =vV2nLsn.
The set of all limit points of {x.} is denoted by C({x.}) and is called the cluster set of

{xn}.

The purpose of this paper is to prove some results regarding the cluster set C({S./a.})
and to examine the LIL in spaces satisfying a certain comparison principle. In particular,
our results will settle some of the open problems mentioned in [8] and [12] when X takes
values in a Hilbert space. Before stating our results precisely we provide some background
and motivation for these matters.

In the infinite dimensional setting there are two forms of the LIL which are of interest.
We say X satisfies the bounded LIL (and write X € BLIL) with respect to the classical
normalizing constants if

(1.1) AX) = lim sup,| S.||/an < o, w.p.lL

The second form of the LIL is the compact LIL. That is, we say X satisfies the compact
LIL (and write X € CLIL) with respect to the classical normalizing constants if there exists
a non-random compact set D C B such that

(1.2) d(S;(“) , D) -0, wpl,

and

(1.3) D= C<{S"(“’)}) . wpl
ap

Here

d(x, A) = infyeal|x — y||
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THE CLUSTER SET C({S./a.}) AND THE LIL 103

and C({S,(w)/a.}) denotes all limit points of the random sequence ({S.(w)/a.}). The set
D in the CLIL is called the “limit set.”

The fact that the limit set D in the compact LIL is non-random results from the
observation that if {a,} is any sequence of non-zero constants, then it is an easy conse-
quence of the separability of B and the Hewitt-Savage zero-one law that with probability

one we have
()
an

where A is a nonrandom set depending only on {a,} and the law of X ([13, Lemma 1].
Of course, A is necessarily closed, and if {a.} is such that lim sup,||S./ax|| = 0, then

A= (0).

If lim supa,| S.»/ax || > 0, the nature of the cluster set is much less obvious, and in the case
of the LIL with classical normalizing, this is precisely the situation we have provided X #
0.

Hence assume X € BLIL. Then for all f € B* we have the real random variable f(X)
€ BLIL, so Ef(X) = 0 and Ef*(X) < o for all f € B* are immediate necessary conditions
for the BLIL (see, for example, [16, page 297]). For convenience we write X € WM? if for
all f € B* we have Ef(X) = 0, Ef*(X) < . Further, if (1.1) holds, then there exists a
constant I" such that

P(|X./a.|| >T io0.) =0.

Hence by the Borel-Cantelli lemma we have Y, P(||X| > 'a.) < ®, and thus E (]| X |/
L, || X||) < « is also a necessary condition for the LIL.
If Ef(X) = 0 for all f € B* we define the covariance function of X to be

T(f,8) =E(fX)gX)), (f.g€ B").

It is immediate that the covariance function for X exists iff X is WMZ{. Now the non-
random set A = C({S./a.}) is closed since it is a cluster set, and if X € WMZ, then it is
known that there exists a canonical set K depending only on the covariance function of X
such that

ACKCB

(see [8] or [11] for details). The set K is the unit ball of a Hilbert space determined by the
covariance of X which we denote by Hyx) and its properties are examined in [8] and [11].
It is known that K is compact iff T is weak-star sequentially continuous on B* X B*,
The point to be emphasized, however, is that X € WM§ implies A = C({S./a.}) C K,
and further, in case X € CLIL, that the limit set D is always K. Hence the cluster set is
completely known in the CLIL, but if X € BLIL there are examples in [13] with A = ¢ and
with A = K. Thus the following question is immediate. Is the cluster set A always ¢ or K?
If the answer to this question is yes, it still remains to be decided when we have the cluster
set empty and when it is K. A result in this direction is Theorem 3.1 of [8] which implies
that the cluster set is K in many cases where the BLIL holds; however, this result has
limited applicability. For example, if B is Hilbert space then necessary and sufficient
conditions for both the BLIL and the CLIL were obtained in [8, Theorem 4.2}, but in the
BLIL situation the exact nature of the cluster set remained unknown. The results we

present here imply that
Sy
({))-x
Qn

whenever the BLIL holds for Hilbert space random variables. More generally, the same
holds for B a type 2 space, or in a general B if X satisfies some minimal conditions.
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We also extend the CLIL and BLIL known for Hilbert space to a more general class of
spaces containing certain smooth norm spaces. In fact, the results we present here actually
sharpen the Hilbert space results, and give us a complete picture in that setting.

2. Statements of the main results. Our first theorem deals with the cluster set. We
write X, to denote the truncation of X at level 7, i.e. X, = XI(|| X|| = 7), and X € CLT when
X satisfies the central limit theorem in B, i.e.

S,
Pl — | »w PZ
<Jﬁ) @)

where Z is necessarily Gaussian. Throughout, K denotes the unit ball of the Hilbert space
H 4x) as in [8, Lemma 2.1].

THEOREM 1. Let X be B-valued such that

(2.1) Xis WM3,
(2.2) X, —EX,)€CLT forall >0, and
(23) é —>prob 0.
a,
Then

(2.4) C<{% }) =K, w.p.1.

M. Ledoux has recently informed us that it is possible to modify the proof of Theorem
1 so that (2.4) follows only from the assumptions (2.1) and (2.3) (see the appendix for details
regarding Ledoux’s improvement). We have retained our original proof because the
techniques used have proved to be useful in other settings as well.

If B is a type 2 Banach space, Theorem 1 easily implies the following corollary.

CoROLLARY 1. Let B be of type 2, and assume X is B-valued such that (2.1) holds
and

(2.5) E(| X|?/L: | X)) < co.

Then
Sn
C({a_,, }) =K, w.p.1.

COROLLARY 2. Let X be B-valued and such that

We also have

(2.6) X e CLT.
Then
C<{§ }) =K, w.p.1,
an
and
S,
2.7 Cl{—= =E, p.1
@ ([E])-2 »

where E denotes the closure of Hyx, in B.
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REMARK. The set E in (2.7) is the support of the limiting Gaussian measure. This is
well known.

The conditions (2.1) and (2.5) are known to be necessary and sufficient for the BLIL in
Hilbert space, and our next result extends this equivalence to certain type 2 spaces. By
Corollary 1 we see that in this setting the cluster set is K even for the BLIL. This contrasts
with the example in [13] where X is ¢, valued and satisfies the BLIL, but has empty cluster
set. .
If X is B-valued, we say X is pregaussian if there exists a mean zero B-valued Gaussian
random variable G with the covariance of G identical to that of X. We denote this by
saying X is pregaussian with corresponding Gaussian random variable G.

For A > 0, § > 0, we let %, denote the Borel functions g: B — [0, x) satisfying g (x)
=0for|x|=A0=gx)slforA=<|x|=A+8andl=g(x)=<c|x|’+bforA+§
=< || x| and constants ¢4 ¢, b possibly depending on g.

For Theorem 2 we assume B satisfies the following comparison principle. That is, we
say a Banach space B satisfies the upper Gaussian comparison principle if for all § > 0,
all A > 0, and each sequence of independent, mean zero, pregaussian, bounded random
variables {Y;:j = 1} with corresponding independent Gaussian random variables {G;:j =
1}, there exists an a > 0 and g € %, s such that for all § >0

(2.8) E(g(BYj-1Y) < E(g(BY}-1G)) + CG, A, ) X1 E|| Y|P (8)
where C(8, A, o) is a finite constant independent of n and B, but possibly on {Y; : j = 1}.

THEOREM 2. Let B be a type 2 Banach space which satisfies the upper Gaussian
comparison principle. Then, X € BLIL iff

(2.9) X is WM3

and

(2.10) E(IXIP/LN X)) < .

Further, if (2.9) and (2.10) hold we have

(2.11) lim sup, || Sn/ax || = supsex || 2],  w.p.1,
and

(2.12) C({Sr/a.}) = K, w.p.1.

In regard to the CLIL, an immediate corollary is the following.

CoROLLARY 3. Let B be a type 2 Banach space which satisfies the upper Gaussian
comparison principle. Then, X € CLIL iff (2.9) and (2.10) hold, and K is compact.

In order to apply Theorem 2 and Corollary 3 we need Banach spaces satisfying the
upper Gaussian comparison principle. To classify spaces with this property seems to be
difficult, but examples are readily available. For example, all type 2 Banach spaces which
satisfy Condition (A) of [8] also satisfy the upper Gaussian comparison principle.

We recall that a Banach space satisfies condition (A) if: the norm on B is twice
directionally differentiable and the second derivative of the norm, D2, is such that

(a) supyxj-1]| D[ <, and
(b) D2 is Lip(x) away from zero for some a > 0.

For the definition of D2 and the other terms used in (A) we refer the reader to [9] or to
[10]. The reader should note, however, that the relevant definitions in [9] and [10] differ
slightly in that in [10] the first derivative of the norm is assumed to be Lip(1) on the
surface of the unit ball of B. Hence we say a Banach space B satisfies condition (A4’) if B
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satisfies condition (A) and the first directional derivative of the norm is Lip(1) on the
surface of the unit ball of B.
We now have

ProposiTION 1. If B is of type 2 and satisfies Condition (A), then B satisfies the upper
Gaussian comparison principle. Further, if B satisfies Condition (A’), then B is also of
type 2.

REMARK. It is shown in [9, pages 83-86] that the L? spaces (2 = p < ) satisfy
Condition (A), but the same arguments also imply that they satisfy Condition (A’).

A close inspection of the proofs of Theorem 2 and Corollary 3 reveal that the space B
involved need not satisfy the upper Gaussian comparison principle. What is actually
required to make our proof work is that a comparison of the type in (4.13) is possible for
T, all ¢ > 0, and some a > 0. In some situations the particular random variable X, its
related truncations {u;:j = 1} as defined in (4.1), and the corresponding Gaussian sequence
{G;:j =1} may satisfy (4.13) yet the space B does not have the upper Gaussian comparison
principle. Nevertheless, in such cases X satisfies the BLIL if (2.9) and (2.10) hold, or the
CLIL if (2.9), (2.10) hold and K is compact.

The condition K compact depends only on the covariance structure of X, and is
equivalent to the covariance function T'(f, g) = E(f(X) g(X)), f, g € B*, being weak-star
sequentially continuous on B* X B*. For example, K is compact whenever the covariance
function of X is the same as that of a random variable Y satisfying E || Y ||*> < c. This is the
situation if X is pregaussian, and hence Corollary 3 can be viewed as a variation of the
theme of Theorem 4.1 of [8] which relates the CLT and the CLIL.

For Hilbert space valued random variables we have a complete blending of the BLIL
and the CLIL into what simply might be called the LIL. The result is

COROLLARY 4. Let X be Hilbert space valued. If (2.9) and (2.10) hold, then

- o([E])-x o

and

(2.14) limnd(%, K) =0, wpl

where, of course K = Kyx,. Conversely, if (2.14) holds for any bounded set K, then (2.9)
and (2.10) hold.

It might be worthwhile to mention that the methods of this paper are capable of
producing a new proof of the Hartman-Wintner LIL by what is in essence a variant of
Lindeberg’s method. That is, by the methods of Theorem 2, one could first prove that if
EX =0 and EX? = 02 < o, then we have

S,
Li n— = 0.
m sup. . o.
With this fact in hand, some elementary modifications of the proof of Theorem 1 would
then yield ’

o(f2]) e

However, one could also considerably streamline the proof of Theorem 1 in this case, since
EX? < o makes the use of the Lévy decomposition unnecessary, and allows a direct
application of Lemma 3.2 (see [2] for the details in this regard). The reader should also
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note that our proof depends on truncation levels not previously use, but which are, in
some sense, the natural ones.

Finally, we mention that the complete blending of the LIL for Hilbert space random
variables is obtainable because we have a direct vector proof of (2.14), without passing
through a finite dimensional argument as in the proof of Corollary 3.

3. The proof of Theorem 1, Corollary 1, and Corollary 2. We recall that if p
denotes a Borel probability measure on B such that u is WM?, then the map S: B* — B
defined by

(3.1) Sf=f xf(x) du(x),  (f€ B¥)
B
has many useful properties which have been examined in [8, Lemma 2.1]. Of course, S
depends on p, and when there are several measures involved in our arguments we write S,
to denote the mapping attached to u. In particular, we will have need of the Hilbert space
H, C B with norm || - |, as defined in [8, Lemma 2.1].
The following lemmas are useful for the proof of Theorem 1. The first one clarifies and

slightly strengthens Lemma 2.2 in [7]. Lemma 3.2 follows easily from Lemma 3.1 and the
Cameron-Martin translation formula for Gaussian measures as presented, for example, in

[1].

LEmMA 3.1. Let X € CLT(y) in B. Let U be a convex open set in B, and assume 0 <
an, a2/n— o, a,/n— 0. Then, for every t >0

(3.2) lim inf, na,%log P(S./a, € U) = t log y(¢tU).
ProOF. For each ¢ >0 let
U.={y:d(y, U) >¢}.
Then U. is open and convex. Now let p, = [n%*/a%], q. = [n/p.], and 7, = a./tq.. Then
(3.3) (P(Sp,/rn € tU.))" = P(Sp,q,/Tn € tg.U.)
< P(S,4./an € UL).
Since S, = Sp 4, + (S» — Sp4,) We have

(3.4) P(S,/an € U) = P(S4,/an € U., || Spq, — Sull < eatn),

and since p,q, ~ n, X € CLT, and an/\/ﬁ — o, we have
(3.5) lim,P(||Spq, — Snl| < ean) = 1.

NoW 7 ~ VPn, gu ~ a%/nt? and hence by the independence of S, and S, — S, 4., (3.5),
(3.4), and then (3.3) we have

lim inf,na;*log P(S./a. € U) = lim inf, na,*log P(S,, /a. € U,)
(3.6) = lim inf, na,’g.log P(S, /r. € tU.)
= ¢t %log y(tU.).

Letting ¢ | 0 we have U, / U, so (3.2) follows and the lemma is proved.

LeEmMA 32. Let X € CLT(y) in B, b € H,, and {a.} be as in Lemma 3.1. Then, for
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every e >0
3.7 lim inf,na;*log P(||S./a. — b|| <e) = — || b|2/2.

ProoF. Let U= {x € B: | x — b|| <¢}. Then, by the Cameron-Martin formula (see, for
example, [1]) we have

(3.8) y(tU) = eXp{— % £ bII%} j exp{—tb} dy

eV

where V = {x € B: ||x|| < 1} and b is Gaussian with mean zero and variance || b|2. By
Jensen’s inequality we thus have

(3.9 y(tU) = exp(— % £* || b]13} y(etV),
and hence
(3.10) t%log y(tU) = — % || b|% + t%log y(etV).

As t — oo, y(etV) — 1, and hence (3.7) holds by applying (3.2).

PROOF OF THEOREM 1. Since X € WM3, the unit ball K = Kyx, is defined and from
Lemma 2.1 (v) [8] we have K closed in B. From the same lemma we also know that if u
= #(X), then

(3.11) o(w = sup"f",,*sl(J’ A (x) d,u(ac))‘/2 <
B

and for x € H, we have
(3.12) %l = o) [lx],.
Now X € WM?%, and the argument used to establish (3.2) in [11], implies

(3.13) ' C({% }) CK,  wpl

Thus, since K is closed in B, we will have (2.4) if we show that a dense subset of K is in
C({S./a.}) w.p.1. In view of (3.12) this will be accomplished by showing that for all b €
S(B*), b=S5f,|b|. <1 we have

(3.14) lim inf,||S./ax — 5] =0  w.p.l.

To establish (3.14) we write X in terms of its Lévy decomposition at truncation level 7
as developed in [3]; 7 to be specified as sufficiently large later. That is, if &, », U, V
are independent random variables such that & 7 are Bernoulli with E(§) = E(y) =
P(|X||= 1), and

(3.15) L(U)A)=P(|X||=7,X€A)/P(|X|=1),
(3.16) LV)A) =P(|X|>r,XEA)/P(|X| > ),
then ’

LX) =LU+ 1 -V + E-nU).

Fﬁrther, we have Z(nU) = L(X,), L(1 - §)V) = XX - X,).
Now let {n;, &;, Uj, V;} be an independent system with &;, n; Bernoulli satisfying

E@¢)=Em)=P(|X|=7)

and {U;} and {V;} be identically distributed according to #(U) and #(V) as in (3.15) and
(3.16), respectively. Then, setting Y; = nU;, W= (1 —§)V,;and Z; = (§ — nj))U;forj= 1
we have that {X;:j =1} and {Y; + W, + Z;:j = 1} are both ii.d. sequences with the same
law. Hence (3.14) will hold if we prove
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(3.17) lim inf, X2 () + W) + Z)/an — b“ =0 wpl

Now fix ¢ > 0. The first step in the proof of (3.17) is to observe that (¢ — n) U € CLIL.
To see this note that the sequence {(£ — n;)U;:j = 1} consists of independent, symmetric,
bounded (by 7), identically distributed random variables. Further, we have

(318) Y1 (& — ) Ui/Vn = 23 (U; — EX.)/Nn — -1 (0, U; — EX.)/
and, since L& U;) = L(;Uy) = L(X.) with X, — EX, € CLT, we easily have
(L1 & —m)Uy/Vn):n=1}

tight in B. Since the finite dimensional distributions converge we see (§{ —n) U € CLT, and
hence (¢ — n)U € CLIL by [8, Theorem 4.1].
Thus for £(Z) = #(Z,) we have

(3.19) lim sup, || £ /=1 Zj/an|| = supsexv |2 w.p.1
and since
SUpzeky i | 2| = super@=<1 | Sea || = supyg,.=1,r2<18 (S f)
(3.20) = Sup||g||3.51,Ef2(2)51E (f(2)gZ))= SUpP| gjp-=1 (E(gz(Z)))l/z
= @P(|X]| > 7))o (u)
where o(p) < ® by (3.11), we can make
(3.21) lim sup, | Y /-1 Zj/a.]|<e  w.p.l

by taking r = 71 (¢), say. The last inequality in (3.20) follows easily from the definition of
Z;.
The next step is to show

(3.22) Y1 (W + EX.)/an —prob 0.

Now (3.22) is obvious since S,/a, —>prob 0 by (2.3), Z € CLT by the previous argument, and
LU — EX,) = AX, — EX,) also satisfies the CLT by (2.2).
Now we approximate b = Sf, f € B*, where

172
151, = ( f ) dmx)) <1
B

That is, for 7 > 0 let g, = L(X, — EX,). Then, there exists 72(¢) such that 7 = 72 (¢) implies

(3.23) IS, f— Sfll = e/4
.and
(3.24) I Sufell, = 1 SFllu < 1.

Now (3.23) follows since
1Suf = Sflls
= supj,.<1| E(gX: — EX)f (X, — EX.)) — E(g(X)f (X)) |
= sup| <1l E[g XIf (X)) — g X)f(X)] — g(EX)f (EX;) |
= supgppz1| E(€ XFXOI(| X[ > 7)) — E(gX)I(|X]|= TNE (@I X]|= 7))
= SUP| g p-=1 (E(XNVHE(PEXIX| >N + [EFEOI(I X< )]

—0 as To®
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by applying (3.11) and (2.1). The proof of (3.24) follows similarly.

Now let 7 = max(r(e), 72(¢)) and set
(3.25) To=Y71(Y;+ W) =¥ 71 (Y, — EX,) + Y }=1 (W; + EX.).
Then, for all n = n,(c), we have from (3.22) and the independence of the Y;’s and W’s that

P(| Tufan = b]| < &) = P(| 51 (Y; — EX.)/an
(3.26) = S.fll <e/2, | 271 (W) + EX,)/an| < e/4)

1
= P15 (Y = EX.)/an— S.fl <¢/2).

Since #(Y;) = #(X,) and X, — E(X,) € CLT(y) by (2.2), where the covariance of yis
that of X, — EX,, we have from (3.7) that
(3.27) lim inf,na;2log P(| X% (Y; — EX.)/an — S..fl <€/2) = — ||S..fl5. /2

for any sequence {a,} satisfying the condition of Lemma 3.1. In particular, when a, =
v2n Lsn, then (3.27) implies that for § > 0, and all n = n,(5), we have

(328 P(IZi1 (Y — EX,)/an — S,.fl <¢/2) = exp{—(1 + 8) | S, fII2.Lan).

Since (3.24) holds we can choose 8 > 0 such that
1+ [Sufll.=1-39,

and hence for all n = max(no(8), no(c)) we have
P(| Tu/an — b]| < €) = %(Ln) =479,

Thus

(329 Yoz1 P(| Tn/@n = b|| < &) /n = o

for all e > 0, and hence by the proofs of Lemma 5 and Lemma 4 of [13, pages 388-390] we
have

(3.30) liminf, | T»/a, — b|| <6 w.p.1.
Now
(3.31) liminf, || Sp/a. — b| < lim inf, | Tn/@. — b| + lim sup. ||} /=1 Zi/ax || w.p.1,
so taking T = max(r; (¢), 72(¢)) we have from (3.30) and (3.21) that
(3.32) lim inf, |Sp/a. — b|=7¢  w.p.L
Since £ > 0 was arbitrary (3.14) holds completing the proof of Theorem 1.
ProOF oF COROLLARY 1. If B is of type 2, then (2.2) holds and (2.3) follows from the

conditions (2.1) and (2.5) by Proposition 7.2 of [8, page 747]. Hence Theorem 1 applies to

yield C({Sr/a.}) as claimed.
A lemma which assists in the proof of Corollary 2 and is of some independent interest
is presented next. A related result appears as Lemma 2 in [15].

LEmMMA 3.3. Let X1, Xs, --- be independent mean-zero B-valued random variables.
Let ¢:[0, ©) — [0, ) be a non-decreasing convex function such that $(0) = 0 and such
that $(2t) = M ¢(t) for some M >0, t > 0. Let q denote a continuous semi-norm on B, and
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set
Y, =XI(Xl=7) (=1
where {1;:j = 1} is arbitrary. Then, for n = 1,
(3.33) El¢(q(Xr-1 (Y; — E(Y))] = 4ME[$(q(S,))].
Proor. Let {Y;:j = 1} be an independent copy of {Y;:j =1} and let {¢;:j= 1} be a

sequence of independent random variables independent of both {Y;} and {Y/} and such
that P(g; = £1) = %. We write Ex to denote the expectation with respect to X. Then

Elp(q Q-1 (Y; — E(Y;))))] =Ev[¢(g(X}-1 (Y, — E(Y)))]
=EyEv[o(@(X -1 (Y; = Y))))]
=EyEyE.[o(q(¥-16(Y; — Y/)))]

= MEvYE.[¢(q(3}-1 ¢Y;))] by the triangle inequality, the
convexity of ¢, and the condition ¢(2t) = Me(t)

< 2ME[(q(X "=1X;))] since P(q (31 &Y;) > t) =
2P(q(Y}-1 X)) > t)
=4ME (¢(q(S»)))

where the last inequality follows as in standard comparison principles (see, for example,
[5, page 108]).

ProOF OF COROLLARY 2. If X € CLT, then (2.1) and (2.3) are immediate. Further, an
application of the previous lemma to the semi-norm involving the distance to a suitably
chosen finite dimensional subspace, along with elementary arguments, immediately implies
X, — EX, satisfies the CLT for all + > 0. Hence, again Theorem 1 applies to yield
C({S./a.}) = K, and (2.7) follows from (2.12) of [13, page 380] completing the proof of
Corollary 2.

4. The proof of Theorem 2 and Corollary 3. In order to prove Theorem 2 we use
the following notation in which 8 > 1 is a parameter to be chosen in the proof.

Let {X;:j = 1} be independent copies of the mean zero random variable X of Theorem
2. Let 8 > 1, no = 1, and put n, = [B*] for £ = 1, where [-] denotes the greatest integer
function. Let I(k) = {np + 1, - .-, np+1} for 2 = 0, and set

Tr = 2np1Lonei = ar,,,.
Then, for j € I(k) let
w= K11 X I < ) — EGGI(I X I < 72)

(4.1)

wi = X;I(1 < | X; |P) — EXI (1 < | X; |P)),
and set ‘ )
(4.2) Un=3Yi-1y

Wn = 27=1 wj.

ProoF oF THEOREM 2. If X € BLIL, then it is well known that (2.9) and (2.10) hold.
On the other hand, if (2.9) and (2.10) hold, then B of type 2 allows us to apply Corollary
1 to obtain (2.12). Hence all that remains is to establish (2.11) under the conditions (2.9)
and (2.10).
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Let I = sup.ex || x|| and fix ¢ > 0. Since we know (2.12) holds, then (2.11) holds if we
prove

4.3) lim sup,| Su/a. |=T"+¢  wp.L

Now (4.3) will be established by showing that for all 8 > 1 we have
(4.4) lim,|| W./a.|=0  w.p.l,
and for 8 > 1, sufficiently close to 1, we have

(4.5) lim sup,| Up/a.||<T +¢  wp.l
LemMa 4.1. IfE(| X|?/Ls|| X||) < %, then (4.4) holds for all § > 1.

Proor. Since E (|| X|?/La] X)) < « it follows from the Borel-Cantelli lemma that w;
as defined in (4.1) is with probability one eventually given by

w; = —EXI(re <] X;[)).
Hence (4.4) will follow if we show that
lim, Yo Yera E(I X5 | I < || X, [))/¥n Lon, = 0.
Now
St Soerr B X5 | r <11 X, 7)) /¥ Lon,
< Sher (s = ) E(| X || e < | X )/, Lo,

(Nes1 — i) ( || X"2 2 ) Lyt
<=CYi E Im<|X|P )22
Bhor = =B ey 1+ <1XD ) 7

for some constant C < «. Further,

RY
L | X|

nmkE< I <|| X ||2)) =0,

and since
Z'I;=1 (ng+1 — nk)Lsz/’l‘}/2 = O(VLzn, Zfe=1 ﬁk/z)

we have our result and (4.4) holds.

LEMMA 4.2. Let B be a type 2 Banach space which satisfies the upper Gaussian
comparison principle. If X satisfies (2.9) and (2.10), then for every ¢ > 0 there exists
B > 1 such that (4.5) holds.

ProoF. The proof of (4.5) is obtained by showing that there exists 8 > 1, sufficiently
close to one, such that . :

(4.6) lim sup,max.ere) | Un/@n | =T +¢  wp.l
Indeed since a. / we have

Q,
4.7 maxnere) || Un/n | < —% maxnere) | Un/an,., ||

ny

and since @y,.,/@n, ~ VB (4.7) implies
(4.8) lim sup,max,eri || Un/an || = VB lim sup,maxere) || Un/@n,., |-
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Now
4
DB (| U, = Ue > 2., /4) = (2 oupic | Us., = Us W,
4
= ; E " U”r-o-l - U’lr ||/a”r+1
4\ [A(n41 — n)]2
= (;)[—(—2——)]-—@ | XI(| X |P< ) — EXI(| X |F = 7)P)"
T+l
(4.9) where A is the constant in the type 2 inequality
164"\ [ (| X! o LI X\
= (* ){E<L pxq X =m0
for large r

—0 as r— oo,
Hence for sufficiently large r a standard argument shows
(4.10) P(maxaere) || Un |/@n,,, > T +€/2) < 2P(|| U,,,, | > T + ¢/4)an,,,).
The next step of our proof is to show
(4.11) 2 P(|| Un,,, | > @ + e/4)an,,,) <.
Once (4.11) is established, (4.10), the Borel-Cantelli lemma, and (4.8) imply
(4.12) lim sup,maxacre || Un [l/an < VB (T +¢/2)  wpl

Taking B > 1, sufficiently close to one, (4.12) implies (4.6) which completes the proof of
(4.5). Hence we must establish (4.11).

Since € > 0, I > 0 are fixed, and B satisfies the upper Gaussian comparison principle,
we choose g € %r../s./s such that (2.8) holds for the sequence {u;:j= 1} with corresponding
Gaussian random variables {G;:j = 1}. Of course, the {u;:j = 1} are pregaussian since
they are bounded and B is a type 2 space. Hence
w13 PO U l/an>T +e/4) < E(g(Si w/an)

E|w|*

= E(g} G/an)) + C<£/8, '+ g , a) ZT=17+G—-

Now, choosing b = 1, we have
E(g(¥71 Gy/an)) = E<I( I S G/an, | > T + %)(c | Sy Gi/an, ||© + b))
(4.14) < P(| 25z Gi/an, || > T +¢/8) 17
AE(Lc || S Gifan, |+ INY™,

so (4.11) holds if there exists p sufficiently large such that

. 1-1/p
(4.15) : 5, P(|| Yoy Gyfan, | > T + g) <,
(4.16) sup.E ([c || $71 G/ an, |7+ b]°) < o,
and

(4.17) Yo YL E | w [P/ ekt < .
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To establish (4.17) we note that if ¥ (x) denotes the logarithm of x to the base 8, then
we have

Yra1 X E | [P /@3 < T 270, E (| X PL(| X | < @,))/ (210 Lony) "

<pny g P —1< || X|P< k)
r=1 =1 n‘}‘/z(Lgnr)H"‘/z

. Pk —1< | X|P<k)
= CXr | Yrsye/aL-1 7 Lar)

P —1< | X |2 < k)

() ()

Pk-1<|X|P<k)

=Cyr

—Czlek

||X||2)
=CE <o
(Lz (P

where C is a positive finite constant which possibly changes from line to line. Hence (4.17)
holds and we turn to the proof of (4.16).
Since there is a constant M, depending only on B and g, such that

(4.19) E|GIF=ME|GP™”
for all B-valued mean zero Gaussian random variables G, (4.16) holds if we establish

(4.20) sup, E || $7=1 G/ an, P < o.

Now, if {u;.: % = 1} are independent copies of u;, we have by the results in [4] that
(4.21) E||Gj|?=1lm, E |[(u: + - - + w,)/Vn|* < AE | u |

where A is the bounding constant in the type 2 inequality for B. Combining (4.21) and the
type 2 inequality, we obtain from (4.1) that

E(XIPI( X = 7-1))
rE n_, G n 2 = r n.r
(4.22) sup: £ | 2!=1 i/ @, | = 24 sup EJ=1 2n,Lon,

X 2
<A sup,E (" Erxp=ma )s%E(%)<w

Hence (4.16) holds for all p > 1, so the proof will be complete once we establish (4.15) for
some p > 1 sufficiently large.

In order to prove (4.15) we need a remarkable result of C. Borell [6] which allows us to
estimate the Gaussian probabilities in (4.15) with an accuracy we were unable to achieve
by other methods in spaces other than Hilbert space. Indeed, for the Hilbert space situation
we can estimate the probabilities in (4.15) directly. The details for this special case are
included in a remark following the proof.

Let
- @ —yu?/2
O(a) = du
—w V27

LEMMA 4.3. (The inequality of C. Borell [6, Theorem 3.1] slightly modified). Let B be
a separable Banach space, G a mean zero B-valued Gaussian random variable, q a
continuous semi-norm on B, and I'(q) = supxek.q(x). Let t, > 0, a > 0 be fixed, and let

(4.28) MG) = Ag1olG) = inf{A > 0: P(q(G)/A < to) = ®(a)).
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Then for all t = t, and all p > A\ (G),
(4.24) P(q(G) = pt) =1 —®(a+Talg) ot — t)).

Proor oF LEMMA 4.3. If p >0 and » = #(G/p) we first observe that
I'.(q) = sup.ex,g(x) = Ta(g)p™".
Now let A = {x:g(x) < t}. Then p > A(G) implies
P(G/p € A) = ®(a),
and hence by [6, Theorem 3.1] we have for all 7 = 0 that
(4.25) P(G/pE A+ 1K,)) = O(a + 7).
Now

7K, C1{x:q(x) =T.q)} =1Te(q)p {x:qx) = 1),

and hence

(4.26) {G/p €A+ 7K.} 2{q(G/p) =t + 1Tc(@)p ™).

Combining (4.25) and (4.26) we thus have for ¢ =, p > A(G), and 7 = T'¢(g) "o (¢ — &) that
P(q(G) = pt) = P(q(G/p) = to + (t — to)) =1 — D(a + T'c(q)'p (¢ — t)).

Thus the lemma is proved and we return to the proof of (4.15).
To estimate the probabilities

P(|| ¥3z1 Gi/an, || > T + ¢/8)
we set G = Y7, G;/vn, and let g(x) = [ x|l. Then, by the construction of H. ) we have
T'¢ = supsek, @ || % || = supjfju=1(E (F3(G)))"?
= supyf,-<1(Xi=1 E(fH(Gy)) /n)'
4.27) = supjfl..=<1(X =1 E (F2(w))/n)"?
=< supf<1(E (f2(X)))* from (4.1)
=T
Further, the calculation in (4.22) easily implies
lim,E || ¥f21 Gy/a, |* =0,
and hence, for & > 0, « > 0 fixed, an easy application of Markov’s inequality implies
AMG) =AY, Gi/Vn) = o(VLsn,) as r— .

Thus for any § > 0, no matter how small,

AG) = 0v2Lsn, (I‘ + g)

for all r sufficiently large. Hence by applying (4.24) to G =Y, Gj/\/rTr and recalling (4.27)
we have, for any fixed 6 and r = ry(@), that for ¢t = ¢,

p( e t) <1- <I)<a + Tolg)'02Lon, (I‘ + g) (t— to))
9~2Lom, (1‘ + f)
(4.28) 8

<1- <1><a +T'9v2Lom, (r + %) (t — m)).
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Now choose 6 > 0, sufficiently small, so that if ¢ = 1/8 then ¢ > ¢, and

1‘—10<1‘ +§><%— to) >146

for some 8 > 0. For this choice of # and ¢ = 1/6 fixed, we now have from (4.28) that for all
r sufficiently large

(4.29) P<|| G || > v2Lsn, (F + g)) =1-®((1+ 6)v2Lyn,) = exp{— (1 + g)llgn,}.

Taking p in (4.15) such that (1 — 1/p)(1 + 8/2) > 1 + §/4, and recalling G =

S Gi/ Vn,in (4.29), we easily have from (4.29) that (4.15) holds.
Thus Lemma 4.2 is proved, and Theorem 2 follows.

The special case of H-valued {G;:j=1}. For Hilbert space valued random variables
we can estimate the probabilities in (4.15) directly since
(4.30) P(| G || > t) < E(e°P)e™,
and in the Hilbert space case a direct computation implies
(4.31) E(e*1F) = [[5-1 E(e*7'D) =T[5 (1 - 2« E(f(G)) ™

as G can be expanded such that G = Y ;=1 f,(G)f; where {f;:j = 1} is an orthonormal
sequence in H and {f;(G) :j = 1} are independent mean zero Gaussian random variables.
Now E||G|? = Y)=1 E(f}(G)) < », so from (4.31) we see E (e?1°F") < o for all

a < (2 supjfjae=1 E(fAG))™.
Hence if § > 0 is given we choose a = (1 — §)A™" where A = 2supjfj,«=1 E(f*(G)). Then

(4.32) 20E(f}(G)=1-6
and, since
(4.33) 1—x=e*°

for 0 = x <1 — 8, we have by combining (4.31), (4.32), and (4.33) that
(4.34) E(e“°P) =T[5 e®EUIGN/S — qaEIGI/S

when a = (1 — §)A™". Combining (4.30) and (4.34) we obtain

- (1-29) s (1-90) ,
(4.35) P(||G||>t)_exp{ X E| G| — t}.

If G =YY" G,/Vn; as in (4.15) and ¢ = (T + ¢/8)v2Ln,, then ' = (A/2)/2 and as before
E||G|? = o(Lzn,). Hence, if 8 > 0 is chosen such that (1 — 8)(I" + ¢/8)%/2I" > 1/2, (4.35)
implies there exists n > 0 such that for all r sufficiently large

(4.36) P(|| =1 Gi/Vn, | > <1" + g)\/QLG,) < exp{+ (1 + n)L2n,}.

The estimate in (4.36) is exactly what we need to verify (4.15), so the Hilbert space case
stands independently of C. Borell’s result.

ProorF orF COrROLLARY 3. If X € CLIL, then (2.9) and (2.10) hold as they are necessary
conditions even for the BLIL. Further, by the proof of Corollary 3.1 of [11] we have the
limit set equal to K, and hence K is compact.

Now assume (2.9) and (2.10) hold with K compact. Let IIx and @~ be the maps of
Lemma 2.1 of [8] defined with respect to the probability & (X). Now fix ¢ > 0 and choose
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N sufficiently large so that
(4.37) supsex || @nx | <.

Such an N exists since K is compact, QvK is decreasing, and N\y@QyK = {0}. Thus by
applying Theorem 2 to the random variables {@yX;:j = 1}, and noting that K, (@yX) =

nKyx) = QnK, we have
Sn
QN<—)
Qan

Now the random variables {IIyX;:j = 1)} are finite dimensional, and since all norms on the
range of Ily are equivalent and IInK = K¢ q,x) with IInK C K, we have by applying
Corollary 4 that

(4.39) lim sup, d (HN<%), K) =0 w.p.1.

(4.38) lim sup, = SUp:equk || X || S € w.p.L

n

Of course, a number of other sources could also be quoted to establish (4.39).
Since & > 0 is arbitrary (4.38) and (4.39) combine to imply

n

(4.40) lim sup,d(f—" , K) =0 w.p.1.

By Theorem 1 we have

(4.41) C({%}) =K w.p.1,

and hence by (4.40) and (4.41) with K compact we have X € CLIL. Thus Corollary 3 is
proved.

5. Proof of Proposition 1. Since Lemma 4.1 of [10, page 268] asserts that the Lip(1)
assumption of Condition (A’) implies B is of type 2, it suffices to prove that if B satisfies
Condition (A) and is of type 2, then B has the upper Gaussian comparison principle.

To prove the upper Gaussian comparison principle we let the class %, 5(A > 0, § > 0)
consists of the single function

(5.1) gx)=o(x|),

where ¢ (¢) is three times continuously differentiable on (0, «) and such that

0 O=st=A
(5.2) ¢(¢f) = {increasing A<t<A+§
1 t=A+6.

Letting {Y;:j = 1} be independent, B-valued, mean zero, bounded (and hence pregaus-
sian) random variables, with corresponding independent Gaussian random variables {G,:j
=1}, we have

(5.3) 8331 Y) — 8031 G) = Ther As
where ’
A, =g(Br+ Yi) — g(Br+ Gy)
and
Bi=Yi+ -+ Y1+ Grar+ - -+ + G

Then, by minor modifications of the argument on pages 73-78 of [9], we have a finite
constant C (8, A, a), which is uniform in n, such that

(64 |E(gRXi-1Y) —E@E@Ri-GN=CE A &) X [ENY, |7+ E| G |**]
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where « > 0 is such that D% is Lip(a) away from zero. That is, to obtain (5.4) one proceeds
as in [9] except that now the covariance structure varies and to verify the third equation
of (2.12) of [9] one can argue through the Hilbert Space Hy(v,. However, since we know
the CLT holds for each Y3, it follows that

(5.5) E(¢(Yr, Yi)) = E@(Gr, Gr))

for every bounded symmetric bilinear from ¢ on B, and hence (2.12) of [9] also follows
immediately from this observation.

Our next step is to obtain the bound on the right hand side of (5.4) in terms of E || Y;|***,
rather than one involving E || G;|***. To do this we first observe that B is of type 2, and
hence, if {Y}: k= 1} are independent copies of Y;, we have by the results of [4] that

(5.6) E|| G P =Ym.E || $her Yo/ Vn | < AE | Y; |F.

The constant A in (5.6) is the bounding constant in the type 2 inequality for B. Further,
there is a constant M, depending only on B and «, such that

(5.7) E|GIP*=M(E | G |H'+?

for all B valued mean zero Gaussian random variables G. Hence, by combining (5.4), (5.6),
and (5.7), along with the increasing nature of the L”-norms, we have that there is a finite
constant, again call it C (6, A, «), such that foralln =1

(5.8) |E(g(Xr-1 Y)) — E(g(F7-1 G))| = C@, A, a) X1 E || Y5 [P

We also have the constant C (8, A, «) independent of the sequences {Y,} and {G;} in (5.8).
Hence more than (2.8) holds, and we have that B satisfies the upper Gaussian comparison

principle.

6. Proof of Corollary 4. Since (2.9) and (2.10) are known to be necessary for the
BLIL, it suffices to prove (2.13) and (2.14) when (2.9) and (2.10) hold. Of course, (2.13)
follows immediately from Corollary 1 since Hilbert space is type 2.

To prove (2.14) we use the following lemma.

LeMMA 6.1. If X takes values in a real separable Hilbert space H, X is WM3, and S
is the covariance operator of X, then S is a bounded, symmetric, non-negative operator,
and

6.1) SYA (V) =K
where V= {x € H:| x| = (x, x)'* = 1} and, of course, K = K, where p = & (X).

ProoF. Recall that the covariance operator S is defined by the relation

(Sf, &) =f (f,x)(g x) dp(x)  (f, g€ H).
H

If we identify H and H* as usual, then the covariance operator is the same as the operator
S =S, of Lemma 2.1 of [8] and part (ii) of that lemma thus implies S is bounded since we
have X € WM3. S is obviously symmetric, non-negative, and hence has a unique bounded,
symmetric, non-negative square root S/

To prove (6.1) we first observe that

(Sf, Sg)u=f (f, x){(g x) du(x) = (Sf, &)
6.2) "
= (S"*f,8%g), (f,g€ H)
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and hence

(6.3) Sfe K iff S e V.

Now let N denote the null space and M the closure of the range of S'/2 Since S'/* is
symmetric we have M = N* and hence

(6.4) H=M®N.

If f€ V we have f = m + n where m € M, n € N. Hence (m, n) =0 and | f|* = |m|* +
[n|? < 1. Choose my € M, |my — m| — 0, | mi|| < 1, ms = S**f,. Then S/ continuous
implies

(6.5) lim, || S**my, — S¥’m || = 0.
Furthermore,
(6.6) SY?my, = SY*(SY*f,) = Sfre K

since (6.3) holds and my, = S'2f, € V. Now K is closed in H, as well as in H,, so
SY’m = lim;S’my, € K.
Therefore
SV =8 m +n) =S"’meK

for all f€ V. Thus S'?V C K.

If x € K, then there exists g, such that Sg, € K and lim, || Sgr — x|, = 0. Thus
{Sgx: %k =1} is Cauchy in H,, and from (6.2) we thus have {S'?g;: k = 1} is Cauchy in H.
Let f = lim,SY2g,. Then f € V and SY?f = lim,S**(S"2g;) = x as S"/? is continuous and
x|l = ¢|| x|l for all x € H,. Thus K C S*V, and Lemma 6.1 is proved.

To finish the proof of Corollary 4 we fix ¢ > 0. Then, if I is the identity map on H, we
have that (SY2 + eI)~! exists and is a bounded operator on H (recall the spectrum of S'/2
is a subset of [0, «)). Hence let

6.7) q(x) = |[(SY2 + e) ' (x)|| = ((S™* + eI)(x), (S + eI) ' (x)) /%,
so q is obtained from an inner product on H.
Thus H is a Hilbert space with the inner product norm ¢, and as a result (H, q) is a

type 2 space with property (A). Hence Proposition 1 implies (H, ¢) has the upper Gaussian
comparison principle, and Theorem 2 then implies

(6.8) lim sup.q(S»/an) = sup.exq(x).
Now Lemma 6.1 implies
(6.9) sup.exq(x) = supzex||(SV? + eI) x|
= supyev|[(SV* + eD) TSV || = || (SV* + eD)T'SV|
where || - || denotes the operator norm or L(H, H). To estimate || (S'* + eI)™'S"* || we

let U = S*? + &I and notice that
‘ (x, x) = (U 'U(x), U'U(x))
(6.i0) = (UI8Y%(x), UTISYV2(x)) + 2e( U'SY%(x), U (x))
+ XU N (x), U (x))
= (U7SY3(x), U'SV*(x))
since U™'SY2 = SY2U~! (note S = U — &I) and hence (U 'SY*(x), U\ (x)) =



120 A. DE ACOSTA AND J. KUELBS

(SY*UX(x), U (x)) = 0 as S? is a non-negative operator on H. Thus (6.8), (6.9) and
(6.10) combine to imply

(6.11) lim sup,,q(%) =1 w.p.l
Now
(6.12) {x:q(x) =1} CK+ ¢V,

since q(x) = 1 iff (SV2 + ¢I)"(x) = y for some y € V, and by Lemma 6.1 S*(V) = K.
Thus by combining (6.11) and (6.12) we have

lim sup,,d(%, K) =e¢ w.p.1.

n

where
d(x, K) = infyex| x — y].

Since £ > 0 was arbitrary, we have (2.14) and Corollary 4 is proved.

APPENDIX
ELIMINATION OF ASSUMPTION (2.2) IN THEOREM 1

The following argument was communicated to us by M. Ledoux. Step (i), which seemed
to be obvious, required some additional details. We will assume that only (2.1) and (2.3)
are satisfied and will point out the necessary modifications in the proof of Theorem 1.

(i) Assumption (2.3) implies

(A1) X.— EX, € CLIL foreach 7>0.

Sketch of proof: (2.3) implies sup,nP{|| X| > ea.} < = for every ¢ > 0 (see e.g. [3],

Theorem 2.2).
From this we easily see that E || X ||” < o for 0 = p < 2 and hence by (2.1) that EX = 0.

Using Lemma 3.3 with ¢(¢) = t we see (A.1) holds (for example, see Theorem 4 of [12])
provided

(A.2) lim,E || S| /a. = 0.

Since EX = 0 it is easy to see that it suffices to show (A.2) under the assumption X is
symmetric and X satisfies (2.1) and (2.3).
To prove (A.2) under these assumptions we consider

Sur = =1 [Sk — Sky-nl
where Sy = 0. Then for every § > 0
P(maxlsjs,,ll Sk — Sk(j_l)" =0) = 2P(|| S || > §)

and hence
nP(|| Si|| > 8) = —log(1 — 2P(|| Sur || > 8)).

I:‘rom (2.3) we obtain ko(e) such that for & = k() and all n = 1 we have
P(||Sur|l > ean) = 1/4,

and hence from the above there exists an absolute constant C, independent of ¢, such that
P(||Sk|| > eaw) = C/n

forn =1, k= ko(e). Thus for n = 1, &k = ko(e) ’
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Lonk
P<||Sk/ak|| >e /%) = C/n,

nLynk -
Lok

and since

for all n = e°, k = e°, we see
P(||Se/ax|| > en®*) = C/n

for n = e°, k = ko(e).

(A.2) now follows in a standard way. Hence also (£ — 1) U € CLIL and the same steps
of the proof of Theorem 1 give (3.21).

(i) Assumption (2.3) and (A.1) imply (3.22) and by Ottaviani’s inequality we have:

(A.3) SUpyizpcin || Bt (W + EX,)/an]| —>p 0 as b — oo.
(iii) (3.26) is replaced by: for n = no(e), taking into account (A.3),
P (infyrzpeori| Tn/an = b = €
= P(infyzpeprll 21 (Y — EX;)/an = Suf| = €/2)
- P(supyrznegnll Bt (W) + EX.)/an|| < €/4)
(A4) = (1/2) P(infyzpcprn|| 31 (Y, — EX)/0n — S.f|| = €/2).

(iv) Since X, — EX, € CLIL and #(Y,) = #(X.),S,. f € C({Y}=:1(Y; — EX;)/an}) as.
and by the Borel-Cantelli lemma we have

Yu P{infpzpeyl| 21 (Y — EX:)/an = S, fll = €/2} = =,

which implies by (A.4)
Y P{infy_, o || Tn/an — b|| = €} = .

The proof of Lemma 4 of [13] implies now
lim inf || T/, — b|| <6 w.p.L
The steps in Theorem 1 complete the proof.
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