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EXPONENTIAL MOMENTS FOR HITTING TIMES OF UNIFORMLY
ERGODIC MARKOV PROCESSES’

By RENE CARMONA AND ABEL KLEIN

University of California at Irvine

Let p be an invariant measure for a Markov process which is assumed p-
uniformly ergodic in the following sense: the corresponding semigroup of
operators on L*(du), say {P; ¢ = 0}, is such that the time average
(1/T) [JP. dt converges to a rank one projection in the uniform norm of
operators. We prove that hitting times of sets having non zero y-measure
possess moment generating functions.

1. Introduction. In a very interesting paper [19], J. B. Walsh proposed a new
mathematical model for the problem of neural response. He considered the following
equation:

avit,x) (d*

(1.1) Yt <W - 1) V¢, x) + W(¢, x)

for the electrical potential V (¢, x) at time ¢ and position x of a neuron which is idealized as
a line segment of length L > 0. Here W(¢, x) denotes a Gaussian white noise in both
variables ¢ = 0 and x € [0, L] which appears as a limit of Poisson source noises, and the
operator 82/8x% — 1 is considered with Neuman boundary condition as a self-adjoint
operator, say A, on the Hilbert space L*([0, L], dx). A generates a strongly continuous
semigroup {e’4; t = 0} of self-adjoint operators on L*([0, L], dx). These operators are
more than contractive. In fact they satisfy:

(1.2) ] <e™

for some m > 0 independent of ¢ > 0, where | -|| stands for the norm of operators on
L2([0, L], dx). Moreover they possess kernels which we denote by e (x, y) for x and y in
[0, L] and ¢ > 0. If we add the initial condition V(0, x) = vo(x) for x € [0, L], equation (1.1)
can be solved and the unique solution is given, at least formally, by:

L t L
(1.3) Vit x) = j e (x, y)vo(y) dy + j f &4 (x, y) W(u, y) du dy
(1] 0 Jo

where the first term can be rewritten as [e“vo](x) and is deterministic (it is in fact the
solution of (1.1) in the absence of the source noise W) and the second one is a stochastic
integral given by the “variation of constants method”. The latter can be given a rigorous
meaning and the process V = {V(¢, x); ¢ = 0, x € [0, L]} appears as a two parameter
Gaussian process with the mean [e¢“vo](x) and covariance Cov{V (s, x)V(¢, y)} given by
the integral kernel of the self-adjoint operator (24)'[e“*?* — €’*I4] computed at
(x,y) €[0,L]x [0, L]

For each ¢ = 0, the function X,:[0, L] D x — V(¢ x) is easily seen to be almost surely
continuous and a little extra work leads-to a stochastic process X = {X,; ¢ = 0} with state
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space the Banach space X = C([0, L]) of continuous functions on [0, L] equipped with its
Borel o-field %, and a family { Pyx; x € X} of the probability measures on the space of
continuous functions from [0, ©) to X such that under P,, the process {X:(x); t = 0,
x € [0, L]} has the same law as the solution of (1.1) with initial condition v, = x € X (note
that we implicitly use the fact that the operators e map ¥ = C([0, L]) into itself). The
continuous strong Markov process so obtained is a prototype of an Ornstein-Uhlenbeck
process in infinite dimensions. Indeed the above construction mimics the finite dimensional
one (see [13. Section 8]). .

One of the problems addressed by Walsh concerns the firing time of the neuron, namely
the first time, say 7, that the electrical potential exceeds a given level. T can be interpreted
as the first hitting time of some open set in the state space and the questions to be
answered concern the almost sure finiteness of 7"and the existence of moments of 7. Walsh
proved that for each n = 0:

(1.4) Eo{T"} < +o,

where Ex stands for the expectation with respect to the conditional probability P given
that the initial condition is x € X.

The aim of this note is to prove an abstract theorem for hitting times of uniformly
ergodic stationary Markov processes (see Theorem 1 below) which will imply that the
firing time of the neuron in Walsh’s model actually possesses exponential moments rather
than just power moments as in (1.4). In other words, our result implies the existence of the
moment generating function of hitting times (and in particular of the above firing time). It
is stated and proved in full generality in Section 2.

Infinite dimensional Ornstein-Uhlenbeck processes have been extensively studied prior
to Walsh’s work. They appeared a) as infinite dimensional symmetric diffusion processes
(see for example [9], [15] or [18]), b) as limiting cases in some problems of infinite systems
of particles [6], c) as basic objects to be perturbed in constructive quantum field theory
(see for example [5]), or d) in problems on stochastic partial differential equations (see for
example [12]), and some of their ergodic and sample path properties are well understood
(see [6] and [2]). Nevertheless the existence of exponential moments for hitting times was
not investigated despite the existence of some one dimensional results [1].

We will now push further the analysis of Walsh’s model in order to shed some light on
our intuition and our proof. It is easily seen that the centered Gaussian probability measure
u on X, the covariance of which is given by the integral kernel of the inverse of the
operator —2A, is invariant for the process. Consequently, the semigroup {P;; t = 0}
formally defined by:

(1.5) [Pf1(x) = Ex{f(X:)}

for non negative measurable functions fon X, is actually a strongly continuous contraction
semigroup of self-adjoint operators on L*(3, du), the spectral properties of which are well
known thanks to results obtained in the context of quantum field theory (see [17] for an
historical perspective). The Hilbert space L?( ¥, du) can be decorﬁposed into a direct sum
of orthogonal subspaces:

(1.6) L*(%, du) = &30 H,

which reduce the operators P; (i.e., the P/s leave invariant the H,’s), so that the spectra
of the P,’s can be obtained by superposition of the spectra of their restrictions to the H,’s.
The decomposition (1.6) is known to probabilists as the Wiener chaos and to the physicists
as the Fock space representation (see [14. Chap. VII] and [17 Chap. I] respectively). Let
us assume for a short while that ¢ > 0 is fixed. H, is the subspace of all constant functions
on ¥X. They are left invariant by P, so that the contribution to the spectrum reduces to
the singleton {1}. H; is the closed subspace of L*(3, du) spanned by the functions
f: % 3 x — x’(x) where x’ runs through the dual space ¥’ of ¥. Moreover, for such a
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function f, we have:
[Pf1(x) = Ex{x'(X:)} = x'(e"x)

so that P, coincides on H; with e** if we consider the action of e on the space ¥’ of
measures x’ on [0, L] given by:

[e“x’)(y) dy = U e (x, y)X’(dx)] dy.

It then follows from (1.2) that the contribution to the spectrum is contained in the interval
[0, e™™]. More generally, H,, is the closed subspace of L?( ¥, du) spanned by the symmetric
tensors x/®; - - - ®,x, where x{, ..., X, run through X', and, with the above convention
we have:

Pt(x,1®s M ®sx£) = (etAxll)®s e ®s(emx;z)

which implies (using again (1.2)) that the spectral contribution of the restriction of P, to
H, is contained in the interval [0, e*™]. Thus, the whole spectrum of the operator P, is of
the form S; U {1}, where the set S; is contained in the interval [0, e ™). The isolated
eigenvalue 1 is expected to be sensitive to perturbations. In fact, our proof shows that
killing the process when it hits a set U € & such that u(U) > 0 is enough to push this
eigenvalue inside the interval [0, 1) so that the semigroup of the killed process, say
(PY, t = 0}, satisfies:

| = e

for all ¢ > 0. Consequently, its Laplace transform exists for some strictly negative reals
—a, with a > 0, and we have:

+o0

(1.7) J' e“[PF1](x) dt = j e Py{t < Ty} dt = o' (Ex{e*"v} — 1)
0

0
where Ty denotes the first hitting time of the set U, namely:
(1.8) Ty =inf{t>0; X, € U}.

(1.7) proves the desired result.

We will show that the intuition behind the above argument is quite general and applies
as well to nonsymmetric non-Gaussian Markov processes, provided the resolvent of the
killed process exists for some strictly negative reals. In general this resolvent is not given
by the Laplace transform so we will not be able to use (1.7) directly and a more
sophisticated argument will be needed.

We would like to emphasize that these facts from operator theory will not be needed in
the proof below even though they were a guide line for our intuition.

Note that the existence of exponential moments for hitting times has been known and
used for a long time in the study of recurrent diffusion processes in R" (see for example
[8] and [11]). The proofs rely heavily on the local compactness of the state space and on
the strong Feller property of these processes. Unfortunately both properties are restrictive
and are not satisfied in general, particularly in the case of infinite dimensional diffusion

processes. .
To illustrate this last point we would-like to recall that we can have:
(1.9) Ex{e*Ts} < 4+

for some a > 0 uniformly in x € X provided U € & is such that u(U) > 0 and:
(1.10) lim,_,., P¢(x, U) = pu(U)
uniformly in x € ¥. Indeed this last assumption implies that:

Px{Ty=nt} =[1 - Y%pO)]
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for some ¢, fixed, all integers n, uniformly in x € ¥, because (1.10) allows us to pick £, such
that:

Py{Tu > to} = Px{X,, & U} =1 — %p(U),

uniformly in x € X.

Nevertheless the uniformity in the limit (1.10) is usually checked using compactness
arguments that are not available in the infinite dimensional setting presented above nor in
some cases of non strongly Feller processes (see Remark 2 below). Moreover an elementary
computation shows that it is not even true for the one dimensional Ornstein-Uhlenbeck
process.

2. Uniformly ergodic Markov processes. Throughout this section ( ¥, %) will be
a fixed separable measurable space.

2.1 The continuous time case. Let P= {P,(x,A);t=0,x € X, A € &} be a transition
probability kernel on (3, Z). Note that we implicitly assume that P, (x, -) is the unit
mass at x € X. A probability measure p on (X, %) is said to be invariant for P if:

JP,(x,A)u(dx)=u(A), t=0,A€ &.
X

When this is the case, the transition probability kernel defines a semigroup, say
{P;; t = 0}, of bounded operators on the Hilbert space L*( X, du) of p-equivalence classes
of square integrable functions on X . Our main assumption concerns the ergodic properties
of this semigroup and the following notation will simplify its statement. For each 7' > 0 we
set:

1 T
QT'—_—I P;dt.
TO

DEFINITION. The transition probability kernel P = {P;(x, A); t=0; x € ¥, A € &}
is said to be p-uniformly ergodic if u is an invariant probability measure for P and if there
exist a positive function ¢(7') such that limr_,. ¢(T") = 0 and:

QTf_J’de"

=c(DI £l
2

for all f€ L*(X, dp) where | - ||2 stands for the norm of the Hilbert space L%( ¥, du).

Note that, when the semigroup defined on L*(X, du) by the transition kernel P is
strongly continuous, namely

lim,_,oP:(x, A) = 1a(x)

in p-probability for all A € X, our assumption of uniform ergodicity has been extensively
studied in the context of contractive semigroups of operators on general Banach spaces
(see for example [3. Chap. VII] and [10]).

In order to make the connection with the discussion of the problem in the introduction
we note that it can be restated in the following equivalent form (which is implicit in
[10]). 0 is a simple isolated eigenvalue in the spectrum X of the infinitesimal generator A
of the semigroup {P;; ¢t = 0}. Our result is

THEOREM 1. Let {X;; t = 0} be a measurable stationary Markov process in the
standard measurable space (X, ) and let us assume the existence of a transition
probability P,(x, dy) which is p-uniformly ergodic for the invariant probability measure
p. Then, there exists a > 0 such that the function:

X D x> Ex{e*Tv} € [0, =]
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is in L*( 3, du) (and hence finite u — a.e.) for all U € & such that p(U) > 0 and for which
the hitting time Ty defined by (1.8) is a random variable.

Here Ex denotes the conditional expectation knowing that the paths start from x at
time ¢ = 0. Moreover, we would like to emphasize that the proof shows that the
measurability of Ty can be bypassed (provided the conclusion is appropriately restated).

Proor. Enlarging the probability space if necessary, we can assume without any loss
of generality the existence of a sequence {{.: n =1} of independent identically distributed
random variables with uniform distribution on [0, 7] (where T'> 0 will be chosen later on)
which is independent of the process X = {X;; ¢ = 0}. For each integer n = 1 we set:

=&+ - &

Then {X.; n = 1} is a Markov chain with transition kernel @ defined by (2.1) and for
which p is still an invariant probability measure. We first remark that Ty < 7v = TN
provided we set:

N=inf{n=1; X, € U}
and consequently our proof reduces to proving that
¥ D x> E. (e}

is square integrable for o > 0 small enough. At this point we note that N is measurable
(because the process X is assumed measurable) whether Ty is measurable or not. So we
are left with a problem depending only on the chain we embedded in the continuous time
process we started with. Before going further we notice the following crucial property of its

transition kernel @r. If f € L*(X, du) we have:
2

froe(or- 9]
~(fra) for- o o r4) o= ()]
(fra) for-J o]

(by the invariance of )

= ( f fdn> + eTPIfIE.

(by our assumption (2.2)).
In particular, if f is of the form 1yg for some U € & and g € L*(¥X, du), we obtain by
using Schwarz inequality:

IlQrfII% =

QTf—jfdu

@23) | | @r(1ug)ll2 = En(U)* + o(T)’T/*| & |l2-
Now, if « > 0 and U € & is such that u(U) > 0, for every x € ¥ we have:
(24) Ex{eaN} = 2:=1 Px{Xﬂ E U, M) X‘l‘n—l E U» an € U}

But, an easy computation shows that:
PX, U ..., X, &£UX, €U} =[Qrluc](Qrlv)(x)
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so that:

"P{XTI E U, . ')an—l & U’ an € U}"2
(2.5)
=[1 = wU))? + (TP VWU + e(Ty1u(lU)
by applying n — 1 times (2.3) with 1y and once with 1y. Since ¢(7') tends to 0 as T goes
to o, we can fix T large enough so that the right hand side of (2.5) is bounded above by
(1 — 0)” for some 0 < 0 < 1 independent of n. We conclude by putting together (2.4) and
(2.5) to get: ’

| E.{e*M}]|2 < T3-1 e*"(1 — o)"

and choosing a > 0 small enough. O
We feel that it is worth completing the above result by the following facts.

REMARK 1. The above theorem may be regarded as unsatisfactory in the sense that it
gives the finiteness of E.{e*"} only for u-almost every x € ¥. Nevertheless, in many cases
it is possible to avoid this restriction. Let us assume for example that for some ¢ > 0 and
for all x € ¥ the measure P,(x, dy) is absolutely continuous with respect to p with a square
integrable density, say p:(x, y). Then, for every x € X and for every U for which T is a
stopping time:

Ex{e*Tv} = Ex{e*Tv; Ty < t} + Ex{e*Tv; Ty > t}
=e*+ f PAx,y)E,{e*Tv} du(y) < + .
x

Note that the above applies to finite and some infinite dimensional Ornstein-Uhlenbeck
(see 2.3 below) whereas the standard argument recalled in the introduction cannot be used
in these cases.

REMARK 2. It might be interesting to know the exact range of a > 0 for which the
conclusion of the theorem holds. The proof above shows that a can be taken of the form
ku(U) for some & > 0 independent of U but we were not able to find the best possible
constant % in general.

REMARK 3. We showed in Remark 1 that E,{e*"} is very often finite for every
x € X rather than merely for p-almost every x € X. In fact it is easy to see that this cannot
be the case in general. Indeed we can always enlarge the state space and extend the
transition kernel in such a way that the new states do not communicate with the original
ones. For the x’s which have been added this way we have now Ex{e“T"} = » and the
assumptions of the theorem are still satisfied since they involve only L*(3, du). Neverthe-
less the exceptional set of x’s can be shown to be “very small.” In fact it is possible to
prove that it is p-almost polar in the following sense: if U and « are as in the statement of
Theorem 1, and if our process is a right-process (see [4. Sect. 9]), then we have:

P“{TAm =Ty} =0
where A.. = {x € X; E.{e*TV} = »} and T4, is its first hitting time.
2.2. The discrete time case. Let R = {R(x, A); x € X, A € %} be a transition
probability kernel on (3¢, %) and let X = {X,,; n = 0} be a stationary Markov chain with

transition kernel R and invariant probability measure p. We assume that this chain is
asymptotically uncorrelated in the sense that:

sup{

;8 € LK, dp), || gll: < 1} <1

1
N‘ZIILI R'g - j gadp

2
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for some N = 1. Note that this assumption is weaker than:
sup{ | Rgll2; & € L*(¢, dp), ||gll= = 1, j gdu= 0} <1

which has been extensively studied (see for example [16. Chap. VIII, Section 3]).
The proof of Theorem 1 above applies very simply to give the corresponding result in
the discrete time case.

THEOREM 1’. Let X = {X,; n = 0} be an asymptotically uncorrelated stationary
Markov chain with transition kernel R and invariant probability distribution p. Then
for every U € & such that p(U) > 0, there exist real numbers a > 1 such that the function:

¥ 3 x> Ex{a™)} € [0, ]
is in L*(X, dy). Here N denotes the first hitting time of the set U, namely:
N=inf{n>0;X,€ U}.

REMARK 4. The above result implies that for u-almost every x € X, the exponential
moment E.{a"} is finite. Moreover in the same way as in the continuous case (recall
Remark 1) we can get rid of the p-almost everywhere restriction whenever for some n > 0
and all x € X the measure R"(x, dx’) has a square integrable density with respect to p.

Finally, as we pointed out in Remark 2, « can be shown to depend only on the number
#(U) and not on the set U.

2.3. Back to the neuron problem. We already proved in the introduction that the
assumptions and the conclusion of Theorem 1 were satisfied in Walsh’s model for neural
response. We note that the conditions of Remark 1 are also satisfied so that, if U and « are
as in Theorem 1, Ey{e*™"} is finite for all x € X . Indeed u is a mean zero Gaussian measure
on the function space C[0, L] and P(x, -) is the mean zero Gaussian measure P;(0, -)
translated by e*x, so that knowing the covariances of these mean zero Gaussian measures
we conclude using Feldman-Jacek’s Theorem (see for example [14. Chapter VIII ]) which
gives explicit formulae for the densities. We omit the details because they have already
been argued in [12].

Acknowledgment. The authors would like to thank the referee and the editor for
streamlining the original proof of the main result so as to avoid much of its operator
theoretical emphasis.
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