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LIMIT THEOREMS FOR LARGE DEVIATIONS AND
REACTION-DIFFUSION EQUATIONS
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Dedicated to the 60th birthday of Professor E. B. Dynkin

The equation u; = u,, + u(l — u) is the simplest reaction-diffusion
equation. Introduction of a small parameter allows construction of geometric
optics approximations for the solutions of such equations; these solutions are
approximated by step-functions with the values 0 and 1. The region where
the solution is close to 1 propagates according to the Huygens principle for
the corresponding velocity field v(x, e) which is calculated via the equation.
New effects may emerge, such as stops and jumps of the wave front.

The Feynman-Kac formula implies that the solutions of certain Cauchy
problems obey some integral equations in the space of trajectories of the
corresponding Markov processes.

Examination of this equation requires the study of Laplace-type asymp-
totics for functional integrals. These asymptotics are defined by large devia-
tions for the corresponding family of processes and are expressed through
action functionals.

1. Introduction. By now it has become usual to use probabilistic methods
when studying one or another problem for second-order elliptic and parabolic
differential operators. As it is known (see Dynkin, 1965), a Markov process
(X:, P,) is associated with every such operator. The solutions of basic boundary
value problems for the linear differential equation containing this operator may
be represented as the mean value of the corresponding functional of the trajec-
tories of the process (X;, P,) (as a functional integral). Direct probabilistic
methods developed in recent decades for examining Markov processes enable one
to study these functionals and thus to study the solutions of boundary value
problems. This approach has allowed one to obtain new results on the spectral
properties of operators and to examine boundary value problems for degenerate
equations, problems with small parameters in higher derivatives and a number
of other problems (Kac, 1951; Simon, 1979; Freidlin and Wentzell, 1984).

Methods employed in the research of linear equations frequently throw light
on related nonlinear problems. Such is the case with probabilistic methods.
Besides, one should mention that some classes of nonlinear equations are directly
connected with specific probabilistic objects, such as controlled diffusion proc-
esses (Krylov, 1977) and branching processes with diffusion (Skorohod, 1964;
Ikeda and Watanabe, 1970; McKean, 1975).
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640 M. FREIDLIN

This paper considers some asymptotic problems for reaction-diffusion equa-
"tions. Such equations arise in many problems in physics, chemical kinetics and
biology (for references, see Smoller, 1983). In this field there are fairly many
interesting results and far more unsolved problems.
By a reaction-diffusion (R-D) equation, we usually mean an equation or a
system of differential equations of the form:

o = e 0 5) 4 3 ) B s

= Lyuy + fo(x, ug, ---, un), t>0, xER"; k=1,2,--,n

The coefficients are assumed to be sufficiently smooth, and the quadratic forms
T im1 aZ(x))\i)\,-, k=1, ---, n, to be positive semidefinite. Sometimes the coeffi-
cients of the operators L, are allowed to depend on u.
The system of ordinary differential equations

(2) u= du/dt =flx, u), u= (uy, -+, Un), f= (fly vy fn)s

is called the local system corresponding to (1). The point x € R" in (2) plays the
role of a parameter.

Equations of type (1) describe the evolution of the concentrations u,(t, x),

-+, un(t, x) of particles of n different types. This evolution is caused by the
diffusion of the particles, by their drift (the diffusion and drift coefficients are,
generally, different for different particles) and by the transmutation of certain
particles into others. In the case of no diffusion and no drift, this evolution is
described by system (2).

Equations of the form (1), in partlcular describe the propagation of a disturb-
ance. Since the R-D equations are widely used in the models describing the
propagation of nerve impulses, the term “propagation of excitation” is often used.
There is also another model describing the propagation of disturbances—the
phenomenological one. According to this model, every point can be in one of two
states: either excited or not excited. If at any time ¢, a point is excited, then it
will remain excited for all ¢ > ¢,. Excitation propagates according to Huygens
principle: in the space R’, one defines the velocity field v(x, e), x € R", e € R’,
|e| = 1. If at time s = 0 the excited region is G; C R’", then by time ¢t > s the
excited region will be

[ f ' 1%l ds |
Gt = lx ER": lnftpgpo:x,gole(;' A U(¢s, ¢3 | ¢3 I_l) =<t SI .

Questions arise about the connection between these two ways of describing
the propagation of a disturbance and about the evaluation of the velocity field
v(x, e) using equation (1).

We will consider an asymptotic problem which in a number of cases enables
one to go over from the diffusion-kinetic description via system (1) to the
phenomenological model. We will usually consider the case of one equation
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(n = 1). The simplest version of the R-D equation

du(t,x) 1 8_2_u L

ot~ ga W xER,

has been investigated since the 1930s (Fisher, 1937; Kolmogorov, Petrovskii, and
Piskunov, 1937). One of the most interesting properties of equation (3) is the
existence of solutions of this equation of the propagating wave type u =
g(x — at), and the convergence of the solutions of the Cauchy problem for
equation (3) to one of these wave solutions as ¢t — . Of course, certain
assumptions should be made concerning the nonlinear term and initial conditions.

We denote by % the class of continuously differentiable functions f(u),
u € R, such that f(0) =f(1) =0, fu) >0for 0 <u <1, f(u) <0 for u & [0, 1]
and supo<u<:t”f(u) = f(0). )

We denote by # the class of continuously differentiable f(x) such that f(0) =
f(p) = f(1) = 0 for some u € (0, 1), f(u) <0 for u € (0, u) U (1, ») and f(u) > 0
for all other u € R'. Moreover, if the function f(u) satisfies the condition
[ f(u) du > 0, we shall then write f € 3.

Sometimes we will face nonlinear terms f not belonging to %1 U &. These
cases will be discussed briefly.

Consider Cauchy’s problem for equation (3) with the initial condition

3

@ w0, 1) = x"() = {}, =0

It is possible to prove (see Aronson and Weinberger, 1975, 1978) that the solution
of the Cauchy problem (3), (4) for f € % U % converges to the wave solution
qg(x — a*t) as t — . If f € 7, then a* = Vv2f'(0). In the case when f € %,
there is no such simple formula for a*. However, one can prove that o* =
a*[f] is a continuous monotone functional of f. The wave q(£), ¢ € R, can
be interpreted as the solution of the boundary value problem

(5) *%q"(§) +a*q’'(§) +f(g(§)) =0, —0<f{<w, g(-»)=1, q(»)=0.

The function q(¢) decreases monotonically from 1 to 0 and can be defined in a
unique way up to a shift of the argument. In the case when f € &;, problem (5)
can be solved for a unique a* € R.

Therefore, for large ¢, the solution of problem (3), (4) is close to g(x — a™*t)
and is thus characterized by the shape of the wave g(£) and by the velocity a*.
If we want to go over to the phenomenological description, then we must separate
the problems of the evaluation of the velocity and of the shape so that only the
velocity will remain in the initial approximation. The shape of the wave appears
under more detailed approximation.

To carry out this scheme, consider the following function

u®(t, x) = u(t/e, x/e)

where u(t, x) is the solution of problem (3), (4). The above implies that u*(¢, x)
= u(t/e, x/e) = q((x — a*t)/e) for t > 1. Since g(£) decreases monotonically from
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1 to 0, we conclude that g((x — a*t)/e) — x~(x — a*t) as ¢ | 0. Therefore, one
can expect that u®(t, x) — x “(x — a*t) as ¢ | 0. The function u*(¢, x) satisfies the
differential equation

du(t, x) & o’
ot 2 9x?

Therefore, the solution of problem (6) must converge to x (x — a*t) as ¢ | 0.
Thus, when studying problem (6) we obtain only the velocity a* in the principal
term u’(t, x) as ¢ | 0. The wave g(¢) appears only under a more accurate
examination of the behavior of u*(¢, x) as ¢ | 0.

Note that for equation (3) and in general for equations in R” which are
homogeneous in space the introduction of a small parameter is in fact equivalent
to the study of lim,_.u(t, at), a € R". Such a problem was studied in (Aronson
and Weinberger, 1975, 1978). As these authors have shown, on the unit sphere
in R" a function a(e), e € R', |e| = 1, is defined such that the above limit is
equal to 1 for |a| < a(a/|a]) and to O for |a| > a(a/|al). It is natural to
interpret the value a(e) as the velocity of propagation of the disturbance in the
direction e. However, the introduction of the small parameter provides more
opportunities for generalization of the problem.

The above reasoning leads us to the following statement of the problem in the
general case.

Consider the Cauchy problem

(©) + 2 f), w0, %) = X ().

dut,x) e 9 [ s . ou r g w1 .
Ta T g 21 (a (x) axf) + Xie b(2) 55+~ flx u)

(7
= Lu® + %f(x, u?), t>0, x€R", u%0,x)=gkx)=0.

We will not strive for the greatest possible generality and we suppose that f(x, u)
belongs to #; for every x € R" or f(x, u) belongs to %, for every x € R". We will
consider these cases separately, although it is also not difficult to examine the
case where f(x, *) € #; for some x € R' and f(x, *) € % for other x. The initial
function g(x) is assumed to be bounded nonnegative and continuous everywhere
with the possible exception of a finite number of manifolds of lower dimensions
on which it has simple discontinuities.

Under minor additional restrictions we will show that the solution of
problem (7) tends, as ¢ | 0, to a function u’(t, x) which only takes the two
values 0 and 1. Denote by T, ¢t > 0, the set in R" on which this limit is 1: T, =
{x € R": lim,ou’(t, x) = 1}. It is clear that the evolution of the function
ul(t, x) = lim,jou‘(t, x) as t grows reduces to the evolution of the set T,.

In some respects it is simpler to describe the evolution of the set I'; in the case
of f€ %K. If f(x, *) € % for x € R" and there is no drift in equation (7), then the
set T; changes in accordance with the Huygens principle for an appropriate
velocity field v(x, e); Ty = {x € R", g(x) > u(x)}, where u(x) € (0, 1), f(x, u(x)) =
0. The field v(x, e) is defined by the diffusion coefficients and nonlinear term,
the dependence being of local nature; the velocity at a point x in a direction e is
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defined by the coefficients a“(x) and f(x, u) with “frozen” x. For f € &% the
problem in fact reduces to the one-dimensional equation with the coefficients
independent of x.

If f € % and [§ f(x, u) du < 0 then according to similar rules the unexcited
region expands as time grows. The case where f € % is considered in Section 3.

Section 2 studies problem (7) with nonlinear term from class . In general,
for f(x, *) € %1, x € R’, effects arise which are not covered by the phenomenolog-
ical theory. However, if f(x, *) € # and (df(x, u)/0u)|.—0 = ¢ = const, then the
propagation of disturbances allows phenomenological description. In this case,
disturbances propagate in accordance with the Huygens principle along the
velocity field vo(x, €) = v2¢(3 =1 a;(x)e’e’) ™2, (a;(x)) = (a¥(x))", if one puts Ty
= supp g = {x € R": g(x) > 0}. This assertion is contained in Example 1. Now let
f(x, *) € %1 and c(x) = (f(x, u)/du)|.—o be nonconstant. We will introduce the
velocity field v(x, e) = v2¢(x)(3Y a;j(x)e’e’)™/2 The disturbance would propagate
along this velocity field if, just as in the case of f € %, the “frozen” coefficients
principle were valid for f € ;. Let us denote by G, the region which will be
excited by time ¢ with the disturbance propagating according to the Huygens
principle along this field v(x, e), if at the initial moment the region G, = T, =
supp g was excited. Example 1 and comparison theorems imply that the set T,
contains G, (Lemma 1). It turns out that without additional restrictions the set
T'; is larger than G;. This follows from Example 2. The example considers one-
dimensional problem (7) with a'}(x) = 1, f(x, u) = c(x)u(l — u), where c(x) = 1
for x = 0 and ¢(x) = 1 + x for x > 0. Let the support of the initial function be
G§ = {x € R, x < a}, where a = 0. In this example v(x, +1) = v2(1 + x), x > 0,
and, say fora=0,G, = {x E R": x < t?/2 + t\/é}}). As it follows from Example 2,
for a = 0 the region I', has the form: T, = {x € R': x < t%/2 + tV2 + t2/3}.
Therefore, for every t > 0, T, is larger than G;. Example 2 also implies that in
the problem under consideration a universal velocity field v(x, e) does not exist
at all. These fields turned out to be different for different initial conditions
(different a).

Theorem 2 gives sufficient conditions concerning the equation and initial
function for the sets T'; and G; to coincide. It follows from Example 4, that in the
one-dimensional case with a''(x) = 1 it is sufficient that the function c(x) be
nonincreasing as the point x moves away from the support G, of the initial
function. In particular, if as in Example 2, ¢(x) = 1 + x for x > 0 and c¢(x) = 1 for
x < 0 and G, = {x € R': x > 1}, then the wave front (that is the boundary of the
excited region) will move from the point x = 1 to the point x = 0 with velocity
U(x, —=1) = v2(1 + x). Therefore, one can conclude from Examples 2 and 4 that
in the direction of the decrease of ¢(x) the wave front moves more slowly than in
the direction of the increase of c¢(x).

While Lemma 1 gives a lower bound for the set I, and Theorem 2 provides
conditions under which T coincides with this lower bound, Theorem 1 gives an
upper bound for T',. This theorem describes the set which always belongs to the
complement of T; and gives a condition (condition (N)) under which the closure
of this set coincides with the closure of R"\T,. Therefore condition (N) ensures
the quickest propagation of disturbances. In this case not only the velocity of
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disturbance propagation may be larger than v(x, e), and may become infinite, but
the wave front (the boundary of the set I';}) may have jumps. Such a situation is
described in Example 3. This example in fact implies that for f € & sufficiently
quick growth of the function c¢(x) leads to jumps of the wave front. As we shall
see later, all these effects are connected with the asymptotics of the probabilities
of large deviations for diffusion processes with small diffusion.

The introduction of a small parameter enables one to give a number of useful
generalizations of the problem on propagation of disturbances. Some of these
generalizations are discussed in Section 4. This section deals with initial boundary
value problems for equation (7), problems with nonlinear boundary conditions,
equations with periodic and random coefficients, the effect of drift on wave
propagation and a number of other questions.

Section 5 is devoted to systems of R-D equations. An integral equation in the
space of trajectories of the corresponding Markov process is written for the
solution of the system. The law of propagation of the disturbance is calculated
for the systems analog of the Kolmogorov-Petrovskii-Piskunov equation
(class 7).

The final section, 6, concerns some ways of introducing a small parameter in
R-D equations which differ from those considered in the previous sections.
Boundary value problems for R-D equations are studied for the case when only
some of the diffusion coefficients are small, when the drift is of the same order
as the nonlinear term. A system of R-D equations is considered in which only
one equation contains a small parameter.

In order to analyze problem (7), we will consider the Markov diffusion process
(X:, P,) in R™ governed by the operator

€ i} . d . 9
€= — V. — y _— T i —_—
L 2 Ez,]—l 6x‘ (a (x) ax]> + 21—1 b (x) ax‘

(see Dynkin, 1965). The trajectories of this process can be constructed with the
help of the stochastic differential equation

(8) X = Vea(XOW, + b(X3), X = x.

Here W, is a Wiener process in R", ¢(x) is a matrix such that o(x)o*(x) = (a%(x));
b(x) = (b'(x), - -+, b7(x)), b*(x) = b¥(x) + (¢/2) Ti=1 (a™*(x)/3x).

Let c(x, u) = u™f(x, u). The Feynman-Kac formula implies that the solution
of problem (7) obeys the following equation

9) u(t, x) = Exg(Xi)eXp‘{% ; c(X5, u(t — s, X3)) dS}' ,

where X; is the solution of equation (8).

Equation (9) is quite suitable for examining the function u°(¢, x). Under minor
additional assumptions concerning the nonlinear terms f.(x, u,, - - -, u,), one can
write similar equations for the solution of the system (1) as well (see Section 5).
If the drift coefficients depend on unknown functions, then also in this case,
using the Cameron-Martin-Girsanov formula for the density of measures in the
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space of trajectories, it is possible to write an equation similar to (9) for the
solution of the Cauchy problem. Below we shall use equation (9) for analysing u*
as ¢ | 0. Similar integral equations in the space of trajectories can also be utilized
in other problems connected with quasilinear equations (see, e.g. Freidlin, 1967,
1968).

To examine the behavior of the solution of equation (9) as ¢ | 0, we shall need
asymptotic formulae for expressions of the form

(10) E.g(X; )expl f c(X?) ds}> e| 0,

where ¢(x) is a continuous function which is bounded from above. It is clear that,
uniformly in the interval [0, t], the trajectories X; tend in probability to the
solution of the ordinary (nonstochastic) differential equation which can be
obtained from (8) by setting ¢ = 0. If the exponent in (10) did not contain the
factor ¢!, then the limit of this expression as ¢ | 0 would be equal to
g(XYexp{ [’ ¢(X?) ds}. Deviations of order 1 of the trajectories X; from X7 have
probabilities of order exp{—const X ¢}, so the asymptotics of expression (10) as
¢ | 0 are defined by the deviations of X} from X? of order 1.

In order to describe these deviations, we shall introduce an action functional.

By the action functional for the family of processes (X;, P;) as ¢ | 0, we mean
the functional So,(?), ¢ € Cy:, which is defined by the equality:

So(¥P) = % J; Yiim1 ag(P)(Ph = bH(P))(P] — bI(P) ds, (az(x)) = (a¥(x))7,

for the absolutely continuous functions ¥: [0, t{] — R". For other ¥ € Cy, we put
Soe(P) = +

The functional Sy, (¥) is lower semicontinuous. With its help, it is possible to
describe the logarithmic asymptotics for the probabilities of large deviations. If
& C {¢ (S Co:, P = x}, then

—inf{Sy(¥): ¢ € (&)}
11) < lim inf,o¢ In P,{X® € &} < lim sup,jo¢ In P,{X’ € &}
< —inf{Su(?): ¥ € [¥]},

where (A) denotes the interior of the set A, and [A] denotes the closure of A.
For the expression (10), we have the following asymptotic formula of Laplace-

type:

1 t

lim,jo¢ In E,,g(X;)exp{; f c(X?) ds}
0
(12) .
= sup{ f c(¥,) ds — So:(¥): $o = x, P: € supp g}
0

where g(x) = 0, supp g = {x € R": g(x) > 0}.

The proof of formulae (11) and (12) and other properties of the action
functional may be found in (Freidlin and Wentzell, 1984).
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2. Wave front propagation for equations with nonlinear term of &;
class. This section considers the limiting behavior as ¢ | 0 of the solution of
problem (7) for the nonlinear terms f(x, u) such that f(x, *) € % for every
x € R". For the sake of brevity we shall assume that equation (7) has no drift,
i.e.bi(x)=0,i=1, -- -, r. The case when the drift is not zero is discussed briefly
in Section 4.

Noting that the initial function is nonnegative, we can conclude, for example
from equality (9), that u(¢, x) = 0 for t = 0, x € R". Let ¢(x) = c(x, 0) =
lim, o~ 'f(x, u). For every x € R" the condition f(x, *) € #; implies that

c(x, u) = u'f(x, u) < c(x).

Taking into account this bound, we obtain from (9) and (12)

O0<u‘(t,x) < E,,g(Xi)exp{l f c(X?) ds]r
(13) e Jo

= exp{% [sup{ J; c(P;) ds — Sp:(P): P € Cos, Po=x, P € [GO]H} , ¢l0,

where the sign “><” denotes logarithmic equivalence and G is the suf)port of the
initial function g(x), [G,] being its closure. We always assume that the closure of
the interior of G, coincides with [Go].

Let

V(t, x) = V,(t, x) = sup{ J; (c(‘Ps) - % Y1 azj(‘Ps)‘Pi‘Pi)dS: Po=2x, ¢ E [Go]} .

The functional under the supremum sign is upper semicontinuous. Therefore,
the upper bound in (13) is attained at some function ¥ € C,y, the function
V(t, x) being continuous.

From (13) it follows that lim,cu*(t, x) = 0 on the set {(¢, x): t > 0, x € R’,
V(t, x) < 0}. This convergence is uniform on every compactum lying in the
region {(¢t, x): t > 0, x € R", V(t, x) < 0}. If we succeed in proving that
lim,jou‘(t, x) = 1 for V(t, x) > 0, then the manifold ¥, = {x € R": V(t, x) = 0} can
be considered as the position of the wave front (i.e., the boundary between the
excited and nonexcited regions) at the time ¢. (Note that in “reasonable” cases,
¥, is in fact either a manifold of dimension (r — 1) or the union of manifolds of
dimension (r — 1) and less). Without supplementary assumptions, lim,jou‘(t, x)
is not necessarily equal to 1 on the set {(¢, x): V(¢, x) > 0}. Now we will introduce
an assumption which ensures the validity of this assertion. Then we will examine
the case when this assumption cannot be fulfilled.

Let Q- = {(¢, x): V(t, x) < 0}. We shall say that condition (N) is fulfilled, if the
following relation

V(t, x) = sup{ J; c(¥,) ds — So:(P):

PECop, Po=2x,PE[G), (t —5s,¥)€EQR_for 0 <s < }
holds for any ¢t > 0 and x € Y.
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Condition (N) means that V(t, x) is the supremum of the functional
J6 c(¥5) ds — S (P) on the set of functions lying in the region, where by virtue of
the above, u‘(s, y) is close to zero. In this region c(x, u°) = c¢(x), and inequality
(13) is not too rough. This enables us to bound u°(¢, x) from below and show that
u’(t, x) — 1 as ¢ | 0 in the region {(t, x): t > 0, x € R", V(t, x) > 0}.

First of all, we note that if condition (N) holds, then for any é§ > 0, T'> 0 one
can find ¢, such that for x € },, 0 < t <T

(14) u(t, x) > exp{—é/e},

provided ¢ < ¢. To see this, first note that (13) implies that u°(t, x) — 0
as ¢ | 0 in the domain Q-. Suppose that $,,0 <s =<t is a function such
that ¢, = x € 3, b, (Go), (t — s,‘P) € Q- for 0 < s <t <t for some
t; € (0, t)and —8/2 < [4 c(¥,) ds — So(#). Such a ¢ exists on account of the
fact that x € %, and condition (N) is valid. Denote &, = {¢¥ € Cy: Yo = x,
SUPo<s<: | Ps — Ps| < h} and let x, designate the indicator of the set &, C Cy.
From (9), noting that the initial function is nonnegative and the ‘functional
J6 ¢(¥,) ds is continuous, we conclude that for some ¢; > 0,

u(t, x) = Exg(Xi)exp{% J; o(X5, u(t — s, X3)) dS}
(15) = xxhg(Xi)exp{% j; o(Xs, ut(t — s, X3)) ds]f

1 t
> clexp{— (f c(P,) ds — —)}P {Supo=.=: | X5 — P, | < hl,
& 0
provided h is small enough. Furthermore, the properties of the action functional
imply that for any é > 0:
(16) P {supose=t | X5 — @] < h} > exp{—1/c[Soi(¥) + 5/8]},

provided ¢ is small enough. Finally, the definition of ¢ together with (15) and
(16) results in inequality (14).
Now we will show that if condition (N) is fulfilled and

(t,x) €Q+={(t,x): t >0,x €ER", V(t, x) >0},
then
lim,ou(t, x) = 1.

First of all, we notice that the condition f(x, u) < 0 for u > 1 implies the relation:
lim sup,ou’(t, x) < 1. Therefore, it is sufficient to show that lim inf,ou‘(t, x) = 1
for (t, x) € Q.. Suppose the opposite were true: (¢, x) € Q. and for some h > 0
one can find arbitrarily small ¢ > 0 such that u°(t, x) <1 — h. Denote by A the
distance from the point (¢, x) to the set {(¢, x): t = 0, x € R", V(¢t, x) < 0}. We
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introduce the domains
Dy = {(¢, y): u(t, y) <1 - hj,
D, = {(t, y): V(¢, y) > 0},
Dy={(t, ¥):t>0,|y— x| <MN2}, D=D,ND;N D;.

Suppose that 7 = 7° is the first exit time of the “heat” process (t — s, X;) from
the domain D: 7 = inf{s: (¢t — s, X:) & D). Since 7 is a Markov time and X is a
strong Markov process, from (9) we deduce the relation

aam u‘(t, x) = E.u’t — 7, Xi)eXP{% f o(Xs, u(t — s, X3)) dS}’-
0

If (t — 7, X) € Dy, then u*(t — 7, X¢) = 1 — h. Next, from the properties of the
action functional it is easy to obtain

Pf(t — 7, X;) € D3} X expf{—ci/e}, ¢ | 0

for some ¢; > 0. Finally, if (¢ — 7, X) € dD,, then observing that A > 0, we
conclude that + > A\/2 > 0. From this, taking into account that c¢(y, u) > ¢, >0
for |x — y| < A/2, u <1 — h, we deduce that on the set & = {(t — 7, X}) € D5}
the exponential in (17) is bounded from below by exp{Aco/2e}.

Relying on (14) for 6 < Y \co, we conclude that on the set .o/ the value under
the expectation sign in (17) is larger or equal to exp{Aco/4e} for ¢ small enough.
Gathering the above bounds, we conclude from (17) that lim inf,ou‘(t, x) =
1 — h. The obtained contradiction shows that lim inf,jou°(¢, x) = 1, and thus
lim,;oy°(t, x) = 1 for (¢, x) € Q.

So, we have proved the following result (Freidlin, 1979).

THEOREM 1. Suppose that f(x, *) € F for x € R™ and let condition (N) be
fulfilled. Then, for the solution u(t, x) of problem (7) the following relation holds:

o L, i V(t, x>0
lim, ou‘(t, x) = {0, i; Vi(t, x) <O.

This convergence is uniform on every compactum lying in the regions {(t, x):
t>0,x €ER", V(t x) >0} and {(t, x): t > 0, x € R, V(t, x) < 0}, respectively.

Therefore, the equation
(18) V(t, x) =0

defines the wave front which divides the regions where u°(t, x) is close to 0 and
is close to 1 for small e. From equation (18), one can find t* = t*(x) which is the
time necessary for the disturbance to reach the point x. As will be seen below,
the disturbance (i.e., the region where u°(t, x) is close to 1 for small ¢) can be
propagated in a noncontinuous way. In this case one cannot manage with the
phenomenological description in the form in which it is given in Section 1.
On the other hand, under appropriate additional conditions, the level set
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{V(t, x) = 0} has sufficiently simple structure so that the behavior of u*(¢, x) for
small ¢ may be described with the help of the corresponding velocity field and
the Huygens principle.

EXAMPLE 1. Suppose that the function f(x, u) does not depend on x € R":
f(x, u) = f(u) € F1. In this case the expression for V(t, x) is as follows:

t
(19) V(t, x) = ct — inf{% fo ey a(P)PIPL ds: Py = x, P, € [Go]}—,

where ¢ = (8f(u)/0u) | u=0. Denote by d(x, y) the Riemann metric in R" correspond-
ing to the metric tensor ds* = Y7, a;(x) dx’ dx’. Simple calculation shows that
the lower bound on the right-hand side of (19) is equal to (1/2t)d*(x, Go)and thus

d?(x, Go)
2t

It is not difficult to verify that in this case condition (N) holds. Therefore, at
a time ¢ > 0 the wave front is defined by the equality

d(x, Go) = tvV2c.

This implies that in the case f(x, u) = f(u) € 1, the excited region expands
according to Huygens principle, the corresponding velocity field being homoge-
neous and isotropic in the metrics d(x, y) and equal to V2c. In the original
Euclidean metric, this field has the form

v(x, e) = vV2f’(0)(Tij=1 ai(x)e'e’) ™2,

where e = (e, - - -, €).

Now we will show that if the function f(x, u) = u - ¢(x, u) depends on x in an
essential way, then some new effects can appear and generally the propagation
of disturbances can no longer be described with the help of the Huygens principle.

V(t, x) = ct —

EXAMPLE 2. Let x € RY, a'}(x) = 1, f(x, u) = ¢(x) - u(1l — u), where c(x) = 1
for x < 0 and ¢(x) = 1 + x for x > 0. Suppose that the initial function has the
support Go = G§ = {x € R, x < a}, a = 0. In this case

t
V(t, x) = V.(t, x) = sup{j; [1 + @, — % ‘Pf] ds: Vg =x, ¢, = a}~.

The Euler equation for such a functional has the form: ¢ = —1. Taking into
account the boundary conditions we can therefore find the extremal on which
the supremum is attained

@, = —(s%/2) + (t/2 + (@ — x)/t)s + x.

For V,(t, x) we obtain the expression

1
3 5 1, _t_3 a+x (a — x)?
Va(t,x)—J;[1+<Ps 2‘P3]ds—24+t(1+ 2> o

By equating V,(¢, x) to zero, we find the expression for the front position X,(t)
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at time ¢:

X.(t) = t¥/2 + a + Vt*/3 + 2t*(1 + a).

Note that since the function X,(t) is convex and the extremals are concave,
condition(N) is fulfilled. Therefore, in this case Theorem 1 can be applied.

For every a = 0 the function X,(t) is strictly increasing, and at each time ¢ its
derivative can be represented in the form of a function of X,(t). It may seem that
in this case the front propagation also admits phenomenological description with
the help of an appropriate velocity field. However, the velocity field here turns
out to depend on the initial condition. To see this it is sufficient to evaluate a =
Xo(1), X5(1) and Xo(2):

Xo(1)=d=Y%+ V%, Xo2) =2+ V4% = 5.6,
X:(1) =1+ V7 + V1% + V% ~ 5.1.

If the velocity field did not depend on the initial conditions, then the equality
Xo(2) = X;(1) would be valid. In our case Xo(2) > X;(1), and thus the velocity
field is not of such a universal nature as in the phenomenological theory.

In the next example, we will first choose a discontinuous function for c(x, u).
Note that this is done solely for the sake of simplification of the computations.
In the final part of the example, we will see that “new sources” also arise in the
case where c(x, u) is continuous, provided c¢(x, u) increases sufficiently quickly in
some finite interval.

ExAMPLE 3. Consider the one-dimensional problem with a'(x) = 1, c(x, 0)
=¢; > 0 for x < h and c(x) = c; > 2¢; for x = h > 0. As the initial function g(x),
we take the step function x ~(x) which is the indicator of the set {x < 0}. Inside
of each of the half-lines {x < h} and {x > h}, Euler’s equation for the functional

oe = [b ¢(®;) ds — So:(#) has the form ¢ = 0. Therefore, the extremals of the
functional Ry.(¥) are line segments or unions of line segments with vertices on
the line x = h. This reasoning permits us to calculate

V(t, x) = sup{R:(P): Po = x, ¥, = 0}

and the law of the wave front propagation which is defined by the equation
V(t, x) = 0, and also to check the validity of condition (N).

It turns out that up to time T, = (h/cs)V2(cz — c¢;) the disturbance propagates
from the point 0 € R! to the right with constant velocity V2¢, and by time T,
reaches the point Tov2¢, < h. On the other hand, simple calculation shows that
V(Ty, h) = 0 and V(¢t, h) > 0 for t > T,. This means that at time T, a new source
appears at the point x = h. From this source a wave propagates in both directions:
to the left with velocity v2c; and to the right with a velocity which is at first
larger than V2¢,, but for large ¢ tends to v2c,. The waves from the point 0 and
from the point 1 will meet by time T, = (2\/2_c1)‘1(h - T0~/2_c1).

Therefore, at the time T, a jump of the wave front occurs and the excited
region has two connected components for ¢t € (Ty, T).

Now let ¢(x, 0) = ¢(x) be a smooth monotone function which is equal to ¢; for
x < i = Y[h + Tov2c,] + 8, where & > 0 is small enough, and is equal to ¢, for
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x > h. Using comparison theorems one can show that for such a function c(x)
the disturbance reaches the region {x > x + 6} before it reaches the point %. Thus
here we also have a jump of the wave front.

Therefore, in the case when c¢(x) = f/(x, 0), f € S, is nonconstant, the
propagation of the region occupied by the excitation cannot, generally speaking,
be described via Huygens principle.

Now we will discuss condition (N) and consider possible ways of weakening
this condition. For this, we shall need a result which gives a lower bound for the
region occupied by the disturbance.

Let us introduce the velocity field

v(x, €) = V2c(x)(Tij=1 az(x)e’e’)%, x ER’, |e| =1.
We put

¢ ,
. b | ds
TGo(x) = mf{J; ;(‘PI—¢PI|¢P—_T:I5 Y ECy,Po=12x,% E Go} .

LEMMA 1. Suppose that f(x, *) € S, x € R’, and let the function. c¢(x, u) be
bounded from above and continuously differentiable. Then lim,jou‘(t, x) = 1 for
xE€ G ={yER" 16(y) <t}

PROOF. The proof of this lemma is simple and we will only outline it. Given
two sufficiently smooth functions fi(x, u), f2(x, u), x € R", u € R*, suppose that
fi(x, u) < fo(x, u). Denote by uj(t, x) and us(t, x) the solutions of problem (7) with
f = fi and f = f,, correspondingly. It is not difficult to deduce from(9) that
ui(t, x) < us(t, x) for t >0, x € R". The same monotonicity holds when considering
the solutions of the first boundary problem for equation (7). Next, consider the
Riemannian metric ds? = 2¢(x) Y%= a;(x) dx’ dx’. In this metric the domain G,,
t = 0, expands according to the Huygens principle with velocity one. Let T be
the minimal geodesic connecting the point x and [Go]. For a given 6 > 0, we will
decompose the curve I' into a finite number of small segments v, - - -, ym so that
each such segment v, can be covered by a neighborhood inside of which it is
possible to choose c,(u) so that the following relations hold:

c(x, u) = ce(u), |c(x, u) —crl(u) | <é.

The propagation of the disturbance for ¢(x, u) = c(u) is described by Theorem
1 (see Example 1). By virtue of the comparison principle given above, the
disturbance in a piecewise-constant medium will reach the point x not earlier
than in the original medium. On the other hand, by choosing § sufficiently small,
one can ensure that the time of propagation from Gy to x will be arbitrarily close
to 7¢,(x). The assertion of the lemma follows.

Example 3 shows why such “local” arguments do not give the corresponding
upper bound for u‘(¢, x).

We put H = {(t, x): t > 0, x € G}, where G, is the region in R" defined in the
formulation of Lemma 1 and [H] is the closure of the set H in [0, ©) X R".
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THEOREM 2. Suppose that f(x, *) € F for x € R’, and let c(x, u) = uf(x, u)
be continuously differentiable and bounded from above. Set

Vit, x) = supJ J; c(¥,) do — Soi(P): Py = x, (s, ¥,) € [H],

(19) 1
(s—o0,9,) &€ [H]foroc €10, s), s < tf'
Suppose that V(t, x) < 0 for (t, x) & [H]. Then lim,jou’(t, x) = 1 for (t, x) € H and
lim,jou‘(t, x) = 0 for (¢, x) & [H].

PROOF. The equality lim,ou‘(¢, x) = 1 for (¢, x) € H was established in
Lemma 1. To prove that u‘(t, x) — 0 on the set {(t, x) & [H 1}, we shall consider
the stopping time 7° = t A inf{s: (¢ — s, X%) € [H]}. Taking into account that the
process X; is a strong Markov process, we have

u’(t, x) = E.u(t — 7°, Xie)exp<|Il f c(Xs, us(t — s, X9)) ds}
& 0

=< E.u‘(t — 7, Xie)exp{1 f e(X%) ds} .
& 0

From this and using a generalization of (11) one can deduce that lim us(t, x) =0,
provided (¢, x) & [H].

EXAMPLE 4. Suppose that x € R', a'(x) = 1, f(x, *) € 51, g(x) = x(x). The
function c(x) = (9f(x, u)/du) | .- is assumed to be monotonically decreasing. We
will define the function y(s), s = 0, as a solution of the differential equation

(20) ¢s =V 26('1/3)) ¢0 = O-

This function increases monotonically; its derivative is positive and decreases as
s increases. It is readily checked that in this case the set H = {(¢t, x): ¢ > 0,
T6(x) < t} is {(¢, x): t > 0, x < y,}. Simple calculations show that outside the
closure of this set the corresponding function V(¢, x) is negative. Therefore by
Theorem 2,

. 1’ f <
lim,jou’(t, x) = {o, fg; i > iﬁ

In this case, condition (N) is not fulfilled.

In this example, one can describe the propagation of disturbances from the
region {x < 0} to the right with the help of phenomenological theory with the
velocity field v(x, 1) = v2¢(x). One should, however, keep in mind that the front
velocity at a point x depends on which direction the wave moves. If at the initial
time the region {x > 10} were excited, then the front would propagate to the left
(for the same function c(x)) with a different velocity and, in particular, in this
case the wave front may have jumps as in Example 3. Note that the front
propagation in the direction where c(x) decreases (for instance, from the point 0
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to the point 10) is slower than in the direction of increasing c¢(x) (from x = 10 to
x=0).

3. Geometric optics approximation for the nonlinearities of %, type.
Now suppose that f(x, *) € %, for every x € R, and let c(x, u) = u"f(x, u) be a
sufficiently smooth function which is bounded on sets of the form {(x, u): x € R",
ul = M}, M > 0, with c(x, 0) = c(x, u(x)) = c(x, 1) = 0. For the sake of brevity,
we will assume that there is no drift and that the initial function obeys the
condition 0 =< g(x) < 1. The last condition is not difficult to weaken by noting
that f(x, u) > 0 for u < 0 and f(x, u) <0 for u > 1.

We put

G+ ={x € R": g(x) > pu(x)}, G_={x € R": g(x) < u(x)},
G.={x ER": g(x) = p(x)}.

If either G or G_ is empty, then the problem reduces to the case considered in
the previous section; we will therefore assume that G, and G- are not empty. We
will also suppose that the closure of either set coincides with the closure of its
interior. Sometimes we will also make the following assumption:

(21) 8G+ = BG_ = G,,,

Suppose that x € G, and let 6, = p(x, G,) be the Euclidean distance from x to
G,. We choose 6, > 0 small enough so that g(y) — u(y) =X >0for |y — x| <&,
and put § = &, A 6. From the definition of the action functional, it follows that

P.{supo<.=n | X§ — x| = 6/2}

(22)
X exp{—(1/e)inf{Son(P): P € Con, Po = x, SUPo<s=h | P — x| = 6/2}}

for any h > 0. It is easy to verify that the lower bound in the exponent in (22) is
positive and tends to infinity as h | 0. In particular, one can pick an h; > 0 such
that for h € (0, h,] this lower bound is larger than SUD.err,|u|<1 | (%, ©) |. This
implies that, for t < h,, the contribution to the right-hand side of (9) of the
trajectories X; leaving the 4/2-neighborhood of the point x in the time [0, k]
tends to zero as ¢ | 0.
Let
& = min{g(y): |x — y| = 6/2},
¢ =minfc(y, u): |y — x| <6/2, u(y) + A =u=<1-—u},

where % is an arbitrary small positive number. Relying on the above reasoning,
we obtain from equation (9) the bound

u‘(h, x) = %g exp{ch/e}, 0<h<h,,

which holds for u° < 1 — x. From this it follows that lim inf,jou’(t, x) = 1. On the
other hand, note that since g(x) < 1 and f(x, u) is negative for u > 1, we can
deduce that the function u‘(t, x) cannot exceed 1. This implies that lim, wuf(h, x)
=1, x € (G+), h € (0, h,). Moreover, it follows from the above argument that for
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any compactum K C (G,) the convergence of u‘(t, x) to the limit is uniform in

x € K and t € [§, hy], for any § > 0. In the same way, one can show that for

x € (G-), lim,ou’(h, x) = 0 for h € (0, h,) and appropriately small ;.
Therefore, the following result holds.

LEMMA 2. For each compactum K C (G,) (K C (G-)) there exists an h; > 0
such that lim,ou’(t, x) = 1 (lim,ou‘(t, x) = 0) uniformlyinx E Kand0< 6 <t <
h, for any fixed 6 > 0.

Suppose now that condition (21) is fulfilled. Then G, is a “thin” set with no
interior. Lemma 2 implies that for small ¢, outside a small narrow neighborhood
of the set G, the function u‘(¢, x) tends (as ¢ | 0) to the function which is equal
to 1 on G, and to 0 on G_. It turns out that for any ¢t > 0, the function u‘(¢, x)
converges (as ¢ | 0) to the step function taking values 0 and 1. With the growth
of t, the only evolution is that of the manifold dividing the regions where u*(¢, x)
is close to 0 and 1. This manifold can be interpreted as a wave front. The
evolution of the wave front describes the change of u‘(t, x) with time for ¢ << 1.
Let us see how one can describe this evolution.

For f(x, <) € %;, the function c(x, u) attains its maximum somewhere between
u(x) and 1. The main contribution to the mathematical expectation on the right-
hand side of (9) will therefore be given by the trajectories staying far from 0 and
1, that is, by the trajectories which are near the wave front for every t. Therefore,
even to compute the logarithmic asymptotics of the right-hand side in (9), it is
necessary to know the behavior of u°(¢, x) in the transient area. This is even
more the case if one wishes to compute more precise asymptotics. We recall that
in the case of f(x, *) € %1, the main contribution in (9) was given by those
trajectories passing before the front—i.e., in the region where the solution is
close to zero. Therefore, in the case of f(x, *) € #, roughly speaking, one cannot
completely separate the problem of velocity computation and that of describing
the wave shape.

However, there are circumstances which simplify the problem in the case
f(x, ) € %, x € R'". First of all the fact that f(x, u) is negative for 0 < u < u(x)
leads us to the conclusion that the small values of u*(t, x) fade rapidly and cannot
generate new sources as was the case for f(x, *) € . This property enables one
to localize the problem, provided, of course, that the diffusion coefficients and
the nonlinear term are sufficiently smooth. Near every point x € R” the movement
of the wave front is defined by the diffusion coefficients and the nonlinear term
which are nearly constant in the vicinity of this point. The problem, in fact,
becomes one-dimensional because near each point x € R" the disturbance prop-
agates in the direction of the normal to the wave front.

Another important feature is that the function vé(t, x) = 1 — u“(¢, x) satisfies
an equation like (7) with the nonlinear term f = —f(x, 1 — v), which also belongs
to class %. This property allows one to confine the proof to the bounds of
u‘(t, x), for example, from below as in Lemma 1. The upper bound can be obtained
as the lower bound for the function v = 1 — u*. Note that class .#; does not have
this property.
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We also recall the main facts concerning the equation which is homogeneous
in space with nonlinearity of #; type. It is possible to prove (Fife and McLeod,
1977) that the solution of equation (3) with the initial condition u(0, x) = x~(x)
converges to the solution of the running wave type q(x — a*t) as ¢ — . The
function q(£) defining the wave shape is the solution of the boundary problem

(23) 2q"(§) + a*q’(§) +f(g) =0, —o<i<w, g(-®) =1, g(»)=0.

If f € %, then problem (23) can be solved for a unique a* = a*[f]. The
constant a* is the wave velocity. In the case f € %, generally speaking, one
cannot write down such a simple formula for the velocity as for f € ;, but it is
possible to prove that the functional a*[f] is continuous and monotone. For the
velocity a*[f], one can give the following formula (Volpert, 1983):

a*[f] = (1/v2)sup,ez, infocsar[p’(s) + f(s)/p(5)],

where Zy, is the totality of continuously differentiable functions p(s), 0 < s < 1,
such that p(0) = p(1) = 0, p(s) >0, for s € (0, 1), p’(0) > 0, p’(1) < 0. Notice that
for f € 7, the wave velocity a* = a*[f] can be either positive (the region occupied
by the disturbance propagates) or negative (the disturbance dies out). The sign
of a*[f] coinsides with that of [§ f(u) du. Also note that, if () is the solution
of problem (23), then ¢(¢§) = 1 — g(¢) is the solution of problem (23) where
instead of f we take the function f = —f(1 — u) and —a* is taken rather than «*.
This implies that a*[f] = —a*[f]. This equality allows the construction of
sufficiently precise lower and upper bounds for u(t, x).
We introduce the velocity field in R":

v(x, e) = a*[f(x, *)](Tij=1 aij(x)e’e’)™2,

(a;j(x)) = (@%(x))™Y, e= (e}, ---, e"), i (') =1

Denote by T,(x) the time necessary for the disturbance propagating in accordance
with the velocity field v(x, e) to reach the point x provided that at the initial
moment it occupied a region G, :

(24)

1 .
. @ | d.
Tg(x) = 1nf-{ A T‘PI(P—IVP% P ECy, Pr=12x,9 € G+}' .

THEOREM 3. Suppose that f(x, *) € 3 for x € R, that condition (21) is
fulfilled, and assume that the function c(x, u) is continuously differentiable with
SUpP.erro=u=1€(X, u) < . Suppose that the coefficients a?(x) have bounded second-
order derivatives. Then

i T <t
limaou(t, ) =10 i Ton) > .

Using such arguments as locality, this result was given in (Freidlin and Sivak,
1979). Then the proof was developed in detail in (Géartner, 1980, 1984). This
proof was based on a generalization of Lemma 2, on the detailed analysis of the
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functional «*[f] and on the above remarks. The scheme of this proof is close to
that of Lemma 1. For more detail see the above cited papers by Gartner.

EXAMPLE 5. Let us consider equation (7) for f(x, u) = u(l — u)(u — u(x)).
For u(x) with values from (0, 1), such a function f(x, u) belongs to class #. It is
easy to see that

! 1 1
J; flx, u) du = o6 u(x).

Therefore u = % is a boundary value at which the velocity sign changes. For the
sake of brevity, we will assume that 0 < u(x) < % for x € R". To compute
a*(x) = a*[f(x, +)], let us consider the equation for the wave profile:

(25)  %q"(¢) + a*q’(§) + q(1 — g)(g — u(x)) =0, g(—o) =1, g¢(®) = 0.

It turns out that, for the above indicated function f(x, u), problem (25) may be
solved explicitly. By direct substitution in the equation, one can verify that
problem (25) is solvable for

a* = a*(x) =1 — u(x).
For such an a* the function
q(&) =1+ €f]™
is a solution of problem (25). For the velocity field v(x, e), we obtain the expression
v(x, €) = %(1 — 2u(x)) (X1 a;(x)e'e’) 2

In particular, in the case of the homogeneous and isotropic diffusion (a¥(x) =
Dé ), we have v(x, e) = VD(%4 — u(x)). When u(x) converges to Y%, the velocity
tends to zero. It is not difficult to give a number of results concerning the case
where p(x) > % for some x € R" and u(x) < % for others. It is an interesting
question to study the effect of the asymptotic behavior of the front on the surface
p(x) = Y2 where a*(x) = 0. This effect is connected with the formation of the so-
called dissipative structures in R-D equations.

Denote by .73 the class of continuously differentiable functions f(u), u € R?,
such that f(0) = f(1) = 0, f(u) > 0 for u € (0, 1) and f(u) < 0 for u & [0, 1], for
which f'(0) # max<,<if (w).

Analysis of equation (7) as ¢ | 0 for nonlinearities of this class seems to be the
most complicated, because in this case one has to overcome difficulties charac-
teristic of both classes %, and %. Just as in class .#;, the appearance of new
sources is possible in this case; that is, the problem generally cannot be localized.
On the other hand, for f € ; the main contribution in the right-hand side of
equation (9) is given by the trajectories passing near the wave front. However, if
one supposes that f/(x, 0) = ¢ does not depend on «x, then the propagation of the
disturbance will be of local nature. In this case (f(x, *) € F, fu(x, 0) = const),
the local behavior of u‘(t, x) may be described by the phenomenological model
with the velocity field defined by (24), where

a*[f(x, *)] = inf,ey, Supo<s<ifp’(s) + f(x, s)/p(s)}.
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Here Yy, is the totality of continuously differentiable functions p(s), s € [0, 1],
such that p(1) = 0, p’(1) < 0. (Compare with Rothe (1981), where the space-
homogeneous case is considered.)

4. Remarks and generalizations. 1. First of all, we emphasize the
changes which occur if in equation (7) the drift is not zero. Suppose for the
present that the drift does not depend on x: b(x) = b = (b, - - -, b"). If u*(¢, x) is
the solution of problem (7) without drift, then v°(¢t, x) = u‘(¢, x + bt) is the
solution of the problem with the drift b. This can be seen by straightforward
substitution in the equation. Suppose say, that f(x, *) belongs to 3 for every
x € R". Then by Theorem 3, for each point x € R” one can associate the ellipsoid
I, which is traced out by the end of the vector ev(x, ¢) while the vector e runs
over the unit sphere. Translate the ellipsoid by the vector —b. If after this
translation the origin remains inside of the ellipsoid, then propagation of the
disturbance at the point x occurs in all directions. The velocity of the propagation
of the disturbance in the direction of the unit vector e is i(x, ¢) = | ev(x,e) — b]|.
If after the translation of the ellipsoid I', by the vector —b the origin 0 lies outside
the ellipsoid or on its boundary, then the wave front will propagate from the
point x in the directions lying inside the solid angle bounded by the cone K, with
vertex at the point 0 and tangent to the translated ellipsoid. If b € dT',, then the
cone degenerates into a half-space. For a vector e lying inside K,, a straight line
starting from the origin and collinear to e intersects the ellipsoid at two points.
Let u(x, e), i(x, ¢) denote the distances from the nearer and farther of these points
to 0. If at a point x there is a wave front and the vector e is orthogonal to this
front and points in the direction where u°(t, x) — 0, then the front will propagate
with the velocity 0(x, e). If on the other hand, the vector e points in the direction
where u°(t, x) — 1, then the front will propagate in the direction of the vector e
with velocity v(x, e).

If the vector field b(x) depends on x € R" in a sufficiently smooth way, then
to every point x € R" one can associate the ellipsoid which is obtained from T,
by translation by the vector —b(x) and the cone K,, provided the vector b(x) lies
outside of I',. In accordance with the locality principle, the propagation of the
wave front is described by the velocity field which at each point x € R" is given
by the coefficients at this point. Just as before let T,(x) denote the time necessary
for the disturbance to reach the point x starting from the region G... If b(y) &€ T,
for some y € R" then, when defining T,(x), one should take the infimum over the
functions ¥ such that ¢, belongs to Ko,

Note that for f(x, *) € &3 the drift may cause the wave front to stop. For
example, in the one-dimensional case with g(x) = x 7(x) and f(x, u) = f(u) € %
the front propagates to the right with velocity o*[f] — b(x) as long as this
difference is positive. If at a point a > 0 this difference first changes sign from +
to —, then as a is approached, the velocity of the front tends to zero and the
point a will never be reached by the front. If in the same example f(x, u) = f(u)
€ % and v2f'(0) — b(0) > 0, then the velocity of the front propagation will also
be positive up to a point a* where the difference v2f'(0) — b(x) vanishes for the
first time. If v2f'(0) < b(x) everywhere in the region x > a*, then the wave front
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will never extend past the point a*. However, if somewhere to the right of the
point a* the inequality v2f’(0) > b(x) is valid, then unlike the case f € &%, a
“new source” will appear to the right of the point a* after some time (just as in
Example 3). The wave front will propagate in both directions from the source
and will in particular reach the point a* from the right. An exact description of
the behavior of the wave front for f € %, can be obtained with the help of a
function V(¢, x) which is analogous to that introduced in Theorem 1, but there
the action functional needs to be written in its general form with drift. In
particular, one can in such a way calculate when and where the “new source is
born” in the above example.

2. Now we dwell on the boundary problems for equation (7). Let D be a region
in R” which, for definiteness, will be assumed bounded and to have sufficiently
smooth boundary. In the cylinder [0, ) X D, we consider the equation

ut

0u‘(t, x) _ ¢ or _0_ ij 9 _1_ P
- 2 21,]=1 0xi (a (x) éxf) + e f(xy u )1

(26) ot

t>0, x€D, u0,x)=g).

To the equation and initial condition (26), one needs to specify boundary
conditions; we will assume here that

27 u‘(t, x) It>0,x€6D =0
or
ot
du’(t, x) =0,
(28) on £>0,x€8D

n = n(x) is the field of conormals.

Under minor regularity conditions, problems (26), (27) and (26), (28) can be
solved in a unique way. If one sets 7° = inf{t: X; &€ D}, then the solution of
problem (26), (27) obeys the equation

t
(29) u‘(t, x) = Emg'(Xi)x,»>¢e1qc>{1 f o(Xs, u(t — s, X3)) dS},
& 0

where x,-; is the indicator of the set {w: 7° > t}. The solution of problem (26),
(28) satisfies equation (9), but in this case by the process (X3, P,) one means the
process in D U dD which is governed by the operator L inside the domain and
on the boundary is subject to reflection along the conormal.

It follows from (29) that in the case of problem (26), (27), if f(x), *) € & for
x € D, then the limiting behavior of u‘(t, x) as ¢ | 0 is defined by the same
functional [§ ¢(¥;) ds — So.(¥). However the upper bound in the definition of
V(t, x) should be taken over the set of the functions ¥ € Cy,, Yo = x, Y. € G =
supp g, which do not leave the region D during the time interval (0, t). Allowing
for these modifications, Theorem 1 remains valid for the solution of problem
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(26), (27). The proof follows the same scheme. If f(x, *) € #1, and ¢(x) = ¢ =
const, then the limiting behavior of the solution of problem (26), (27) admits a
phenomenological description with the same velocity field as in Example 1,
provided the lower bound is taken along trajectories not leaving the region D.

The behavior for problem (26), (27) when f(x, *) € % for x € D is analogous.
Here the limit function is also defined by the phenomenological model with the
same velocity field as in the case of Cauchy’s problem, but the lower bound in
the definition of T,(x) should be taken over the functions not leaving D.

In the case of problem (26), (28) and f(x, *) € #; for x € D, all the statements
on the limiting behavior remain valid if in place of Sy, (¥) one takes the action
functional Sy, () for the family of processes (X:, P,) with reflection of 3D. This
functional is calculated in Anderson and Orey (1976), and Freidlin and Wentzell,
(1984).

If instead of the boundary condition (27), the condition u®(¢, x) | xeap = ¥(x)
with a nonnegative function ¢ is considered, then in the definition of the
corresponding function V(t, x) one should take the supremum over the functions
®,, 0 < s < t, such that ¢, = x, ¥, € G, = supp q U supp ¢¥. The functions ¥ are
not allowed to leave the region D before time ¢.

3. Consider the Cauchy problem for the R-D equation without small param-
eter:

(30) ou(t, x)/ot = Ye(d/9x)(a(x)(u/dx)) + f(x, u), u(0, x) = x " (x).

Suppose that f(x, *) € 1, for every x € R'. When ¢ grows, the region occupied
by the disturbance will propagate from left to right. Certainly, if the diffusion
coefficients and nonlinear term depend on x in an arbitrary way, then one cannot
expect that the velocity of the boundary of the region where u(t, x) is close to 1
will stabilize. For the velocity to stabilize for large ¢, one must require homoge-
neity in some sense. The simplest way is to suppose that equation (30) is
translation invariant. This case has been studied in detail. Weaker assumptions
under which the velocity of the wave front stabilizes consist of considering
functions a(x) and f(x, u) which are periodic in x or in supposing that these
functions are random fields which are homogeneous in space. These problems
for f(x, *) € F; are considered in Gartner and Freidlin (1979), Gartner (1982),
and Freidlin (1983). The results of these papers are also based on examining
probabilities of large deviations. In the case f € %, the question of propagation
of disturbances for equation (30) remains open for both periodic and random
coefficients.

There are other variants of the problem on the propagation of disturbances in
periodic or random medium. For example, one can consider problem (7) with the
nonlinear term f(x, u) = f(£(x), u), where £(x) is a real-valued random field. Let
f(a, *) € #; for a € R* and, for some A € R, [} f(a, u) du> 0 for —» < a <A,
1B f(a, u) du < 0 for A < a < . It follows from the results of Section 3 that for
small ¢ the disturbance will propagate in the region U* = {x € R": {(x) > A} and
die out in the region A~ = {x € R": ¢{(x) < A}. Let Go = {x € R": g(x) > 0} be a
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bounded region. Will the disturbance expand to infinity as t — o or will only a
bounded part of the space be disturbed? This question can be answered via the
results of percolation theory.

4. It follows from Example 2 that for f € &, the wave front propagation may
in a sense be of a non-Markov nature. As usual, in order to turn a process into
Markov process it is helpful to extend the state space. The position of the wave
front shows where the solution u‘(t, x) of problem (7) tends to 0 as ¢ | 0, and
where it tends to 1. We shall describe u‘(t, x) as ¢ | 0 via its logarithmic
asymptotics. Let v(¢, x) = lim,jo¢ In u’(t, x). (Of course, the existence of this limit
needs proof.) It is possible to prove that if v(t, x) = 0, then u®(¢, x) > 1lase | 0
and therefore the description of u*(t, x) with the help of the function v(t, x) is in
fact more precise than the indication of the position of the wave front at time ¢.
It is also convenient to assume that the initial function depends on e. Let
g(x) = g°(x) be a nonnegative function which is continuous for each ¢ > 0 and
g°(x) X exp{—(a(x)/e)}. The function a(x) is assumed to be nonnegative and
continuous everywhere except maybe on a set G- for which a(x) = +oo.

We put %(a) = 1 for a < 0 and #(a) = 0 for a = 0. Consider the following
equation with respect to the unknown function v(t, x):

u(t, x)
= sup{—a(%) — So:(¥) + f w(v(t — s, P,))c(Ps) ds: @ € Cy,, Po = xl- s
(31) 0 f
t=0, x E€ER, c(x)=m .
au u=0

Let v(t, x) be a solution of this equation which is continuous for ¢t > 0,
x € R". Then v(0, x) = —a(x), v(t, x) < 0 for all t = 0, x € R". For a fixed x the
function v(t, x) does not decrease in .

THEOREM 4. Suppose that f(x, *) € F for x € R’, and let g(x) = g°(x) satisfy
the above conditions. Assume that the function

t
32) v(t,x)=0A sup{—a(%) - Su(¥) + f c(¥,) ds: ¢ € Cy, Po = x}
0
is a continuous solution of equation (31). Then for the solution u°(t, x) of problem
(7):
lim, o € In u(t, x) = v(¢, x).
If a point (t, x) is such that v(s, y) vanishes in a neighborhood of the point (t, x),
then limtlou‘(t, x) =1.

ProoF. The proof of the theorem is analogous to that of Theorem 1. From
(9) and (11) it follows that for small ¢ one can bound In u‘(t, x) from above
by a quantity which is equivalent to (1/e)v(¢, x) as ¢ | 0. This implies that
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lim,jo ¢ In u*(t, x) = v(t, x) in the region Q_ = {(¢, x): t > 0, x € R", v(t, x) < 0}.
From (31) and (32) one can conclude that for (¢, x) € [Q-] the following analogue
of condition (N) holds: the upper bounds in (32) coincides with

t
sup{—a(%) — So(¥) + f c(¥,) ds:
)
‘pECOz,‘P():x,v(t—s,¢s)<0for0<s<t}.

This implies an analogue of the bound (14): if (¢, x) € Q- and ¢ > 0, then for
any 6 > 0 one can find ¢ > 0 such that

u“(t, x) > exp{—é/e},

provided e < ¢o. With the help of a construction similar to that in the final part
of Theorem 1 and relying on the above bound one can establish the last claim of
Theorem 4.

Note that the assumption that the solution of equation (31) can be represented
in the form (32) is in fact similar to condition (N). One can formulate conditions
similar to those of Theorem 2, under which the solution of equation (31) defines
the logarithmic asymptotics of u®(¢, x) as e } 0. The solution of equation (31)
seems to also describe the behavior of In u*(¢, x) in more general situations.

EXAMPLE 6. Suppose that r = 1, a''(x) = 1, f € 5, c(x) = ¢ = const and let
g(x) = 1for x = 0 and g°(x) = e ™, & > 0, for x > 0. Then v(¢t, x) = 0 A o(t, x),
where

1 [*.
0(t, x) = ct — inf{a‘ﬁt + § f Y2ds: ¢ e Co:, Po = x}-.
0

Simple calculations show that

_ _ fct —ax + a%/2 for x/t>a
o(t, x) = lct — x%/2t for x/t < a.

In particular, at time ¢ the wave front (the boundary of the region where
u‘(t, x) — 1) is located at
xr = JHe/a+ a/2) for a <2

T tvee for a = 2c.

From this it follows that the front velocity may be arbitrarily large, provided «
is small enough. The velocity decreases as « grows and for a > v2c takes the
constant value \/-2_c, the same as for the initial function g(x) = x ~(x).

5. Consider the R-D equation with the nonlinear term depending on ¢:
uC

du‘(t, x) i)
ox’

£ dJ "
=—3r 2 |qi
ot g Zhit 5 <“ ()

) + %f(t, u®), u®0, x) = g(x).

The same assumptions as in Theorem 1 are made concerning the coefficients
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a%(x) and the initial function. Denote (3f(t, u)/du) | .—0 = c(t) and suppose that
fit, ) € F fort = 0.

THEOREM 5. Suppose that for all t = 0 the inequality
t
c(t) = lf c(s) ds
t Jo

1, i d(x, Go) < (2]8) [b ols) ds,
lim,ous(t, x) = 10, if d(x, Go) > tv(2/t) [5 c(s) ds.

where Gy = supp g and d(x, Go) is the distance from x to G, in the Riemannian
metric

holds. Then

ds® = Yio1 a;(x) dx’ dx!,  (a(x)) = (@¥(x))™"

PrROOF. Noting that

d*(x, ),

o~ =

t
1nf{f =1 aij(‘Ps)‘Pi‘Pﬁ; ds: € Cy, Po=1x, Y, = y}~ =
0
the proof of this theorem can be developed just as that of Theorem 1.

Note that the conditions of Theorem 5 are fulfilled for increasing functions
c(t). If c(t) decreases, then the front propagates accoding to the Huygens principle
along the velocity field

u(t, x, e) = V2(t)(h=1 a;(x)e'e’)™12,

6. Equation (7) describes the process which is obtained as the result of the
interaction of two factors—particle transport which in this case is described by
the diffusion process, and multiplication (killing) of particles which is governed
by the nonlinear term.

It is not necessary to choose a diffusion as the transport process. For example,
one can choose any Markov process in R”. Under minor assumptions on this
process, one can write equation (9) and derive results similar to those for a
diffusion process. It should be borne in mind that to a different transport process
corresponds a different action functional. The particle transport can also be
described by non-Markov processes. In this case it is in general impossible to
write down differential equations, but equation (9) remains valid. If a transport
process is a component of a multidimensional Markov process, then the corre-
sponding differential equations may be degenerate.

Let X, be the Wiener process in the interval [—1, 1] with reflection at the
endpoints. As the transport process, we will take the random process Y: defined
by the differential equation

Y; = b(Xt/t’ Y:), Yf) = y‘
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Then for the concentration u‘(t, x, ¥), we have the problem

ou: 1 0%’ out 1
I — Sl + — 3
ot - % a9 + b(x, y) a e f(x, y, u®),
(33)
au‘(t, x,
xE€(-1,1), y€E€R', ui0,xy =x(y), _(3___3'_) =0
. x x=%1

For the sake of brevity, we are assuming in (33) that at the initial time the
concentration does not depend on x and is equal to 1 for y < 0. The averaging
principle implies (see, e.g., Freidlin and Wentzell, 1984) that for any T > 0 and
6>0,

lim, o Py{suposi<t| Yi — Y.|>6} =0,

where Y, is the trajectory of the averaged equation

1
Y.=bY), Yo=y, bly)= % J:l b(x, y) dx.

Deviations of Y{ of order 1 from Y. have probabilities of order
exp{— const/e}; they are therefore the main component of the right-hand side of
equation (9), which in our case has the form:

t
u(t, x) = Ex.ygf;(Yf)exp’{l f (X, Ys, us(t — s, Xy, Y3)) ds}
(34) e Jo

c(x, y, u) = u”'f(x, y, w).
Let
t
c(x, y) =clx, y,0), Zi= f (X, Y3 ds.
(1

The action functional for the family of processes (Y%, Z%) is as follows (Freidlin
and Wentzell, 1984):

t
Sot((Pla (p2) = f L(‘p:’ (p;, ¢§) dsa
0
where L(y, o, o?) is the Legendre transform of A(y, 8, 82) in-the variables
(B1, B2) and X = A(y, B1, B2) is the eigenvalue of the problem
1 d®v(x)
2 dx?
x € (-1,1), (dv/dx)|sx=21=0, y ER'; B, B E R,

which corresponds to the positive eigenfunction. In the case of f(x, y, *) € %1,
b(y) = 0, if a number of supplementary conditions are fulfilled, then the location
of the wave front is defined by the equation V(t, y) = 0, where

+ (B1b(x, y) + Boc(x, y))v(x) = Av(x),

t
Vi, y) = sup{sof - f L®L, @1, 02 ds: Py =y, Pl <0, 9% = 0} .
0
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This assertion is similar to that of Theorem 1. The condition b(y) is analogous
to assuming that there is no drift.

For f(x, y, *) € 1, problem (33) is studied in Sarafian and Safarian (1980).
For f(x, y, *) € %, the question of the behavior of the solution of problem (33)
as ¢ | 0 is open.

7. Consider the mixed problem with the nonlinear boundary condition in the
regiont>0,x E R, ={xE€R": x' > 0}:
du(t, x) _ €
at 2
du’(t, x)
axl 21=0

Au®, uf(0, x) = g(x) = 0,
(35)

= 1f(x, u°).
&

Such problems arise, for example, in simulation of some biological processes
(Freidlin and Sivak, 1979).

We will suppose that f(x, *) € 7 and f(x, u) = uc(x, u). Let (X5, P,) be the
Markov process in R’ which, inside of this half-space, is governed by the operator
(¢/2)A, and on the boundary is subject to the reflection along the normal. Denote
by &; the local time on the boundary of R’ associated with the process (X, P,)
(Watanabe, 1971).

It is possible to prove that the solution of problem (35) obeys the following

relation
|

(36) u(t, x) = Exg(Xi)exp{% fo o(X5, us(t — s, X3)) d&S [

To examine (36), one must know the action functional for the pair (X, £5).
From the results of Anderson and Orey (1976) and Freidlin and Wentzell (1984),
one can deduce that this functional has the form

(36a) SEHP, 1) = % J; [T (P + (83 = xo(PD)his)?] ds.

Here ¢, = (¢5, ---, ¥i) is an absolutely continuous function, xo(0) = 1,
xo(x) = 0 for x # 0, u, being a nondecreasing function.

We will confine ourselves to the case c(x, 0) = ¢ = const and set R$, = cu, —
ST, u). From (36), noting that £ = 0, we conclude that

0 =< u‘(t, x) < E.g(X{)explcti/e}.

The action functional properties imply that right-hand side of the last equality
is logarithmically equivalent to

exp{(1/e)sup{R§:(®P, n): Po = x, P, € Go, is = 0 for s < t}},
where Gy is the support of the initial function. It is easily checked that this

supremum is equal to

Vit x) = SUP¢0=x,¢,EGO{% J; (xo(®P)l(c + @) V OF — Ti, (¢£)2> dS}.
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In a manner analogous to Theorem 1, one can obtain the following result from
the above bounds.

THEOREM 6. Suppose that f(x, *) € S, ¢(x, 0) = ¢ = const, and the function
g(x) is continuous. Then for the solution u®(t, x) of problem (35) the following
relations hold:

lim,ou’(t, x) = gx) if xE€ERY, t>0,
lim,ou’(t, x) =0 if x€O0RL, t>0 and V(i x) <O,
lim,ou’(t, x) =1 if x€0RY, t>0 and V(¢ x) > 0.

A number of results and examples concerning the behavior as ¢ | 0 of the solution
of problem (35) are available in Korostelev and Freidlin (1980).

Similar results seem to also be valid in the case when the particle “multipli-
cation” takes place on some manifold I" of co-dimension 1 lying inside the region
rather than on the boundary.

5. Systems of reaction-diffusion equations. Reasoning as in Section 1,
it comes as no surprise that small parameters must be involved in a system of
equations in the following fashion:

duilt, x) L I N7
h (ak(x) ax

J

% 1
k e e
at 2 i,j=1 axi ) + e fh(xy ui, ’ un)

1
(37) = eLhufc + - f(x, ui, Sty u;l)y
€

t>0, x€R, ui(0,x) =gulx); k=1,2,..-, n.

As we have seen in Section 3 in the case of a single equation, for sufficiently
small ¢t and ¢ | 0, the solution u‘(¢, x) first of all approaches the equilibrium point
of the local system (in the case of n = 1 this is the equation & = f(x, u)) whose
domain of attraction the point u°(0, x) = g(x) belongs to. For f € &, there
are two such attracting points: 0 and 1. These points are separated by the
unstable equilibrium point u(x) € (0, 1). According to Lemma 2, for small ¢ > 0,
lim,jou’(t, x) equals 0 or 1 depending on whether u*(0, x) = g(x) < u(x) or
>u(x). If the initial function takes the value w(x) on an open set & C R,
then lim,ou’(t, x) = u(x) for each fixed x € & and ¢ small enough. As a
matter of fact, we faced this case for f € %, with u(x) = 0. If the entire set
{u: u = g(x), x € R"} belongs to the domain of attraction of some equilibrium
point, say of the point u = 1, then for a fixed t > 0 we have lim,jou°(t, x) = 1.

For system (37), the situation is far more complicated. Certainly, this is in
part caused by the fact that for n > 1 the corresponding local system may have
more complicated w-limit sets. But even if these w-limit sets have a simple
structure, a number of new effects appear for n > 1.

For example, for n > 1 the so-called “diffusion instability” arises (Turing,
1952). Suppose that f(x, u) = f(u) = (fi(w), - - -, fa(w)) and u® = (ul, - - -, ul) is an
asympotically stable equilibrium point for the vector field f(u). Then the functions
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ui(t, x) = u are the solution of the Cauchy problem (37) with initial conditions
ui(0, x) = ul. It turns out that in spite of the fact that u° is an asymptotically
stable equilibrium point of the corresponding local system, this solution may be
unstable for the Cauchy problem (37). Under appropriate conditions, one can
find functions 6,(x), - - -, 8.(x) which are arbitrarily small in modulus such that
the solution of problem (37) with the initial conditions gi(x) = u) + 8,(x) will
move away from u° as t increases (e is assumed to be fixed).

Diffusion instability arises only if the operators L, controlling the transport
of the particles of kth type are different for different k. For identical L, the
asymptotically stable equilibrium points of the field f(u) will be stable equilibrium
points of the Cauchy problem (37). However, in this case too, one needs to impose
some convexity conditions so that u will be attracted to the constant function
u(t, x) = u® as t — o under initial conditions in the domain of attraction of u°
(Freidlin, 1968).

For the present, assume that L, = L, = ... = L,. Consider the system of the
following form

(38)  duj/ot = eLuj + (1/e)lcmlu®us + Xjjer crjll; B=1,2, .-+, n.
We assume that ¢; = const > 0 for k # j and set

fow) = c(Wug + Tjijwr Chil;

Cr(u) = cu(u) + Ljijmr Crj;

cre = cre(0), cr = cx(0).
Let v,, t = 0, be the Markov process with the finite number of states 1, 2, ---, n
for which
Plogya=jlve=1=c;A+0(4), A|O0, i#].

It is not difficult to prove that the solution of problem (38) with the initial

conditions u(0, x) = gr(x), k=1, -- -, n, can be represented as follows (Freidlin,
1983b):

1 t
(39) ui(t, x) = Ex,kgy(t/c)(xi)eXP'{; J; Cuse(ut(t — s, X3)) ds} )

where X is a diffusion process in R" governed by the operator ¢L and the indices
x and k in the symbol of the expectation indicate that X5 = x, vo = k.

Formula (39) is convenient to use for examining wave fronts in the system
(38). The front velocity is then defined by the large deviations of both the
diffusion process X: and the process v(t/e).

Suppose that in the region R} = {u = (uy, -+, up): u; =2 0, - -+, u, = 0} the
field f(u) = (fi(w), - - -, fo(u)) has two equilibrium points: an unstable one at the
point 0 = (0, - . -, 0) and an asymptotically stable one at a point a = (a4, - - -, a,).
Assume that all the integral curves in the region R%\ {0} do not leave R} and are
attracted to the point a. Moreover, we will assume that for some a;, ay > 0

filw) > oy, -+, falu) >a; for uEUERLY: u#0, YT w; < ay,
and in the domain B,,» = {u € R}: ¥ u; > as/2} the convex function V(u) (the
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Liapounov function) is defined such that V(u) > 0 for u € B,,2\{a}, V(a) = 0,
(VV(w), f(w)) <0 for u € B,,»\{a}. We also suppose that for k=1,2,---,n

(40)  cw(0) = cwx = maxfem(u): u = (uy, -+, ), 0= u;<azi=1,.--,n}
Consider problem (38) with the initial conditions
(41) ur(0) = go(x) =0, k=1,..-, n.

For brevity, we will assume that the functions gi(x) are bounded and have
common support Gy. As usual, we suppose that the closure of G, coincides with
the closure of the interior of Gj.

Denote by A the eigenvalue of the matrix (c;) possessing the largest real part.
By the Frobenius theorem, such a A is real (and, therefore, unique).

Let d(s, *) be the metric in R" corresponding to the metric form ds? =
Yo a(x) dx' dx’, (a;) = (a)”’, where a%(x) are the coefficients of the
operator L.

THEOREM 7. Suppose that the above conditions are fulfilled. Then for the
solution (ui(t, x), - - -, us(t, x)) of problem (38) and (41),
ar, Iif d(x, Go) < tv2\

lim,jouilt, x) = {o, if d(x, Go) > tv2X.

We will outline the proof of this theorem. From (39), relying on (40) and (41),
we obtain

1 t
0 = ui(t, x) = Ex,kgm/e)(X?)eXP‘{‘ f Cots/e) ds}'

L4 0
(42) e
= SUPg=1,...,n;xeR" I gk(x) | : Px‘Xi € GO}Ehexp{; £ Cu(s/e) dsJ' .

It follows from the previously cited properties of the action functional for the
family of the processes X; that the probability on the right-hand side of inequality
(42) is as ¢ | 0 logarithmically equivalent to

d?(x, Go)|

1. ‘ HipJ | |
exp'{‘g—cxnf{fo Ef,jqa,;(w,)w;wad&*"o=x"pf€G°}}'=e"p{_ 2et

Using the fact that the family of operators
t
Tif(k) = Ekf(”(t))exl){ j; Cuts) dS}

is a semigroup, one can deduce that the expectation on the right-hand side of
(42) is as ¢ | 0 logarithmically equivalent to exp{Ate™'} (a version of the Frobenius
theorem; see, e.g., Freidlin and Wentzell, 1984, Chapter 7). Gathering these
bounds together, we get that the right-hand side in (42) is logarithmically

equivalent to
exp{—(1/e)(\t — d*(x, Go)/2t)},

which implies that lim,joui(¢, x) = 0 for d(x, Go) > tV2N.
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The proof that lim,joui(t, x) = ax for d(x, Go) < ¢tv2X can be divided into two
parts. First, one proves that u‘(t, x) = (ui(¢, x), - - -, un(t, x)) € B, for sufficiently
small ¢ and d(x, G) < tvV2X. Then one checks that the solution of the boundary
value problem (38) in the region & = {(s, x): s > 0, x € R, d(x, Go) < 3\/2—)\} with
boundary values lying in B,,., tends to the equilibrium point a = (a4, - - -, a,) as
¢ | 0. The proof of the first of these statements is analogous to that of the final
part of Theorem 1.

To prove the second statement, it is sufficient to verify that V(u(¢, x)) — 0
ase | 0if (¢, x) € &. Denote by 7 = 7° the first exit time of the “heat” process
(t — s, X%) from the region &: 7¢ = inf{s: (¢t — s, X¢) & &}. One can deduce from
(39) and the strong Markov property that

|

1 T
ui(t, x) = E.pUsom(t — 7, Xi)eXp{; J; Cus(u(t — s, X3)) ds [

for (t,x) €&, k=1, .--,n.
Since the Liapounov function is convex, we have

V(u't(t’ x)) = V(Ex,lg_(f)’ M) Ex,ng‘a)

(43)
= EXV(Elg-B, MY Enf(f)),

where
1 c |
§-(1) = uv(t/l:)(t -7, X:)explz o Cv(s/t)(u' (t - S, X;)) dsl .

We denote by E.{j the expectation of (i for a fixed trajectory X° under the

assumption that vy = k, E, being the expectation with respect to the measure

which corresponds to the process Xi, X§ = x. It is clear that E, »{§ = E.(E 7).
Next note that the transformation

M, z=(z1, -+, 22) = M(2) = (z1(8), - -+, 2,(2)),

Zk(t) = Ekz,mexp-{J; C,,(s)(Z(t - S)) ds} ,

is a shift along the trajectories of the dynamical system z, = f(z;), f(z) = (fi(2),
<oy [2(2)), fr(2) = TR cri(2)2;. Noting that V(z) is the Liapounov function for
this system, one can deduce from inequality (43) that V(u®(t, x)) -0 ase | 0.

This implies that lim,;ou*(¢, x) = a provided d(x, Go) < tV2A.

If the operators L, responsible for the particle transport are different for
different k, then it is necessary to impose more stringent conditions on the local
system in order to avoid effects caused by the diffusion instability. Some results
in the case of different L, are available in Freidlin (1983b). There is a defect in
the proof of Theorem 2 of this paper, but the formula for the wave front velocity
is correct. The correction is published in a later issue of TAMS.

One can also consider the case when the nonlinear terms depend on x. Just as
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in Example 3, effects due to the appearance of new sources are possible in this
case.

The generalization considered in Theorem 7 is a natural generalization of the
nonlinearities of class ;. On the other hand, if the local system has two stable
equilibrium points separated by a saddle point (an analogy with %), then there
are no general results concerning the velocity of the wave front.

In the conclusion of this section, we will clarify how one can write down the
integral equation for the solution of problem (37). For the sake of brevity, we
will assume n = 2, ¢ = 1 and drop the superscript. Moreover, we make the
following assumption on homogeneity: f,(x, 0) = fo(x, 0) = 0. In this case the
functions f.(x, u) can be written as follows:

fr(x, Uy, Ug) = cr(x, Wuy + cralx, w)u,.

Suppose for the present that c;2(x, u) and ¢y (x, u) are nonnegative. Then just as
in the case of the system (38), one can associate with problem (37) a Markov
process (X;, »,) which is defined by the relations:

t
Xt =x+ f av(s)(Xs) dWS?
0

where the matrix ¢,(x) is such that ¢x(x)s¥(x) = (af{(x)); v, is a right continuous
process with two states 1 and 2 for which

Plviesa = jlve =i, X, = x} = ¢;(x, u(t, x))A + 0(A), A | 0.

For the solution u(t, x) = (u,(¢, x), ua(t, x)) of problem (37) one can write down a
relation which is a generalization of equation (39):

t
uk(ty x) = Ex,kgu(t)(Xt)exp{‘IO‘ cu(s)(Xsy u(t - S, Xs)) dsl ’

where c;(x, u) = ci(x, u) + cio(x, ). It is possible to write the equation for the
process v, but for the sake of brevity, we will not. .

Therefore, for the variables (X, »,, u(t, x)) one can obtain a system of three
equations. This system is not very convenient to examine since each of these
equations has two or more variables. In place of the variables (X, v, u(t, x)) we
introduce new variables (Z,, \;, u(t, x)) for which the system is reduced to
triangular form.

Let X, be a right continuous Markov process with two states 1 and 2 for which

P ia=j|N=0i=A+0(4), A|O, if i#].
The process Z, is defined by the equation
t
Z,=x+ f ox\(Z,) dW,.
0
It is readily checked that the measure u;, which is induced in the space of

trajectories of the process (X, v.) is absolutely continuous with respect to the
measure pu, corresponding to the process (Z;, \,). The density function dpu,/du,
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has the form

@WZA)—Hmkgﬂ%uG—&ZM]

tiy1
‘ exp.{— f [C)\LX,A(ZM u(t - S, Zs)) - 1] ds}',
t; ‘o
where t; = t;[ A ] are times at which the trajectory As has jumps, 75 is the number
of such jumps before the time ¢, t, = 0, tgsr =t; A=1if A\=2and X = 2 if
A=1.
Using this expression for du;/du;, we obtain the following equations for
ui(t, x):

t
uk(t, x) = Ex,kgx,(Zc)eprl J; [eaa(Zs, ult — s, Z)) + 1] dS}
X H;_O C)\“‘ (Ztn u(t - t, Zti))’ k= 1’ 2.

Here the process (Z,, \,) is defined independently of u(t, x).

These equations hold no matter what the signs of the functions c;;(x, ) are. If
ci2(x, u) or cy(x, u) is negative, then the proof of these equations is also not
difficult.

6. Some other ways of introducing a small parameter. This section
is concerned with a number of asymptotic problems for the propagation of wave
fronts of R-D equations. We shall not strive here for the utmost generality, but
merely consider the simplest representatives of the corresponding classes of
problems.

1. We have been considering R-D equations in the case when the diffusion
coefficients are small. Then after going over to the new time scale we obtained
equation (7). Now we suppose that only some of the diffusion coefficients are
small. More precisely let D = {(x, y) € R*: —0o < x < ®, |y| < a}. We will
consider the following problem (after going over to the new time scale):

du(t, x, y) _ 1 %u’ I %’
(44) ot 2 ay> 2 ox?

t>0, (x,y) €D, u0,x,y) =g, y), ultzx +a)=

With regard to f(u), we shall assume that f(0) = 0, c(u) = u™'f(w) is strictly
decreasing for u = 0 from ¢ = ¢(0) = lim,joc(u), 0 < ¢ < o, to ¢(®) = lim,_,.c(w)
= —o. Let (X:, P,) be a process governed by the operator (¢/2)(d?/dx?), and
(Y, Py) be a process governed by the operator (1/2¢)(d?/dy?), which is independ-
ent of (Xi, P,). We put 7° = inf{t: | Y{| = a}. One can write down the following
equation for the solution u“(¢, x, y) of problem (44)

|

1 t
(45) ut(t3 x’ y) = Ex,yg(X;)X7‘>texp{; L c(uc(t - s, X:r Y:‘)) dsj 9

+ 1 fwo),
&
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where E, , denotes the integration with respect to the measure P, X P,. It follows
from (45) since c¢(u) < ¢(0) = ¢, that

(46) ut(t, x, y) < e*P{X; < 0}Py{r > t}.
We shall denote by A\° the largest eigenvalue of the problem
(1/2e)¢P5(y) = NP(y), —a<y<a, ¢Y(xa)=0.

A simple calculation shows that A* = (—x2)/8ea?, the corresponding eigenfunction
#(y) being equal to cos(wy/2a). It is readily checked that Py{r¢ > t} ~
¥(y)exp{—A‘t} as ¢ | 0. Therefore remembering (46) we conclude

2
u(t, x, y) < exp{1 (ct - ﬂ)} .

¢ 2t 8a?

From this it results that if x > ¢t v2c — 72/4a® and ¢ > =?/8a?% then
lim,ou‘(t, x, y) = 0.

We shall denote by u * a positive solution of the equation c(u*) = w2/8a% Such
a u* exists, provided c¢(») < 7?/8a% < ¢, and it is always unique. We note that
c(u) < c for u > u*. It is therefore possible to verify that lim,jou(t, x, y) = u* for
x < tv2¢ — 7%/4a® by reasoning as in Theorem 1.

Consequently for ¢ < w2/8a?, the solution u‘(t, x, ) of problem (44) for small
¢ has the shape of a step with the height u* which travels along the x-axis from
left to right with velocity a* = v2¢ — x*/4a®. If ¢ < n?/8a?, then lim,jou‘(t, x, y)
= 0 for all x, y and ¢t > 0. In particular, if the band is narrow enough
(a < w/2v2c), then the wave does not propagate.

In the same band D we consider the problem

Qe %, 3) _ 1 8 ealy) 620 1

+ - 9 € )
ot %t T 2 o TV
(47)
ae(t, x,
ve(0, x, ¥) = glx, y), Wt %, ) = 0.
ay y=%*a

Let f(y, *) € % for every y € Ry, c(y, u) = u™f(y, u), c(y) = c(y, 0). Denote
by (¢, P,) the Wiener process with reflection at the endpoints of the interval
[—a, a]; as before, (X:, P,) is the process in R' corresponding to the operator
(¢/2)(d?/dx?). Probabilistic representation of the solution of problem (47) shows
that

N 1 ("
V(t, %, ¥) < EyPud X 00 < O}exp'{; fo c(&se) ds}-

_ 5 Jl[f‘ ~SFeeTa)
= EyexPle A C(Es/c) ds 2 J‘f) a(fs/c) ds J )

The logarithmic asymptotics of the right-hand side of (48) are defined by
the action functional for the pair of processes ( [6 c(&s) ds, [b a(y.) ds). It
can be expressed in terms of the first eigenvalue of the problem (compare with

(48)
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Section 4):

%@y (y) + (Bic(y) + B2a()P(y) = N(B1, B2)P(y),
|yl <a, ¥ (xa)=0; Bi,B:E€R.

Using this action functional, one can write down the expression for the velocity
of the wave front along the x-axis.

2. Consider the Cauchy problem

au‘(t, x) _ E v aij(x) azu:
(49) a 2~ dx'dx

= Lu®* + f(u®), u’0, x) =g(x), x €R"

Let f(u) = cu(u — 1), ¢ > 0; g(x) = 1 in a bounded neighborhood G, of the
origin and g(x) = 0 for x & G,. Clearly —f(u) € ;; therefore, for b'(x) =0, i =1,
-+, n, the question of the behavior of the solution of problem (49) as ¢ | 0
reduces to the problem dealt with in Section 2. After dividing by Ve, we obtain a
problem of the same type as in (7). By Theorem 1, for every t > 0 the function
u’(t, x) tends to the step-function as ¢ | 0. The wave front propagates with the
velocity of order of Ve.

The inclusion of the nonzero drift in the equation leads to a change in the
order of the front velocity as ¢ | 0. Assume the field b(x) = (b'(x), - - -, b"(x))
possesses an asymptotically stable equilibrium point only at the origin 0 and
suppose that all the integral curves of the field b(x) are attracted to 0. Denote by
T(x) the time which is necessary for the integral curve starting from a point
x € R to reach the set Go. We put

+ Bt ) 25+ flw)

xl

1 [ L L
W = W(Go) = inf{§ J; 2ii=1 @i (Ps)(Ps — b'(#,)) (P4 — b/(¥,)) ds:
‘PGCO,,‘P0=O,‘Pt$G0,t>O} .

THEOREM 8. Under the above assumptions for the solution u‘(t, x) of problem
(49), the following relations hold:

0, if tle) < T(x),
lim,ou(t(e), x) = 11, if T(x) < tle) < W/ce beginning from some e > 0,
l 0, if W/ce < t(e) beginning from some ¢ > 0.

ProOF. The proof of this theorem uses the representation of the solution of
problem (49) in the form of the mean value of an appropriate functional of the
corresponding branching process with diffusion. One can construct a branching
diffusion process whose particles move along the trajectories of the diffusion
process X; governed by the operator L°. Every particle independently splits into
two particles by time ¢ with probability 1 — e™ counting from the time of birth.
These particles move and multiply according to the same rules as the original
particle. Let »(¢) denote the number of these particles by time ¢. Then the solution
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of problem (49) can be written in the form
(50) u(t, x) = E.g(X%'") --- g(X3"®),

where X* is the position of kth particle at the time t, R < v(t). Such a
representation has been used (Skorohod, 1964; McKean, 1975; Bramson, 1978)
for examining R-D equations.

It follows from (50) that u*(t(¢), x) — 0 as ¢ | 0, provided the probability that
at time t(e) at least one of the particles is outside of the domain G, tends to 1.
Such is the case, first of all, if t(¢) < T(x), i.e. if the particles have not had time
to reach Go. This is also the case if at least one of the particles which has reached
Go has had time to leave Gy. Since our branching process cannot become extinct,
it is not difficult to prove that

(51) Pflim,(1/t)ln »(t) = ¢} = 1.

We will choose a small § > 0 and consider the spheres v and T of radii §/2 and
0, respectively, about the origin. For any h > 0, one can choose § > 0 small
enough so that the probability of the event: “starting from x € «, the trajec-
tory X; reaches dG, without returning to y after hitting I',” lies between
exp{—(1/e)(W + h)} and exp—(1/e)(W — h)} (Freidlin and Wentzell, 1984,
Chapter 4).

By the time t(e), there are v(t(e)) < exp{ct(e)} particles. In this time, each of
them will make one or more (but not more than const X [t(¢)]) attempts to hit
3G, without returning to y after reaching I'. These attempts occur “almost
independently.” (Here we have reasoning analogous to that in Freidlin and
Wentzell, 1984, Section 6.5.) Simple estimates show that if lim sup,joet(e) <
W/c, then the probability that at least one particle is not in G, at time ¢(¢) tends
to zero. If lim inf,|oet(e) > W/c, then this probability tends to 1, which implies
the claim of Theorem 8.

3. One can also study R-D systems by introducing a small parameter in only
some of the equations forming the system. Consider the example

duilt, x) _ e 8%u lf w o) du(t, x) 1%
a2 x2 N at 2 9x2

Suppose that fi(+, v), f. € F for every v > 0. Denote by gs(¢) = q2(¢) the profile

of the wave with the conditions gs(—%) = 1, gy(©) = 0 for the second equation,
. — % . . . .

a3 = a*[f,] being the corresponding propagation velocity. For the sake of

definiteness, let a3 > 0, ¢2(0) = a. In the first equation, for every v € [0, 1] the

wave velocity af = a}(v) stabilizes, which will also be assumed to be positive.

We shall consider the solution of (52) with initial conditions

(53) u’(0, x) = x(x), v(0, x) = ga(x).

Consider the equation

(52) + f2(v).

af(v) = af.

Suppose that v* is a root of this equation in which the sign of the function
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af — af(v) changes from plus to minus. Further suppose that a¥ — a¥(v) > 0 for
U € [a, v*) and that (da}/dv)(v*) < . Then from the results of Section 3 one
can conclude that for the solution of problem (52), (53) the following relation is
valid:

W, x), v(t, x)) = (x"(x = s(2), g2(x — aZt)), ¢ 0.

Here s(t) together with some function b(t) is the solution of the system of
ordinary differential equations

db/dt = q3(b)(a¥ — a¥(b), ds/dt = a}(b),
s(0) =0, b0) =a.

Note that lim, ..t "'s(¢t) = af. Therefore, for large t and small ¢, the wave velocity
tends to 3.
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