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ON THE WEAK LIMITS OF ELEMENTARY
SYMMETRIC POLYNOMIALS

By BERT vAN Es
University of Amsterdam

In this paper we extend recent results of Székely and others on the weak
limits of elementary symmetric polynomials S{*~)(X,,..., X,) in the case
where the order k, of the polynomials is proportional to the number of
variables n.

1. Introduction. In Székely (1982) it was shown that the normalized ele-
mentary symmetric polynomials [see (2.1)]

(1.1) Tk o= {S,gkn(xl, e Xn)/( :n)}l/

are asymptotically normal for n —» oo if X}, X,,... is an i.i.d. sequence of strictly
positive random variables and if %, /n — ¢ for some constant ¢, 0 < ¢ < 1. More
precisely,

(1.2) n?(T# - L,) -, CN,

where N is standard normal, C and L, are positive norming constants and L,
converges to a positive constant L. In a second paper, Mori and Székely (1982),
a similar situation was investigated for random variables X, of the form
P(X,=1)=1- P(X, = —1) = ;. This case is more delicate since terms cancel
in the sum S{*»). However, the authors succeeded in giving a complete analysis in
this situation. In particular they proved that if (2«) larcsin(vc) is irrational
then

1/2 ,
(1.3) nl/“(S,(lk")/(:) ) -, CeN /*cos(27U ),

n

kn

with C a positive norming constant, U and N independent, U uniformly
distributed on [0,1] and N standard normal.
Note the difference in the random variables log(|S{*»)|) in the two cases:

log(|S¢¥»)|) = nr, + n*/?V, in (1.2),
(1.4) (1S¢en) (12)
log(|S{*»)) = ns, + W, in (1.3),

where V, and W, are random variables with nondegenerate limit distributions
and r, and s, are converging constants. '

All we shall do is to allow the variables X, to vanish with positive probability.
Thus we shall consider the case X, >0 and P(X,> 0)=p, and the case
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678 B. VAN ES

P(X,=1)=P(X,= —1)= {P(X, # 0) = 3p, both with 0 < p < 1. In the first
case there are no substantial changes, as long as we assume that 0 <c =
lim k,/n < p. In the second case, if 0 <c<p <1 and n'/%(k,/n — c) con-
verges, then

(1.5) log(|S(#|) = ns;, + n'/?W},,

where s/, is a converging constant and W, a random variable with a nondegener-
ate limit distribution.

It would seem that the case P(X,, = 1) = P(X,, = —1) = ; considered in Méri
and Székely is exceptional. A slight disturbance of this distribution completely
alters the limit behaviour. However, it is not known what the limit behaviour is
for symmetrically distributed variables X, other than those described above. In
particular, it would be interesting to know what happens if X, is uniformly
distributed on the interval [—1,1] or if X, is uniformly distributed over the
points —2, —1,1, 2. These cases cannot be handled by the technique developed in
this paper.

2. Preliminaries. For a finite collection of random variables X,,..., X, we
define the elementary symmetric variables S*)(X,,..., X,) as the sum over all
subsets E C {1,..., n} of size k of [1;c g X;. Then
(2.1) Sk(X,,...,X,) = Y X ... X, l1<k=<n.

1<i< -+ <i=<n

Usually we start with an iid. sequence X, X,,... with common distribution
function F and write S¢® for S*¥)(X,, ..., X,). Note that S*/(X,,..., X,) is the
coefficient of ¢* in the expansion of the random polynomial IT?_,(1 + ¢X;).
S*Y(X,,..., X,,)/(:) is the mean value of the product X, ... X; over all
subsets {i,,...,i,) C {1,..., n} of size k, and the statistic THE(X,,..., X,) =
(S®Y(X,,..., X,)/(7)}/* is homogeneous of degree 1: T*)(rX,,..., rX,)

rT*(X,,..., X,).

Considering limits of the statistics S{*») let us first take k, =k fixed and
n — oo. Then the sequence (S{#»)), is a sequence of U-statistics of order & with
kernel A(x,,...,x;) =%, --+ x, [cf. Serfling (1980)]. Since the fundamental
paper of Hoeffding (1948) U-statistics have been studied intensively and their
limit behaviour (for fixed &) is well understood.

Our concern is with the case that &, > o and k,,/n — ¢ (0 < ¢ < 1). Stirling’s
formula implies

1 n k, logn
_log(k )=¢(—) +O( ), n— oo,
n n n n
where ¢(x) = —xlogx — (1 — x)log(1 — x) is bounded, continuous and non-

negative on [0,1]. Hence if k,/n — ¢ € (0,1] the exponent 1/k, reduces the
factor 1/ ( ,:’n) in the definition 6f T){*~) to an innocuous constant.

REMARK 2.1. We shall investigate the limit behaviour of S{*~), n = 1,2,...
although all theorems are also valid for statistics S,ﬁjkﬂ, J=12,... where (k))
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and (n,) are sequences of integers satisfying k; > o0, n; > 00,1 < k; < n; and
k,/n; — c. In fact this is used in Sections 4 and 5 where the particular sequence
(n;) =1,2,... is replaced by a sequence of random integers E,, E,, ... .

3. The simple case: P(X,=1)=p=1-P(X,=0). Let E, =X, +
-++ + X, denote the number of nonzero variables X;. The random variable E,
has a Bin(n, p) distribution and S{*’ = ‘;;") since the product X; ... X; vanishes

unless all 2 variables equal 1. Then T\*») = L (E,/n, k,/n) where L, is defined
on a subset of 12 = [0,1] X [0,1] by

()™ itx e (/m2/me1) andx =,
0 f0<x<y<l,.

(3.1) Ly(x,y) = {

The functions L, can be extended to functions on I? in a straightforward way.

LEMMA 3.1. Let L be the function on I? defined by

exp{ L xlogx + (1 - y)log(1 — y) — (x - y)log(x - y>>}
y

(32) L(x,y)= ifo<y<x<l,
0 ifl>y>x=>0,
x if y=0,

then for a < 1 and all (x, y) € I?
(3.3) lim n*(L,(x, y) — L(x, y)) =0,
n—oc

uniformly on sets Dy = [0,1] X [,1], 6 > 0.

By (3.3) it suffices to investigate L(E,/n, k,/n) instead of T\ *» =
L. (E,/n,k,/n). This results in the next two limit theorems for zero-one X,.

Parts (a) and (c¢) of the next theorem can also be found in Székely (1974) where
they are proved directly using Stirling’s formula.

THEOREM 3.2. Let X,, X,,... be i.i.d. zero-one random variables with
PX,=1)=p=1-P(X,=0) (0<p<1) and let (k,) be a sequence of
integers with1 <k, <n, k, = o0, andk,/n - c (0 <c <1).

(a) If ¢ < p then
T*)(X,,...,X,) = L(p,c) almostsurely.
(b) If ¢ = p then T*"(X,,..., X,)) converges in distribution if and only if

n'/*(k,/n —p) > a forsomea € [—c0,0].



680 B. VAN ES

%
&
&

O

4
&
%

F16.1. The limit function L from two viewpoints.

Moreover, in case of convergence the limit variable T is two-valued,

P(T=0) =1~ P(T=L(p, p)) = ®(a/(p(1 - p))"”’).

(c) If ¢ > p then there exists an almost surely finite random variable N, such
that T*)(X,,..., X,) =0 for all n > N,

(® denotes the standard normal distribution function.)

This theorem can be intuitively understood by viewing the process
(E,/n,k,/n, L(E,/n, k,/n)),in I? as a random walk on the graph of L, shown
in Figure 1.

By Lemma 3.1 for each sequence (b,) of location constants the difference
between the statistics n'/%(T* — b ) and n'/*L(E,/n, k,/n) — b,) tends to
zero almost surely. Therefore they have the same weak limits. Examining the
second statistic we obtain the following weak convergence theorem.

THEOREM 3.3. Let N denote a standard normal random variable. Let
X, X,,... be i.i.d. zero-one random variables with P(X, =1)=p =
1—- P(X,=0)(0 <p <1)andlet(k,) be a sequence of integerswithl <k, <n
and k,/n - ¢ (0 < ¢ < p). ’

(@) If 0 < ¢ < p then

nVY(T*)(X,,..., X,) — L(p, k,/n))
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converges in distribution to
¢ og(p/(p — ¢))L(p,c)(p(1 - p))"*N.
(b) If ¢ = p and n'/*(k,/n — p) > a € (— 0, ) then
2nl/2
logn

(T*(X,,..., X,) = L(ko/n, ky/n))(E, — k,)

converges in distribution to
p~'L(p, p)((P(1-p)"’N~-a)".
(c) If c = p and n'/*(k,/n — p) = — oo then
_pl2
log(p — k,/n)
converges in distribution to
p~'L(p, p)(p(1 - p))"’N.
(d) If ¢ = p and n'/*(k,/n — p) = o then
' T*)(X,,..., X,) > 0 inprobability.

(T*)(X,,..., X,) — L(p, k,/n))

(¢(x) = 1if x > 0 and 0 otherwise, x* = xu(x).)

4. Nonnegative X,. Theorems 3.2 and 3.3 enable us to extend Halasz and
Székely’s (1976) and Székely’s (1982) results for strictly positive X, to nonnega-
tive X,,.

Suppose that X,, X,,... are ii.d. nonnegative random variables and that
X, =Z2,Y, where Z,, Z,,... is a sequence of i.i.d. zero-one random variables and
Y,,Y,,... is a sequence of ii.d. strictly positive random variables. These two
sequences are assumed to be independent. Let E, denote the number of X; in
X,,..., X, unequal to zero.

Let1 < T, < T, < --- be the indices n for which Z, is strictly pos1tive The
sequence XT, XT . is distributed like Y;,Y,,... ‘and SE(X,,..., X,) =
Sk Xr, - XT ) for all w. This gives us the following lemma which is crucial
for the extens10ns in this section.

LEMMA 4.1. With the above notation the two sequences of random variables
(8% (X,,..., X,)), and (S*(Y,,...,Y)),

have the same distribution, i.e., each corresponding ﬁntte subset of the sequences
has the same distribution.

It follows that

T2 V1 TIE AN

= T®(Z,,..., Z,)T*)(Y,, ..., YE,,)-

;3
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Note that (4.1) is the product of an elementary symmetric polynomial of
zero-one random variables and a polynomial of a random number of strictly
positive random variables. A combination of the results of Section 3 and the
results of Halasz and Székely (1976) and Székely (1982) proves the following two
theorems.

THEOREM 4.2. Let X,, X,,... be i.i.d. nonnegative random variables with
P(X,>0)=p>0 and let (k,) be a sequence of integers with 1 < k, < n,
k, = o0, and k,/n - c (0 < ¢ < 1). Define Y, to be a random variable distrib-
uted like X, conditional on X, > 0.

If ¢ < p, assuming EY, < oo forc = 0 and E'log(1 + Y;) < oo for 0 < ¢ <p,
then we have

T*)(X,,...,X,) > S(c) almostsurely.

The limit S(c) is defined by
EX, ifc =0,
1
c(1 - c)(l_c)/cexp{—(E log(r, + X,) + (¢ — 1)log rc)}
c
if 0 <c<p,
c(1 - ¢)" "V ‘exp{ElogY,} ifc=p,

(4.2) S(c) =

where for 0 < c¢ <p the constant r, is the unique nonnegative root of the
equation
(4.3) Er/(r+X,)=1-c.

THEOREM 4.3. Let X, X,,... be i.i.d. nonnegative random variables with
P(X, > 0) =p > 0 and let (k,) be a sequence of integers with 1 < k, < n and
k,/n = ¢ (0 < ¢ < p). Let N denote a standard normal random variable and Y,
a random variable distributed like X, conditional on X, > 0.

If 0 < ¢ < p, assuming E log%(1 + Y,) < oo, then we have

n1/2(T(k")(X1,---, Xn) - S(k”/n)) Tw CN’

where C is a positive constant.

When restricted to zero-one X, these theorems give the ¢ < p parts of the
theorems in Section 3. In the appendix it is shown that the ¢ =p and ¢ > p
parts also hold for nonnegative X, . For p equal 1 they reduce to results of Halasz
and Székely for strictly positive X,,.

5. Three-valued symmetric X,. Let Y,,Y,,... be iid. random variables
with common distribution P(Y, =1)=P(Y, = —1) =} and Z,, Z,,... iid.
zero-one random variables, independent of Y}, Y,,... . Taking X, = ZY, we may

draw the same conclusion as in Lemma 4.1. The next theorem for X, with
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distribution P(X,=1)=P(X,= —-1)= jP(X,#0)=3p (0<p <1) is ob-
tained from Mori and Székely’s (1982) results and our Theorem 3.3 by examina-
tion of S X(Y,,..., ¥y ).

THEOREM 5.1. Let N denote a standard normal random wvariable.
Let X,, X,,... be i.i.d. random variables with P(X, =1)= P(X, =.—1) =
sP(X,#0)=3p (0<p<1) and let (k,) be a sequence of integers with
l1<k,<nandk,/n—>c0<c<l).

If 0 < ¢ <pandn'/*k,/n — p) converges then

— L(p, k,/n)""*

n

1/2k,
(5.1) n'/? |s<kn)(X1,..., Xn)|1/k"/(;? )

converges in distribution to
e og(p/(p — ¢))L(p,¢)"*(p(1 - p))/*N.

Note the absence of conditions on (27) ~'arcsin(Vc ) and the different order of
magnitude compared to Moéri and Székely’s theorem.

6. Proofs.

6.1. Proofs of Section 3. The extension of the function L, of (3.1) to a
function on I? is achieved by interpreting the factorials in the binomial coeffi-
cients in (3.1) as gamma functions, using n! = I'(n + 1). So we redefine L, as
['(nx + )I(n(1 —y) + 1)\

I'(n(x—y)+ DI(n+1)

fo0<y<x<l,

(6.1) L,(x,y)= ,
ifl>y>x>0,

exp(¢y(nx + 1) — y(n + 1)) if y=0,

where the psi function as usual denotes the derivative of log I'(x).
For the properties of the gamma and psi function used in the next proof we
refer to Abramowitz and Stegun (1965).

Proor oF LEMMA 3.1. Since both L, (x, y) and L(x, y) are zero if 0 < x <
y < 1 we restrict attention to points (x, y) with0 <y <x < 1.

A straightforward application of Stirling’s formula for the gamma function
yields

(6.2) logT(¢t+ 1) =tlogt+ tlog(t+ 1) — t+ R(¢t), t>0,
where R is a bounded function. Substituting (6.2) in (6.1) wefind for0 <y < x < 1
' (nx + 1)(n(1 - y) + 1)

log L (x,y) =nylog L(x, y) + il
nylog L (x, y) = nylog L(x, y) + slog| "0 =50 vy

+R,(x, ),
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with |R,(x, ¥)| < M for some M > 0. Since
(nx +1)(n(1 —y) + 1)
<
T (e D(n(x-y) +1)

it follows that for0 <y <x <1

<1+ ny,

! (log(1 + ny) + M),

(6.3) |log L,(x, y) — log L(x, y)| < p

and hence
lim n*(log L,(x, y) — log L(x, y)) = 0,
n—oc

uniformly on sets Dj.
Because the values of both L, and L are between zero and one by

x,7€(0,1] = |x — y| < [logx — log y|
this implies
lim n*(L,(x, y) — L(x, y)) = 0,
n— oo

again uniformly on sets D;.
The convergence for y = 0 is a consequence of

1 1
4/(t)=logt—a+0(—), t— o0.

Proor oF THEOREM 3.2. By Lemma 3.1 for ¢ > 0 and (6.3) for ¢ = 0 the
difference between T*») = L (E,/n,k,/n) and L(E,/n,k,/n) tends to zero
almost surely if %, = co. Therefore it suffices to study the limits of
L(E,/n,k,/n).

Parts (a) and (c) of the theorem follow from the continuity of L outside the
diagonal. For part (c) observe that the random variable N, := inf{n: E ' < k; for
all j > n} is almost surely finite.

In order to prove (b) note that

(64)  L(E,/n,k,/n) =0 n*E,/n—-p)<n(k,/n-p),
and by the monotonicity of L
L(E,/n, k,/n) = L(k,/n, k,/n) = n"/*(E,/n —p) = n"/*(k,/n —p).

So the distribution function of L(E,/n, k,/n), F, say, has a point mass in zero
equal to

(6.5) P(n1/2(En/n —-p) <n'*(k,/n —p)),

and no mass in the interval (0, L(k,/n, k,/n)). Since L(k,/n,k,/n) -
L(p, p) > 0 the fact that E, is Bin(n, p) distributed implies that if F, con-
verges in distribution the limit of n'/?(k,/n — p) has to exist in [ — o0, o0].
Conversely, suppose that this limit exists. Then for sufficiently large n we have
k,/n > ¢ for each 0 < ¢’ < p and hence L(E,/n, k,/n) < L(E,/n,c’). Since
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the right-hand side of this inequality converges to L( p, ¢’) almost surely we have
forall ¢t > L(p, ¢’)
limsupP(L(E,/n,k,/n) > t) < lim P(L(E,/n,c¢’) > t) =0,
n— o0 n—o
and by left continuity in y of L in the point ( p, p), for all ¢ > L(p, p)
lim P(L(E,/n,k,/n) >t) =0. '

n— o0

Together with the convergence of (6.5) this proves (b).

Proor oF THEOREM 3.3. Recall that E, is Bin(n, p) distributed.

Part (a) follows from the differentiability of L in the point ( p, ¢). Note that in
particular d/9x L(x, y) = y ‘log(x/(x — y))L(x, y) for 1 >x >y > 0.

The more complex behaviour in the case ¢ = p is caused by the jump of L and
by its infinite right-hand partial derivative in x at the diagonal. The next
expansion follows from the definition of L, see (3.2). Consider sequences of real
numbers (x,), (¥,), and (z,) such that x, = p, y, = p, x, > y, for sufficiently
large n and (z,) is bounded. For such sequences we have for n — oo

(L(x,+ n" V2%, 5,) — L(x,, y,))(x, + n"%, — ,)
= y,(log L(x, + n™%2,, y,) — log L(x,, ¥,))(x, + n"22, — 3,)
= Va9 (=172, log(x,, ~ 3, + n"%2,) + R,
+0(n"%,))i(x, + n" V22, — 3,),

where undefined values of the logarithm are set to zero, y, is chosen equal to
L(p, p) if x, + n”'?z, <y, and, by the mean value theorem, chosen between
L(x,+ n 'z, y,) and L(x,, y,) such that

., logL(x,+n""?,,y,) - log L(x,, 5,)
T T L(x, 0 V%2, ) - L(x,, )

otherwise. The remainder R, equals
R, = (x, — y,)(log(x, — 3,) — log(x,, — y, + n722,)).

Note that in particular v,y, ' = p‘IL(‘p, p) + o), n = 0.
The assertions (b) and (c) of the theorem follow from two specific choices of
sequences (x,) and (y,). Taking x, and y, equal to %k, /n gives

nl/2

o (LUea/m 07 2, deo/m) = Llky/m, k/m)i(2,)

= (p7'L(p, p) + o(1))(32, + 0(1))u( 2,)
= 1p7'L(p, p)z; +0(1), n- oo,

for all bounded sequences (z,). Substituting Z, = n'/*(E,/n — k,/n) for z, and
using Z, =, (p(1 — p))"/2N + a proves (b).
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Part (c) follows similarly from the choice x, =p, y,=k,/n, and Z, =
n'/*(E,/n — p). Part (d) is immediate from (6.4).

6.2. Proofs of Section 4. Clearly the limit constant S(c¢), see (4.2), depends on
the distribution of X,. However this constant is also defined for the variables Z,
and Y, since both are nonnegative. To avoid misunderstanding denote their
corresponding limit constants by S,(c) and S/(c), and that of X, by S,(c). Note
that S,(c) = L(p, c) and that S(c) is the limit constant in Halasz and Székely
(1976).

ProOOF OF THEOREM 4.2. The following lemma deals with the random sample
size in the second term of the statistic (4.1).

LEMMA 6.2.1. If ¢ <p, assuming EY, < co for ¢ =0 or E log(1 + Y,) < o0
for 0 < ¢ < p, then we have

T(kn)(Yl"'-,YE”) - S/(¢/p) almost surely.

PROOF It suffices to prove the lemma for the specific probability space
(&, #, P) with @ =0, X Q,, where @, and @, denote copies of the set of
sequences of real numbers P P, X P, where P, and P, are the probabilities on
2, and £, induced by the sequences Zl, Z2, e and Y,,Y,,... and & is the Borel
o-field on 2.

Represent an element w of Q as = (w,,w,) = (2}, 29,..-; Y1, Yo,...) and

define the coordinate functions Z; and ¥, by
Zi(w) =2 Yz(“’) =i
Next consider the almost surely defined function V,,

V(@) = T(¥,(0),..., ¥y o (0)),

where E,(w,) denotes the number of ones in the first n components of w, =
(2,, Z3,...). With these definitions the random variables Z. s Yj, and V, have the
dlstrlbutlons of Z, Y, and T*(Y,,..., Yy ).

The proof of (a) and (b) is now Just an appllcatlon of Fubini’s theorem. By the
strong law of large numbers the set {w, € Q,: k,/E,(w,) = ¢/p} has P, prob-
ability one. Therefore by Halasz and Székely’s theorem for positive random

variables we have for P, almost all w,
P)’({wy € Q}’: hngo Vn(wz’ y) Sy(c/p)}) =

Writing P({w: lim, , V,(w) = S/(c/p)}) as a repeated integral with respect to
dP, and dP, then completes the proof.

A first consequence is the following relation between the constants S,, S,, and
S,, which follows from (4.1).

(6.6) S.(¢) = 8,(¢)S,(¢/p) = L(p,¢)S,(c/p) for0<c<p.

It is immediate from the definitions that this relation also holds for ¢ = p.
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Next observe that the limit behaviour of the first term of the product (4.1) is
covered by Theorem 3.2, while the second term is treated in the previous lemma.
Since 0 < T*X(Z,,...,Z,) <1 the difference between the statistic (4.1) and
T*XNZ,,..., Z S, (c/p) tends to zero almost surely. By part (a) of Theorem 3.2
we have then proved almost sure convergence of the statistics (4.1) to the limit
constant L( p, ¢)S,(c/p) which equals S,(c) = S(c) by (6.6).

PROOF OF THEOREM 4.3. By Lemma 4.1 we have S*(X,,..., X,)"/* =,

Stka)(y,, Yy, )/ kx_ The following lemma is used to derive the weak 11m1t of the

latter statlstlc “from Székely’s (1982) weak limit theorem for strictly positive
variables.

LEMMA 6.2.2. Let X, ,, k=1,..., n denote a triangular array of random
variables and let E,, E,,... be a sequence of integer valued random variables
satisfying

— E, is independent of X, ,,,..., X, ,,

—p,=EE, ~np,n— o (p>0),

— g, = stdevE, = o(n), n - oo.

Let ¢ be a constant (0 < c < p). Suppose that a(k, n) are positive affine
transformations such that k, ~ cn, n = o, and e, ~ pn, n > o imply

(6.7) a Nk, e,) Xy o 2w X
for some random variable X, then for any sequence (k,) with k,, ~ cn, n >
a Nk, E)Xy g, 2w X
Moreover, if additionally there exist positive affine transformations y(k,, n) and
a random affine transformation B such that
(6.8) vk, n)alk,, E,) =, B,
then
k)X, g —w BX,
with B and X independent.

(By a positive affine transformation a we mean that there exist a, and a, > 0
such that a(x) = a4, + a,x.)
PRrOOF. Let F), , denote the distribution function of oYk, n)X,
F, (x) = P(a"(k, )X, , < x),

and F the distribution function of X.
‘By the independence of E, we have

P(“_l(k, E,)X, g, < x) = EE,,Fh,E,,(x) =EpF, . .0 gx(x).

ntn

Writing G;(¢) = F,, , ., (x), with x a fixed continuity point of F, by (6.7) we
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have for every bounded sequence (¢,) that Gi(t,) converges to F(x). Therefore
G (t) converges to F(x) uniformly on bounded ¢-intervals, and since E * is tight
and G, (t) bounded we conclude

(6.9) P(a_l(krnEn)Xk VB, Sx) = Ep,Gy(E}) - F(x),

which proves the first part of the lemma.
In order to prove the second part rewrite the affine transformatlon

Y~k n)a(k,, E,) as x = By (E¥) + B, (E¥)x and B as x - B, + B,x. Con-
sider the joint distribution of B,,(E*), Bi(EY), and Z, = a ' (k,, E DXk B,
Let (x, x,, ¥) be a continuity point of the distribution of By B1, X). Then"

P(Bon(E¥) <x0, Bio(EF) <x,,Z,<y) = Ep. I, (EX)GE}),

where A, denotes the set {¢: B,,.(¢) < x,, B,,(¢) < x,}. By the tightness of EX,
(6.8) and (6.9) this probability converges to

P(B, <x4, B, <x,)P(X <y).

Hence the continuous function y~'(%,, )Xy g, = Bol EY) + Bi(EF)Z, of
(Bo(EF), B (EF), Z,) converges weakly to 8, + 8,X, which proves the second
part.

The remainder of the proof is just an application of the previous lemma. First
note that a Bin(n, p) distributed random variable satisfies the conditions im-
posed on E, in the previous lemma. Taking X, , equal to S¥(Y},...,Y,)"/* we
have by Székely’s weak limit theorem, see (1.2),

e, \\/kn
e:,ﬂc;l(c/p)(xkn,en % ) —Sy<k,,/e,,>) S0 Ny

if k£, ~cn, n > o, and e, ~ pn, n > o (0 < ¢ < p). Here C(+) denotes the
asymptotic standard deviation in (1.2) as a function of ¢, and N, is a standard
normal random variable. Thus condition (6.7) is satisfied with X equal N, and

a(k,n)(x) = Sy(k/n)(Z)l/k + Cy(c/p)n—l/z(Z)l/kx.
Next define

v(k,n)(x) = Sx(k/n)(Z)l/k + n—l/z(Z)l/kx.

Condition (6.8) is dealt with in the following lemma.

LEMMA 6.2.3.
Y '(k,,n)a(k,, E,)(x)
-, P 2L(p,c)Cc/p)x + D(p, c)(p(1 - p))°N,,

where N, is a standard normal random variable and D(s, t) denotes the partial
derivative with respect to s of the function L(s, t)S(t/s).

(6.10)
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ProoF. Rewrite v !(k, n)a(k, E,) as follows [use (6.6)]
v '(k,n)a(k, E,) = (n/E,)"*L,(E,/n, k/n)C,(c/p)x
+n'*S,(k/E,){L(E,/n,k/n) — L(E,/n, k/n))
+n1/2{L(E,,/n, k/n)S(k/E,) — L(p, k/n)Sy(k/np)}.

Replacing k2 by k, the first term converges almost surely to p~'/2L(p, c) X
C,(c/p)x. Recalling 0 < ¢ < p the second term vanishes almost surely by Lemma
3.1. Writing W(s, ¢) for L(s, t)S(t/s), 0 < ¢t < s < 1, the third term equals

n'>(W(E,/n, k,/n) = W(p, k,/n)).

By dominated convergence arguments the function W can be shown to have a
continuous partial derivative in s, D(s, t) say. The expression of this partial
derivative is not very instructive and is therefore omitted. By the mean value
theorem the third term converges weakly to

D(p,c)(p(1 - p))°N,.

Together these arguments prove (6.10).
Since all conditions of Lemma 6.2.2 are fulfilled we have

— ky
Yy~ Yk, n)S*(Y,,..., YEn)l/
=, P"’L(p,¢)C\(c/p)N, + D(p,¢)(p(1 - p))'/*N,
with N, and N, independent, which proves Theorem 4.3.
6.3. Proof of Section 5.

PROOF OF THEOREM 5.1. Writing S{% for S**X(Y,,..., Y,) Méri and Székely’s
(1982) Theorem 2 states that if 2, - oo and n — &k, = o

ko = k) V4 2
(2282

—(2/77)1/4exp(S,‘,”2/4n)cos( —1k,m+ S,‘l”arcsin((kn/n)lﬂ) -, 0.

For 0 < ¢ < p we may replace n by E,, which gives

_ 1/4 1/2
kn( En kn) S(k") En
E, 20\ &y

- (2/77)1/4exp(S};‘n’2/4En)c0s( — 1k, + S,g‘n’arcsin((kn/En)l/z))
=A,—B,—p0.

Our aim is to show

E \\/2 1/kp,
A I

(6.11)
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since this implies that the difference between

1/2 l/kn .
(6.13) nl/Q[(|S,§':"’|/(:n) ) ~L(p,k,./n)‘/2]

and

(6.14) n]/QH(f:)/( ’?n)}l/zk" ~he k"/n)lm}

= 2 [T"(Z,,...,2,)""* - L(p, k,/n)"’|

also vanishes in probability. The weak limit of (6.14) is easily derived from
Theorem 3.3(a). Since the statistics (5.1) and (6.13) have equal distributions the
theorem is then proved by checking the limit of (6.14) against the limit claimed in
the theorem.

In order to prove (6.12) we need the following three lemmas.

LEmMmA 6.3.1. If (V), (W), and (E,) are sequences of random variables
such that

—(V, W) =, (V,W),

— E, is independent of (V,, W),

— E,, — o almost surely,

—(En - an)/bn 2w E’
then

(VE,,’ WE,,’(En - an)/bn) —)u'(V9 W7 E))

with E independent of V and W.
The proof is similar to the proof of Lemma 6.2.2 and is therefore omitted.

LEMmMA 6.32. Let (C,) and (D,) be sequences of random variables such that
the sequence C,mod 27, n = 1,2,... has only finitely many possible values and
that D, converges in distribution to a continuously distributed limit variable D.
Then log(|cos(C, + D,)|) is bounded in probability.

ProOF. Denote the finitely many possible values of C,mod 27, n =1,2,...
by ¢,,...,¢c,. Since for each i=1,..., m the random variable [cos(c, + D,)|
converges to a continuously distributed limit |cos(¢c; + D)| we have

lim sup P(log(|cos(C, + D,)|) < —M)

n—oc

IA

Y lim P(log(|cos(c; + D,)|) < -M)
=] N
Y lim P(|cos(c; + D,)| <e ™) >0 if M- .

i=1 e

I

Hence log(|cos(C, + D,,)|) is bounded in probability.
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LEmMma 6.33. If (X,) is a sequence of nonnegative random variables then
n'’%log X, = p 0 implies n"/*(X, — 1) =, 0.

Proor. The quotient |x — 1|/|log x| is bounded in a neighbourhood of x = 1.
The first step in proving (6.12) is to show that log(|B,|) is bounded in
probability. Write
(6.15) log(|B,|) = {log(2/m) + S{/4E, + R,
where R, denotes log(jcos(— jk,m + S arcsin((k,/E,)"/*))). By Lemma 6.3.1
and the central limit theorem we have
(E;17280, 0= 2(p(1 - p) VHE, - np)) =, (N, ),

where N, and N, are independent standard normal random variables. This
implies that the second term in (6.15) is bounded in probability. Since the first
term is a constant we next focus our attention on R,

We distinguish two cases. Firstly let a = (277) 'arcsin((c/p)'/?) be rational.

Write R, as log(|cos(C, + D,)|) with
C,= —jk,m + 2maSp)

n

and
D, = B 8B /m) n*{arcsin (k,/B,)"%) = arcsin((c/p)").

Note that by the assumption that n'/%(k,/n — c) converges, to a constant b say,
we have
n'/*(k,/E, - ¢/p) =, p~}(pb+ c(p(1 - p))’N,)
and hence
1/c c\\ 2 12
D, -, D=Np”5 ;(1 - ;) p Y (pb+c(p(1-p))°N,).

Since Sj;) is integer valued the conditions of Lemma 6.3.2 are satisfied and R, is
bounded in probability.

Secondly suppose that « is irrational. Let N, N,, and U be independent
random variables with N; and N, standard normal and U uniformly distributed
on [0, 1]. It is shown by Mori and Székely that

(n=1281, {aSM}) =, (N, U),
where {+} denotes the fractional part. Lemma 6.3.1 thus implies
(6.16) (B8, (a8}, 1/ 2(p(1 = p) VB, = 1)) > (N, U, Ny).
Next write R, as log(|cos(C, + Dy)|) with .
C, = —sk,m
and
D, = 277{(131(91")} + D,.
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By (6.16) we have D, —,, 27U + D. Hence in this case the conditions of Lemma
6.3.2 are satisfied as well. Thus in both cases R, is bounded in probability,
implying the same for log(|B,)).

The proof of (6.12) is completed by observing that by (6.11) we have |A4,| —
|B,| =, 0, and consequently that log(]A,]) is also bounded in probability. Since
therefore

nl/2 E 1/2
(kn) n
kn lOg(lSE" |/( kn)

1/2 ni/2
3 log(lAnl) - 4k (log kn + IOg(En - kn) - log En) -p 0,

n

L\ 1/2
the condition of Lemma 6.3.3 is satisfied for X, = (|S§*|/ ( ;") )/kn and the
conclusion gives (6.12).

7. Discussion. A heuristic explanation of the claims made in the introduc-
tion is provided by the following observations. Clearly the basic argument in the
proofs of Sections 4 and 5 is Lemma 4.1. This result shows that if we allow zeros
with positive probability we are actually dealing with polynomials of a random
number, E,, of variables. Since E,, is binomially distributed it has a variance of
order n. Hence, returning to (1.4), we note that if we allow zeros the nonrandom
terms in (1.4) become random with a variance of order n. In the first case this
means that both terms obtain variances of the same order, while in the second
case the variance of the first term is of order n and that of the second term of
smaller order. In fact the proof of Theorem 5.1 consists mainly of a proof of (6.12)
which implicitly shows that the second term vanishes in the weak limit, and with
it the subtleties of Mori and Székely’s (1982) theorem.

APPENDIX
A.1. The complete version of Theorem 4.2.

- THEOREM A.1. Let S(c) denote the limit constant defined in (4.2). Under the
conditions of Theorem 4.2 we distinguish the following cases.

(a) If c < p, assuming EY, < o forc = 0 and E log(1 + Y;) < o0 for 0 < c¢ <p,
then we have

T*)(X,,..., X,) > S(c) almostsurely.

(b) If ¢ = p, assuming E logY, < oo, then T*"(X,,..., X,,) converges in distri-
bution if and only if

n'/*(k,/n—p) > a forsomea € [—o0,00].

Moreover, in case of convergence the limit variable T is two-valued if
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O0<p<l,
P(T=0)=1-P(T=S(p)) = &(a/(p(1 - p))"?),
andifp=1
P(T = S(1)) = 1.

(c) If ¢ > p then there exists an almost surely finite random variable N, such
that T*(X,,..., X,) =0 forall n > N,.

ProorF. The proof is similar to that of part (a) which was given in Section 6.
A ¢ = p part of Lemma 6.2.1 can be stated as follows.
If ¢ = p, assuming EflogY;| < oo, then we have

(A1) (T”’")(Yl,..., Yy ) - Sy(l))L(En — k,) > 0 almost surely.
This is proved similarly to the ¢ < p part by observing

Py({wy €0, lim (Vi(w,,0,) = S(D))(E, — k,) = 0}) -1

for P, almost all w,.
Since 0 < T*(Z,,...,Z,) < ( E, — k,) the difference between the statistic

(4.1) and T*(Z,,..., Z,)S,(c/p) tends to zero almost surely. Theorem 3.2 then
completes the proof.

A.2. The complete version of Theorem 4.3.

THEOREM A.2. Under the conditions of Theorem 4.3 we distinguish the
following cases.

() If 0 < ¢ < p, assuming E log?(1 + Y,) < oo, then we have
n2(T*)(X,,..., X,) — S(k,/n)) >, CN,

where C is a positive constant.
(b) If ¢ = p, assuming var(logY,) < co and n'’*(k,/n — p) = a € (— ©, ©),
then

2n1/2

logn

(T*(X,,..., X,) = L(k,/n, k,/n)S,(1))(E, - k,)

converges in distribution to
+

P S(p)((p(1-p))"*N -a)".
(c) If ¢ = p, assuming var(logY,) < o and n'/*(k,/n — p) > — oo, then
_p\2

log(p — k,/n)

converges in distribution to
p7S(p)(p(1 - p))"’N.

(T*( X,y X,) = L(p, k,/n))S,(1))
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(d) If ¢ = p and n'/*(k,/n — p) - o then
T*)(X,,..., X,) = 0 inprobability.

Proor. Part (a) was already proved in Section 6.
In order to prove (b) write

2n'/? A
oz (E, - k,)(T*Z,,...,2,)T*)(Y,,...,Y, ) — L(k,/n, k,/n)S,(1))
2n!/?
= Togn (E, = k) (T*NZ,,..., Z,) = L(k,/n, k,/n))T*(Y,,..., Y, )
2n1/2
t i (B -k MNTEAY,,..., Yy ) = S(1))L(k,/n, k,/n).

log
By Theorem 3.3 and (A.1) the first term has the desired weak limit and therefore
it suffices to show that the second term converges to zero in probability. This is
achieved by substituting E, for n in

1/2
(T(k")(Yp---’ Yn) - Sy(l))t(n N k") Tw 0

logn
which is a consequence of Székely’s (1982) theorem on weak convergence.
Part (c) can be treated similarly and part (d) is analogous to part (d) of
Theorem 3.3.

A.3. Mori and Székely’s (1982) part (iv) of Theorem 3 corrected. The
proof of this part of Theorem 3 contains an error, which is seen by taking
k, = [n/2]. The correct version of part (iv) should read:

If (27) 'arcsinyc is a rational number of the form p/q where p and q are

relative prime numbers, q is divisible by 8, n'/?|k,/n —c| - b and 0 < ¢ < 1,
then the subsequences of the even and odd n converge to different weak limits:

1/2
(2n)1/4S(k2,.)(X1, cees in)/( 13:

converges in distribution to
|

«377ﬁ exp(N%/4)cos(27V, + 1b(c(1 - ¢)) "/’ N)
Ta —_
and
1/2
(2n + 1)1/4s<k2n+,>(X1, 2n+1)/ 2kn N 1
2n+1

converges in distribution to

, 1/4
(;éiﬁeMWWMW%+wm-mWWL
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where V,, has the uniform distribution on the set {0,2/q,4/q,...,(q — 2)/q}, W,
has the uniform distribution on the set {1/q,3/q,...,(q — 1)/q}, N is standard
normally distributed and V,, W,, and N are independent.

Acknowledgments. The author wishes to thank Dr. A. A. Balkema for his
many stimulating suggestions. Part of this work was done while the author
stayed at the Centre for Mathematics and Computer Science in Amsterdam.

REFERENCES

ABRAMOWITZ, M. and STEGUN, A. (1965). Handbook of Mathematical Functions. Dover, New York.

HaLAszZ, G. AND SZEKELY, G. J. (1976). On the elementary symmetric polynomials of independent
random variables. Acta Math. Acad. Sci. Hungar. 28 397-400.

HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math.
Statist. 19 293-325.

MORI, T. F. and SzEKELY, G. J. (1982). Asymptotic behaviour of symmetric polynomial statistics.
Ann. Probab. 10 124-131.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

SzZEKELY, G. J. (1974). On the polynomials of independent random variables. Coll. Math. Soc. J.
Bolyai: Limit Theorems of Probability Theory (P. Révész, ed.) 365-371. Keszthely,
Hungary.

SzEKELY, G. J. (1982). A limit theorem for elementary symmetric polynomials of independent
random variables. Z. Wahrsch. verw. Gebiete. 59 355-359.

MATHEMATICAL INSTITUTE
UNIVERSITY OF AMSTERDAM
ROETERSSTRAAT 15

1018 WB AMSTERDAM

THE NETHERLANDS



