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A CHARACTERIZATION OF THE SPATIAL POISSON PROCESS
AND CHANGING TIME

By ELY MERZBACH! AND DAVID NUALART?

Bar-Ilan University and Universitat de Barcelona

Watanabe proved that if X, is a point process such that X, — ¢ is a
martingale, then X, is a Poisson process and this result was generalized by
Brémaud for doubly stochastic Poisson processes. Here we define two-parame-
ter point processes and extend this property without needing the strong
martingale condition. Using this characterization, we study the problem of
transforming a two-parameter point process into a two-parameter Poisson
process by means of a family of stopping lines as a time change. Nualart and
Sanz gave conditions in order to transform a square integrable strong
martingale into a Wiener process. Here, we do the same for the Poisson
process by a similar method but under more general conditions.

0. Introduction and notation. It is well known that the classical Poisson
process is closely related to the theory of discontinuous martingales. A beautiful
characterization was given by Watanabe: A point process X, is a Poisson process
if and only if the process X, — ¢ is a martingale [12]. Several generalizations of
the Poisson process were introduced in order to represent models in different
applications. The most important seems to be the doubly stochastic Poisson
process (also called the Cox process). Intuitively it is a generalized Poisson
process such that the intensity of the process is a random measure. Also for such
processes, a characterization in terms of martingales was obtained by Brémaud
[1]. In this paper, we deal with stochastic processes indexed by points of the
positive quadrant of the plane R?%, or of a rectangle R, =1[(0,0), z,]. In this
context, spatial point processes have a geometric interpretation with applications
in different branches. In the first section we define two-parameter point processes
and study their first properties. The spatial Poisson process and the spatial
doubly stochastic Poisson process were defined and studied by several authors
([3], [8], [6]). At the same time, the concept of martingale can be generalized in
the two-parameter case to different, nonequivalent kinds of martingales [15]. A
first approach to extend the result of Watanabe in the spatial case was given by
Papangelou [11] and by Mecke. In the second section we extend the result of
Brémaud in terms of martingales. A similar result is the celebrated theorem of
Lévy: A continuous martingale is a Wiener process if and only if its associated
increasing process is the deterministic function f(¢) = ¢ In the two-parameter

Received December 1984. ]

!Partially supported by the Fund for Basic Research administered by the Israel Academy of
Sciences and Humanities.

2Partially supported by a grant from the C.LR.LT.

AMS 1980 subject classifications. Primary 60G55, 60G48; secondary 60G60, 60G40.

Key words and phrases. Point process, Poisson, two-parameter process, martingale, intensity,
changing time, stopping line.

1380

j
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%( )20

8

e

The Annals of Probability. RIKOAN

WWw.jstor.org



THE SPATIAL POISSON PROCESS 1381

case, this result was extended first by Wong and afterwards by Zakai (see [15]) in
terms of strong martingales. The surprising fact is that in our characterization,
the condition on the process to be a strong martingale is not essential.

The purpose of the last section is to study the problem of transforming a
two-parameter point process into a two-parameter Poisson process by means of a
two-dimensional time change. In the one-parameter case, the construction of a
time change transforming every point process into a standard Poisson process
was done first by Meyer [7], and was studied extensively by Papangelou [10]. The
time change used is a family of stopping times. The stopping time has two kinds
of generalizations for two-parameter processes: the stopping lines and the stop-
ping points with respect to different filtrations corresponding to different kinds of
past. Cairoli and Walsh [2] proved that a given two-parameter strong martingale
cannot be time changed into a Brownian sheet by using a family of stopping
points (in spite of the fact that this can be done in the one-parameter case via the
Dubins-Schwarz theorem). Their construction shows that it is the same in our
case: A given two-parameter strong martingale point process cannot be time
changed into a Poisson process by using a family of stopping points. Starting
from this fact, Nualart and Sanz [9] gave sufficient conditions for the existence of
a family of stopping lines (or stopping sets) such that a strong martingale can be
transformed into a Brownian sheet (i.e., a Wiener process). Also, they treat the
particular case of changing time for the Wiener process obtaining some char-
acterizations of all families of deterministic stopping sets which transform a
Brownian sheet into another one.

Here, we deal only with point processes and the method is close to that of [9],
but simpler, using the characterization theorem of Poisson processes in terms of
martingales.

Let us introduce some notation. The usual partial order on R% will be denoted
by <:z<z' iff s<s’and t < t’ where z = (s, t) and 2z’ = (s’, t’). We write
z<xz'if s<s’and t < t. Let (2, #, P) be a complete probability space and
(£, z € R2)} be a filtration (a family of sub-o-fields of %) which is increasing
(z < 2z’ implies &, C &), right continuous (£, =N, .. ,%.) and complete (each
&, contains all null sets of #). We define £' =V . &, 1y %2 =V,10F 01
and Z* = %' vV %2 In addition, we assume the hypothesis (F4) of conditional
independence: For each z € R%2, #! and %2 are conditionally independent
given Z,..(This hypothesis is verified in most of the examples and permits the
development of the stochastic calculus; see [13].)

Recall now some results about two-parameter martingales. For the sake of
simplicity, we suppose that all the processes are vanishing on the axes.
An adapted process M = {M,, z € R%} is called a martingale if it is integrable
and for each pair z <2/, E[M,|#]= M,. It is a strong martingale if it
is a martingale such that for each pair z <« 2/, E[M(z, 2’]|%#*] = 0, where
M(z,2’]=M, — M, ,— M, ,+ M, is the increment of M over the interval
(2,2']. M is called a weak martingale if it is an adapted process such that for
each pair z < z’, E[M(z, 2']|%] = 0. Generally the class of strong martingales
is strictly smaller than the class of martingales, which is strictly smaller than the
class of weak martingales. A process M is a martingale if and only if it is an
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i-martingale for i = 1 and i = 2; that is, for each pair z < 2/, E[M(z, 2’']|%#}]
= 0 and M is % adapted. In the product space £ X R% we can define different
o-fields. We are interested here in the o-field & of predictable sets: It is
generated by simple sets of the form F X (z, 2’], F € &%,. It is also generated by
the continuous and adapted processes. In the same manner, we define the o-field
P! of i-predictable sets (i = 1,2) and the o-field #* of *-predictable sets. We
have: # =2 N P2 and £* = P v P2,

To each square integrable martingale M, we can associate a unique predictable
increasing (right-continuous and with a nonnegative increment over any interval)
process (M) such that M? — (M ) is a weak martingale, and if M is a strong
martmgale then there exists a unique 2 increasing process (M)’ such that

— (M) is an i-martingale [6].

To every increasing and integrable (or integrable variation) process A, we can
associate its dual predictable projection A”. It is the unique predictable in-
creasing (integrable variation) process such that A — A”™ is a weak martingale [6].
Until now we do not know how to define a general dual projection such that the
difference is a strong martingale.

A stopping line A is a random connected curve such that for every pair z < 2/,
we have z & A(w) or 2’ & Mw) and {w: 2z < AN w)} € Z,. The relation z <A
means that there exists a random point z’ such that z < 2z’ and 2z’ € A, and in
the same manner, we define a partial order between the stopping lines.

Let Z be a random point and denote by Z (resp. Z) the set of all the points
greater (resp. smaller) than or equal to Z such that one of the coordinates is the
same as Z. Z will be called a stopping point if Z is a stopping line. Note that this
condition is equivalent to the following: For each z € R2, {w: Z(w) < 2} € £#,.
Note also that the random line Z is not necessarily a stopping line. Every
stopping line A determines a stopping set D(A) = {(w, 2): 2 < A(w)} and con-
versely.

Let A be an increasing process. Then the random variable A, is well defined,
being the measure of the set D(A) induced by A: [Ij,,(2) dA,. If A is a stopping
line such that D(A) = U;R; where Z; = ( ., T;) are random pomts R 2, are the
stochastic intervals [(0, 0), Z, ], and the union is finite for a.e. w, then A is called a
stepped stopping line and A, is also equal to X,(A; — A(g, 1, ,)), provided that
the points Z; are ordered in a suitable manner.

1. Point processes.

DEFINITION. A point process over R? is a right-continuous increasing adapted
step process N = {N,} taking its values in N U {0} U {00} and which vanishes
on the axes. The jump AN, of the process at some point z is defined to be
N,- N,- ,— N, + N,-, where z = (s,t), and we suppose that the nonzero
Jumps of 'N are equal to one. We have N, = ¥, _,AN,,, and all the jumps are on
an increasing sequence of stopping lines L P = Debut{ > k} (where the Debut
of a set is defined to be its minimal points).
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Another increasing sequence of stopping lines associated with the point process
N is the following:

Ly=L,, L,=Debut{z: AN,=1,L, <z}, n>1,
and Debut ¢ = o0.

To every point process we can associate a sequence of random points Z, which
can take the value oo such that:

(i) Z, = (0,0) and if n # 0 then Z, is not on the axes.
) Z,<xw0=2,,%2,
(iii) Z, < o0 = AN, =1
(iv) For all Z such’ that [Z]1n U,[Z,]) is an evanescent set, we have
AN, = 0 ([Z] is the graph of Z).
(v) Forall 2, {w: Z (w) <2z} €FZ*.

Note that in general these random points are not stopping points, but
Ulz.1 cUIL, 1 <UILL,]
n n n

A point process is, by definition, nonexplosive iff for z: N, < o as. If
Z, =1lim,_ Z, = oo then N is nonexplosive, but the converse does not hold. In
this paper we suppose that all the processes are nonexplosive.

The points {Z,} are obtained considering for any w € £ the denumerable set
of points where the process N has a jump and ordering this set in a suitable
manner. For example, the sequence can be ordered as follows. We first consider
the intersections of the jump set with the sets R,y ,+1)\ B (s, ») and then in
every set, we order the points by the lexicographical order induced by the first
coordinate.

Conversely, given a sequence of random points {Z,}_, such that Z, = (0,0),
for all n # 0, Z, does not belong to the axes, and for all z, Card{n: Z, < z} < oo,
we can define its associated counting process N, which is a point process equal to
n — 1if n is the number of sets [Z;, o0), i = 0,1,..., which contain the point z.
However, we have to require that the random variables N, are #-measurable for
all z.

REMARKS. 1. The notion of point process is well-adapted to the study of
two-servers queueing processes. A two-servers queueing process @, is an
integer-valued process of the form @, = Q ¢, + A, — D,, where A, and D, are
(nonexplosive) point (or counting) processes without common jumps. @ is
called the initial state and @, the state process. For each z = (s, t) > (0,0) the
random variable @, can be interpreted as the number of customers waiting in the
first line at time s and waiting in the second line at time ¢. This kind of problem
occurs where the two lines (or servers) are not in proximity to one another, and
we do not obtain information from the lines at the same time. The process A,
(D,) is the number of arrivals (departures) in the rectangle R, and is called the
arrival (departure) process.
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2. If N, is a point process and 8 an increasing path, then the trace of N on 6 is
a one-parameter point process. The converse is false.

3. Let L be a stopping line, then the process stopped at L: N =N, ,, is
always well defined (since N is increasing) and is still a point process.

DEFINITION. Let N = {N,, z € R%} be a point process. The process N =
{N,, z € R%} is called the (i, *)-intensity of N if it is a nonnegative (%", L F*)-
predictable process such that for all z: [ N d§ < o0 a.s., and for all nonnegative
processes ¢ = {@,, z € R2} bounded and (5‘" L F*)- predlctable we have

E[/quoszz]=E[fRz(pﬁdz].

The notion of intensity was defined and extensively studied in the one-parame-
ter case by Brémaud [1]. The following remarks about intensity are simple to
prove and a few of them will be used in this paper.

1. Let N be the (i, _*)-intensity of N and suppose that N is integrable. Then,
the process {N JrN; d¢, z € R%}, which is called the compensator of N, is a
weak (resp. i, strong) martlngale Since N is predictable and following the
uniqueness of the dual predictable projection of N, it follows that N;” = | R,Né d¢,
and the intensity is uniquely determined. .

2. Under a condition of continuity, for all z € R2, we have N, =
lim,.  (1/z, 2’ 1)E[N(z, 2’]|%,], where |(z, 2’]| denotes the area of the rectan-
gle (z, 2’].

3. The definition of the intensity depends on the filtration. In particular, we
have the following result: If N is the intensity of N with respect to the filtration
& and if there exists another filtration ¥= {¥,, z € R2} such that for all
z2€ R2: 9, C % and N is Zpredictable, then N is also the intensity of N with
respect to the filtration .

A very important class of point processes is the following:

DEFINITION ([1]). Let N = {N,,z € R2} be an adapted point process and
let A = {\,, z € R%) be a nonnegative, Z o o-measurable and integrable process.
If, forall z < 2’, u € R,

E[eNe.on | FZ*] = exp{(ei" - l)f( / ]}\g d«f},

then N is called a double stochastic % *-Poisson process with the stochastic
intensity A,. If the filtration #* is replaced in the definition by the filtration
F*, then N is called a doubly stochastic % *-Poisson process.

Another very general definition was given by Grandell [3], where the parame-
ter set is a locally compact Hausdorff space with countable basis (which includes
the R2 case). An existence theorem is also given. If A, is deterministic then N, is
called a # *- (or # ") Poisson process; and if, moreover, A, is constant then N, is
called the & *- (or % %) standard Poisson process.
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In the deterministic case, the Poisson process was defined and constructed by
Kingman [4], and by Neveu ([8], page 260) and studied by Mazziotto and
Szpirglas [5]. It is a point process N, such that for every rectangle A, the random
variable N(A) has the Poisson distribution with parameter A(A) = [4A, dz, and
for any finite sequence of disjoint rectangles A,,..., A,, the random variables
N(A)),..., N(A,) are mutually independent.

The Poisson process can always be chosen right-continuous with left limits
(since it is an increasing process), and the filtration generated by the Poisson
process is right-continuous and satisfies the property (F4) of conditional indepen-
dence. Therefore, the Poisson process is a % *-Poisson process with respect to its
filtration.

2. A characterization of generalized Poisson processes. In this section,
we give a characterization for the different kinds of (doubly stochastic) Poisson
processes defined in the last section. For the special case of the Poisson process
and without using the concept of martingale, the result was essentially proved by
Mecke and by Papangelou [11], by another method. As we shall see, the
characterization obtained is better than in the Wiener case, and we do not use the
property (F4) of conditional independence.

THEOREM 1. Let N = {N,, z € R%)} be a point process, N = (N,, z € R%}
its intensity and N = {N, — [ N, d§} its compensator.

(i) N is a doubly stochastic # *-Poisson process if and only if N is ¢, -mea-

surable and N is a strong martingale. _ ‘

(ii) N is a doubly stochastic F *-Poisson process if and only if N is F ,-mea-
surable and N is an i-martingale (i = 1,2). . .

(iii) N is an % *-Poisson process if and only if N is deterministic and N is a
strong martingale. _ .

(iv) N is an % '-Poisson process if and only if N is deterministic and N is an
i-martingale (i = 1,2).

ProOF. The first parts of these assertions follow easily from the definitions of
the different Poisson processes.

Conversely, assume that N is a strong martingale. Then, if we fix £ < ¢/, the
process

Ngyyy— Ny o — N, d¢, F* ,520}
{ (st~ N, f(O,s et (s,0)

is a one-parameter martingale, and following the characterization of the doubly
stochastic one-parameter Poisson process proved by Brémaud [1], the process
{Ne, vy = Ns, e 8§ 2 0} is a doubly stochastic {#f,, s > 0}-Poisson process.
That means, for any s <s’, N ) — N ¢y — N, ) + N, 1) is independent of

Fx, given F3, and we obtain E[e“Ne|Z*] = exp{(e™ — ), 1N, d¢).
O
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The same proof can be applied to the i-martingale case considering the
one-parameter martingale (in the case i = 1) {Nyy ;) — Ny 1) = fis, s1x0, 1 Ve d£}

THEOREM 2. Each of the following conditions implies that N is the Poisson
process.

(i) N is an & *-Poisson process.
(i) N is an % '-Poisson process (i = 1 or 2).
(iii) The hypothesis (F4) is satisfied; N is a point process with a deterministic
intensity and its compensator is a martingale.

Proor. The condition (i) clearly implies that NN is the Poisson process; then
suppose that N is an % !-Poisson process. If we fix a finite number of disjoint
intervals I, = (¢, t;,,], i=1,..., &k, then the one-parameter k-vector process
{{N(O, s] X I,),s >0}, i=1,...,k} is a k-variate point process which is
adapted to the filtration {#!, s > 0} and such that for every i = 1,..., &, the
processes {N((0, s] X L) — [o, s1x ,,ﬁg d¢, s > 0} are &'-martingales. Therefore,
by the multichannel Watanabe theorem (proved by Brémaud in [1]), the
{N(O,s] X I),s >0}, i=1,..., k, are 1ndependent {#], s > 0}-Poisson
processes with the intensities [, N(s dt, i =1,..., k, respectively. That means,
for any s < s’, we have:

exp{i Xk‘, u,-N((S, s’] x IJ)}

Jj=1

E

] Mew{(e-1f Nas)

J=1

for any finite sequence {u j}f=1 of real numbers. It follows from this equality that
N is the Poisson process.

Suppose now that condition (iii) is fulfilled. Following hypothes1s (F4), the
compensator is z-martmgale By (iv) of Theorem 1, N is an % “Poisson
process. Therefore it is the Poisson process. O

REMARKS. 1. In the Wiener case, this result does not hold, since the com-
pensator needs to be a strong martingale or at least a martingale with orthogonal
increments [15].

2. The proof of the multichannel Watanabe theorem uses the assumption that
the intensities are deterministic. Therefore the proof of Theorem 2 cannot be
applied to the doubly stochastic Poisson process.

3. Changing time. Let N = {N,, z € R%} be a Poisson process and N =
{N,, z € R%) its compensator. Let

(1 if |R,| <1,
%=\2 it |R,>1,
and define

M, = fR ¢; dNN,.
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M is a point process with deterministic intensity, and its compensator M, =
Jr ¢ df\"e is a strong martingale [5]. Nevertheless, it is exactly the same proof that
in [2] shows that M cannot be transformed into a Poisson process by any family
of stopping points. Here we deal with stopping lines and show in this case M can
be transformed into a Poisson process.

In general the (F4) hypothesis is not preserved when we stop a filtration by a
family of stopping lines. Therefore we need the following result. In the case of the
Wiener process, it was proved by Wong and Zakai [13].

From now on, we suppose that N is a Poisson process and { %} is the filtration
generated by N. Let L be a stopping line and define %, to be the o-algebra
generated by the process N, , ;, that is the o-algebra generated by the random
variable {N,, z < L}.

THEOREM 3. Let L, and L, be stoppmg lines and Ly = Ly A Ly. Then &
and ¥, are condztzonally independent given ¥ .

Proor. Every stopping line L can be approximated by a decreasing sequence
of stepped stopping lines {L"}%_, (for example, the dyadic approximation). Since
N(A) and N(B) are independent where A and B are Borel disjoint sets in R?, it
follows that #;, and %, are conditionally independent given %,. As was
done in [12], it follows by the smoothing property of conditional expectations
that #;, and %, are conditionally independent given %, where % .=
n_ 1.93',, In order to complete the proof, we show that %, . = Z, .- Here, too, the
result is obtained using the same idea of Proposition 5.3 of [13] and the fact
(proved in [14]) that the family of random variables exp{ [, fdN — [,(e/ — 1) dz}
with f Borel and bounded function with compact support, is dense in the space
of square integrable functionals of N. O

The following changing-time result holds under the (F4) hypothesis.

THEOREM 4. Let M be a point process with intensity M such that its
compensator is a martingale. Suppose that the function s — jOM du is nonde-
creasing for all t > 0 and tends to infinity with t (or the same after exchanging s
and t). Then there exists a family of stopping lines (L,, z € R%)} such that M L,
is a standard Poisson process.

ProOF. Suppose that the condition of the theorem is satisfied; that is,
/&M, , du = oo, and therefore define:

t(s) = inf{t’: ['H, , du> t},
0

n,={(x,y):x<s,y<t(x)} wherez=(s,t).

Therefore, |, Ms d¢ = |z|, where |z| denotes the area of R,, and the family of
random sets {1- z € R%} is increasing and satisfies: 7, N 7, = 7, ,, for every
pair of two points z and 2’ (since [(M, ,du is nondecreasmg in s).
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Let L, be the boundary (without the axes) of 7,. Since M is predictable, then
L, is a stopping line.

Define now M'=M; and #"=%,. The o-algebras F, i=1,2 are
defined similarly and followmg Theorem 3 satlsfy the hypothesis (F4) of condl-
tional independence.

Following its construction, the process ML is % I-adapted (since M is
Fadapted) and is also a point process.

Therefore, following Theorem 2, it suffices to prove that the process ML — |z|
is a martingale with respect to the new filtration {%L}. Let (s, s’] X (0, ¢] be a
generalized rectangle such that F € £% and z = (s, t), 2’ = (s, t). Then

E [T e1x0,0 A" = E[ LM ((s, '] X (0, ¢])] = E[Io(M% - MZ)]

= E[I(My, - M,,)| = E [Ipxnty ., 1.2 dM,

where (L,, L, ] is the stochastic interval open on the left {(w, £): L(w) < £ <
L,(w)}. Th1s stochastic interval is a predictable set; therefore, since F € .%'L s
the set (FX R%)N (L, L,] is %"predictable. The process M — [M is an
i-martingale and it induces a measure which vanishes on the &% ‘predictable sets
and the last relation equals

E/I(kai)n(L,,Lz,]Mz dz=E [IFM(Lz’ Lz']]

= E[Ipl(z, 2'1]] = E [Ipy(z, 2 (8) @t

This implies that ML — |z| is an i-martingale. Therefore M, is a standard
Poisson process. O

REMARK. Without using the (F4) hypothesis, the result remains valid if we
require that the compensator of M is a strong martingale.

ExXAMPLE . Consider the example of the beginning of this section. The family

of stopping lines {L,} transforming M into a Poisson process can be constructed

" as in [9]. The intensity of M is ¢ and satisfies the conditions of the theorem. We

have #(s) = ¢ A [3(¢ + 1/s)], the corresponding stopping lines are L, = {(x,

3(t +1/x)), x > 0} A 2, where z = (s,t), and {M,, } is the standard Poisson
process.

The increasing condition in Theorem 4 can be cancelled in special cases:

THEOREM 5. Let M be a point process with intensity M such that its
compensator is a martingale and [° M (s,uy du = o for all s. Suppose that there
exists a positive decreasing function B such that M, (s, u)[}(s) is a nondecreasing
function of s, forallu > 0.

Then there exists a family of stopping lines {L,} such that M, L, s a standard
Poisson process.
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PrROOF. Define

fis) = int{t: [,y du = tB(s)},
a(s) = inf{s’: fos,,B(u) du = s},

and
,={(x,5):0<x<a(s),0 <y<f(x)}
The proof now follows as in Theorem 4. O

As an example of the application of Theorem 5, suppose that M is a smooth
functlon and assume that M(, ,(s) is continuous. Assume also that M=>a>0
and M/, ,(s) = —K > —co. Then the conditions of the theorem hold with
Blx) = e~ K/,

REMARK. Let N be a standard Poisson process and {L,} a family of
deterministic stopping lines (that is, L, is a nonincreasing connected line). Which
conditions must this family satisfy in order that {N, } remain a standard Poisson
process? The answer to this question is exactly the same as in the Wiener case as
it was done in [9], since the arguments of the proofs are only geometric
deterministic and not probabilistic.

The main result is the following Let {L,,z € R, } a family of deterministic
stopping lines contained in R, such that {N,,z € R, } remains a standard
Poisson process. Then for all z = (s, t), we have L =z or L,= (tsoto , §toSqy )
where z, = (8¢, ;).
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