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Let {Zy; A =0, +1,...} be ii.d. random variables which have a density f
which satisfies f(z) ~ Kz®xp{—2zP} as z — oo for some constants p>1
K > 0, and a. Further let ¢ be defined by p~! + ¢~ ! = 1, and let {ca} be
constants with ¢, = O(JA|~?) for some 6 > max{1,2/q}. Then, e.g., if f is
symmetric

P(ZcaZy >z + x/2P/7)
PXc\Z, > 2)

for ||c|l, = (|cx|?)"/?, and similar results are obtained also for nonsymmetric
cases, under some mild further smoothness restrictions. In addition, an order
bound for PXc\Z, > z) itself is obtained, and precise estimates of this
quantity are found for the special case of finite sums. In the companion paper
[7], the results are crucially used to study extreme values of moving average
processes.

- exp{ —pllcll;’x}, asz— oo,

1. Introduction. In this paper we study the tail of the distribution of a
weighted sum Xc,Z, of independent identically distributed (i.i.d.) random vari-
ables {Z,; A = 0, +1,...} for the case when the tail of the marginal distribution
of the Z,’s decreases smoothly, and approximately as exp{ —zP}, as z = oo, for
some p > 1. In the companion paper [7], the results obtained here are crucially
used in studying the intricate and interesting behavior of extremes of a moving
average process {X,=Yc,Z, ,} (continuing the investigation started in [6]).
This was the motivation for the present work, but it might be useful also in
other contexts—to find the distribution of convolutions is one of the basic
problems of probability theory. Also in “geometrical” terms it seems a natural
problem to try to find the tail of the distribution of Yc,Z,; e.g., it includes
finding asymptotic estimates for the integral of exp{ —||z|| £} outside an infinite-
dimensional hyperplane.

More specifically, we will throughout assume that the distribution of the Z)’s
has a density f which satisfies

(1.1) f(2) ~ Kz%~*", asz — co,with p > 1,

for some constants K > 0, « and p. Further, we let g be the conjugate exponent
of p, defined by 1/p +1/q =1, and let {c;; A =0, +1,...} be real constants
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TAILS OF WEIGHTED SUMS 729

with at least one of the ¢,’s strictly positive, which satisfy
(1.2) lexl = O(IA| %), as A = + oo, for some 6 > max(1,2/q).

Let ¢ = max(0, c), ¢5 = max(0, —c¢,), and write ||c||, = E|cA|DVY, llc*ll, =
ey |9)V9. If some of the c¢,’s are negative then the (right) tail of the distribu-
tion of ¢, Z, is influenced also by the left tail of the marginal distribution of the
Z,’s, and this influence is determined by how a combination of {c, } and the left
tail of the Z,’s compares with the corresponding combination of {cy} and the
right tail of the Z,’s. For this reason we have to separate three different cases,
specified by conditions B.1-B.3 in Section 2 below. We will refer to these as the
case of positive c,’s, the case of a dominating right tail, and the case of balanced
tails. (Of course corresponding results for the potential remaining cases of
negative c¢,’s and of a dominating left tail are immediate consequences of the
results for positive c,’s and for a dominating right tail.) The main result of this
paper is the following description of the local behavior of the tail of the
distribution of Xc,\Z,.

THEOREM 1.1. If assumption B.1 or B.3 from Section 2 is satisfied, then
(1.9) P(Zc,Zy, > z + x/27/9)
P(Xc,Z, > 2)
for fixed x, and if instead B.2 holds, then
P(Xc,Z, > z + x/2P/9
(1.4) ( ;’()EcAZ,\ > z/) )

— exp{ —pllcll;”x}, asz— oo,

- exp{ —pllc*||;Px}, asz— .

Conditions on the tails of the distribution of the Z,’s are not sufficient to
* determine the precise global behavior of the tail of ¥c,Z,, but in Section 6
Theorem 1.1 is complemented by order bounds for P(Xc,Z, > z), and precise
estimates are obtained for the special case of finite sums.

The present problem seems hard, and our proofs are correspondingly long.
Some heuristics which originally suggested the results are given in the introduc-
tion to [7]. The actual proof uses the “conjugate distributions” introduced by
Esscher (1932) and further developed by Cramér (1938), Feller (1969) and many
other authors in the context of large deviations in the central limit theorem. The
present situation is, however, qualitatively different since it involves infinite
sums of nonidentically distributed random variables, rather than finite sums of
(more or less) identically distributed variables. Accordingly, it requires a some-
what different use of conjugate distributions, involving sharp estimates of a
“local limit” type. ,

For convenience of notation, let Z be a further random variable which has the
same distribution as the Z,’s. It follows from (1.1), e.g., by partial integration
that

K
(1.5) P(Z>2) ~ ;z"‘"’“e‘zp, as z > o0.
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To find the tail of the distribution of ¥¢,Z, when (1.5) is satisfied for some
p € [0,1] turns out to be substantially simpler than when p > 1. For0<p <1
this is done in Sections 7 and 8 of [7], while the case p = 0, where necessarily
a < 0, can be obtained from [3].

An overview of the proof of Theorem 1.1, including a brief discussion of some
basic properties of conjugate distributions, is given in Section 3. The conditions
and notation needed are collected in Section 2, and the theorem is proved in
Sections 4 and 5, with some technicalities postponed to the Appendix. Finally, as
discussed above, Section 6 contains some complements, and a brief discussion of
the conditions.

2. Conditions. If Theorem 1.1 is known to hold for ||c||, = 1 [or in case B.2,
for ||c*||, = 1], then the general result follows at once by dividing by |||, [or by
llc*ll4]. Accordingly, throughout the proofs below we assume that |||, = 1, for
notational convenience.

In addition to (1.1) and (1.2) we always assume that second moments exist,
EZ? < o0. In particular, then E|Z,| = E|Z| < o for any A, and since (1.2)
implies that ¥|c,| < oo, this ensures that ¥c,Z, converges a.s. We also need the
further assumption that

(2.1) e*f ’(z) is bounded for z € (- c0,0],

for some constant c > 0. Moreover, defining D(z) = f(z)e*" for z > 0, and
D(z) = f(2) otherwise so that

D(z)e ", forz >0,
22) f(z) = {Dgz), forz <0,
with
(2.3) D(z) ~ Kz*, asz — oo,
we assume that
. zD'(z2)
(2.4) hfls::p D2 < o0.

Here, of course, f’ and D’ are the derivatives of f and D. It may be noted that
(2.4), e.g., is satisfied if D(z) for large z is a rational function.

The three cases, of positive ¢,’s, of a dominating right tail, and of balanced
tails, which were discussed in the Introduction, are delineated in the following
three conditions,

B.1 (1.1), (1.2), (2.1) and (2.4) hold, and all ¢,’s are nonnegative;
B.2 (1.1), (1.2) and (2.4) hold, and in addition f(—=z) satisfies (1.1), (2.4), with p
in (1.1) replaced by some p’ > p, and possibly with different D, a, K; and
B.3 (1.1), (1.2) and (2.4) hold, and in addition f(—z) satisfies (1.1), (2.4) with the
" same p as in (1.1), but possibly with different D, a, K.

In the sequel, C and y often will be generic constants, whose values may
change from one appearance to the next. When limits of summation or integra-
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tion are deleted then the summation or integration is always from — oo to + co.
Further N(0, 62) denotes the normal distribution with mean zero and variance
62, the indicator function is denoted I, i.e., I{-} is one if the event in curly
brackets occurs, and zero otherwise, and finally, —, stands for convergence in
distribution.

3. Outline of the proof of Theorem 1.1. The distribution Fh conjugate to a
distribution F is defined by

(3.1) Fy(dz) = e"F(dz)/ [e"F(dy),

for i > 0 such that fe"”F(dy) is finite. If Z and Z, are random variables with
the distribution of Z, conjugate to the distribution of Z, we write Z <, Z,. In
particular, if F, is the distribution of Z, we have with this notation that

(32) Eg(Z,) = [a(2)F(dz) = Eg(2)e"/Ee’,

for any measurable function g. The basic facts we will use about conjugate
distributions are that the relation (3.1) of course can be inverted, to yield
F(dz) = e~ "*F,(dz)[e"’F(dy), or equivalently that

(3.3) P(Z € A) = E(e "#I{Z, € A})Ee"*

for Borel sets A, if Z <, Z,, and that, as can be seen, e.g., from (3.2), the
correspondence <, commutes with convolutions, i.e., if Z, and Z,,, A =

0, +1,..., are sequences of independent variables and Z, <, zZ 5 for each A,
then
(3.4) ZZ)\ “h ZZh,M

provided both sides are well defined. Further, we will make use of the fact that if
¢ > 0 is a constant with Ee**? < o0, and Z <, Z,, then

(3.5) cZ =, cZ,, fors=ch.
[This follows from (3.2) and the trivial identity
Eg((cZ))e™® /Ee™® = Eg(cZ)e?/Ee*?,

which is valid for any measurable g.]

Throughout the rest of the paper we will use the following definitions. The
notation above is speclahzed to assume that Z, and V4 1, are defined by requiring
that the Z ma A=0,%1,... are mutually mdependent and that

(3.6) Ze,Z, ¢ Z, & Zh A0

so that in particular X¢,Z, <, ZZ,, » for Z, {Z,} and {c,} as defined in Sections
1 and 2. Further, let Z have the moment generating function y(s) = Ee®Z,
which by (1.1) exists for s > 0, and define

@)(h) = Ee*% = y(c\h),

(3.7) q’(h) - I;I(I)A(h) — Eeh):chx.
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The following constants will appear repeatedly in the derivations,
= (WD), zhx= leal%2,

(3.8) & = q“p“’/‘”, 8 =p(p-1)p79,
0, = h—1/2+q/(2p)p—q/pg2- 172

The major part of the proof is to establish the result for positive c,’s, and the
general case then follows from this by a simple argument. Thus, until further
notice is given, we assume that ¢, > 0 for all A. Now, if Z is replaced by Xc,Z,
and Z, by EZ,, » for A = (z,, o0) the relation (3.3) becomes

P(Sc\Z, > 2;) = E(e""™ZaI{ L Z, , > 2,})®(h)
(3.9) = E(e—h"h}:(zh,x—zh,x)/dh

XI{Z(Zh,A — 24,2)/0n > 0})e_hth’(h):

since Xz, , = z;Xcf{ = 2,, by the assumption that ||c||, = 1. We will prove (1.3)
by estimating the factors in (3.9) separately. The first main step is to show that

(3.10) Y (Z,\— 21,2)/0, =4 N(0,1), ash - co.

Then, if one could replace the distribution of £(Z,, , — 2 #,1)/ 03 by its limiting
distribution, this would give that

E(e—ha,,}:(zh,x—zh,x)/ﬂhl{ Z(Zh,A - zh,}\)/oh > O})

_ /we—hahxe—x2/2 dx/JZ—W
(3.11) °
= (how27)~ / e e~ (han P /2 gy

~ (how27) ™", ash - o,

since hoj, — o0, as A — co. The next step is to show that (3.11) indeed is valid,
by proving the “local” limit result that the density of ¥(Z, \ — 2, »)/0; con-
verges uniformly to the standard normal density.

Now, let A, be defined through

(3.12) z, =2, +x/207,
for x fixed. By (3.8), hz;, = pz} and similarly for A,, and thus
hyzy,, — hz, =p(z,{" - z,{')
(3.13) = pzf((1 + x/28)" - 1)
=p% +0(1), ash - oo.
The last main step is to show that
(3.14) ®(h,)/®(h) - exp{p(p — 1)x}, ash - .
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It then follows by inserting (3.11), (3.13) and (3.14) into (3.9), that
P(ZcAZA >z, + x/z,‘f/q)
P(Xc,Zy > z3)
_ P(ZerZy > 23,)
P(Xc\Zy > z3)
(h*oh‘\@;) _l(hahﬁ?r_)exp{ —p*xc}exp{p(p — 1)x}

exp{—px}, ash— oo,

(3.15)

1

1

since ha,/(h40},) — 1, asis easily seen. Clearly z;, — co continuously as & — oo,
and thus (3.15) is equivalent to (1.3) (with ||c||, = 1). Hence, we will prove (1.3)
by verifying (3.11) and (3.14).

4. Proof of (3.11). Since Z has the density function f, the conjugate
variable Z, has a density e”*f(z)/[e™f(y) dy = e"*f(2)/y(h). Thus
(Z,, — z,)/0, also has a density, say f,, which is given by

(4.1) fu(2) = oye”Cortanf(ze), + 2,) /Y(h).
Defining g by
(42) g(x) = —p~{(1 +x)" - 1 - px},
it follows from (3.8) that
h(opz + 2;) — (042 + 2,)° = b4 p~VP(z0,/2;, + 1) — p~U(20,/2, + 1)7)
= h9(g, + &(20,/2,)),

with g, = ¢~ 'p~ %/, and we can then by (2.2) write f,, for 0,2 + 2, > 0, as
(4.3) fa(2) = 0,D(0,2 + 2, )exp{h(g, + &(20,/2,))} /¥ (h).

LEMMA 4.1. Suppose the density f of the Z,’s satisfies (1.1), (2.1) and (2.4).
Then

(4.4) fa(2) > e #2/\V2m, ash— oo,
for fixed z, and hence, by Scheffé’s theorem,
(4.5) (Z), - 2) /0, —4 N(0,1), ash - .

ProoF. According to (3.8),
(4.6) 0,/2, = h™ 9512,

Further, (1.1) implies that (2.3) holds, and thus, for z fixed, D(0,z + 2;)/
D(z,) > 1 as h— oo (since then also z, — o0). By Taylor’s formula, the
function g from (4.2) satisfies

g(x) ~ —g,x%/2, asx -0,
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and hence it follows from (4.3) and (4.6) that
fx(2) _ D(o,2 + z;,)

(4.7) f(0) D(z,)
—»e %2 ash - 0.

By (A.6) of the Appendix, f,(z)/f,(0) is bounded by a fixed integrable function
for large A, and hence

1= [1i(2) dz = (0) [ (1a(2)/1(0) e

eh'8(zon/2p)

~ 1n0) [/ de

=f h(O)‘[27’
as h — oo, which proves (4.4) for z = 0. The rest of (4.4) then follows at once
from (4.7). O

We next estimate the first two moments of (Z, nA — 21,1)/0p. The estimate for
the first moment will be used also in the following section.

LEMMA 4.2. Suppose f satisfies (1.1), (2.1) and (2.4), and assume that ¢, > 0.
Then, for some constant C > 0 which does not depend on h or A,

_ ch/oh’ for C) < ]-/h:

(4.8) |E(Z,\ = 21,1) /04| < {C/(hah), forcy >1/h,
and

( _— 2 Cci/o2, forc,<1/h,

(4.9) E{((Zh,)\ zh,x)/“h) } = {Cc;{, fore, > 1/h.

Proor. The result trivially holds if ¢, = 0, so we may assume c, > 0. By
definition, ¢,Z <, Zh,)\, and hence, according to (3.5), Z, , has the same
distribution as c,Z, for s = c,h (notation: Zh,x =, ¢\Z,). Further, by (3.8),
2\ = cfz, = c,2, and hence

(4.10) E(Zh,x - zh,)\)/oh = CAE(Zs - zs)/oh

for s = ¢, h. Here,
EZ = [ze*f(2) dz/fe”f(z) dz,

which by standard properties of moment generating functions is bounded in the
bounded interval 0 < s = ¢, < 1. Since also z, is bounded in this interval, this
provés the first part of (4.8). The proof of the first part of (4.9) is entirely similar.

It also follows at once that the second part of (4.8), with a suitable choice of
C, holds for s in any bounded interval, and similarly for the second part of (4.9),
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since cf > constant X c}/s?, for c,h > 1. Since s = c ki by definition
€007 '0(s %0, ") = O(h~'6; '), and thus the second part of (4.8) follows if we
prove that

EZ, - 2,

O

(4.11) = 0(s7 %, 1) = 0(s7%2%), ass— co.

In the same way the second part of (4.9) will be established if we show that

Zs ZS 2
(4.12) E =0(1), ass— oo,
[}

s

since c2020;, 2 = c{. However, it follows from Lemma 4.1 and (A.6), by dominated
convergence, that
Z,—z

7 2
E( 2 s) -1, ass— oo,
os

which proves (4.12). The proof of (4.11) is similar, but more intricate, and is
relegated to the Appendix. O

_ 'This result gives estimates for the mean and mean square of the sum of the
Z} \’s, as follows.

LEMMA 4.3. Suppose the assumptions of Lemma 4.2 are satisfied and that
{ex)X- _ ., are nonnegative constants which satisfy (1.2). Then

(i) Y|E(Z, 5 — 24,2) /04| < C'R792+1/5,
_ with 6 defined by (1.2), for some constant C’, and
2

Zh,x_zh,x
————} -0, asA,— 0.

(ii) limsup E { Y

h>o IAI> Ao Op

PROOF. (i) Choose D such that ¢, < DJA|™% for A # 0, and define A =
[D'®h'/?] so that ¢, < D(D*°h'/®)=% = A= for |A| > A. Then by (4.8)

YIEZ, \ — zp,\l /01 = { Z + ) }lEZh,)\ = 2p,2l/0p

AISX  A>A
< C{(27\ +1)/h+D Y, |>\|-0}/a,,
[A>X
=O0(A/h+N"%)/q,
_ O(h_1+1/00;1),

which proves part (i) since A~1*/%; ! = constant X h~%/2+1/% by the defini-
tion, (3.8).
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(ii) Since the Zh s are independent,

R R

IAI>Ap IA|>Aq A

— 2
EZ), \ — 2\

op ’
Here the last term tends to zero by (i) and the assumption (1.2) that 6 > 2/q.
Further, with A as above, it follows from (4.9) that

Z V(Zh Ao ) Z E(Zh )\o h,}\)2

IA[> Ao A1>Xo

sc[ T e+ D £ Noi)

N> 2o IA>X

—C T cf + O(N~%0;2)
AI>Xg

—C Y cf+ O(hV/*-9).
1>

I

Again by assumption, /Y9 - 0, as A — o0, and hence it follows that

— 2
Zpx— Zpa
limsupE{ Yy LIRS Y Y >0, asA,— oo. a
h— oo AI>Aq O A[>Ao

We are now in a position to prove (3.10) and (3.11).

LEMMA 4.4. Suppose the assumptions of Lemma 4.3 are satisfied. Then
" (4.13) Y(Zh,» — 21,0)/05 >4 N(0,1), ash— oo,

and (3.11) holds, i.e.,

(4.14) E(e 2@/l ¥ (Z, \ = 2,,)/0, > 0}) ~ (hop2m) ™,

as h > oo.

PROOF. As in the proof of Lemma 4.2
(4.15) (Zh AT 2, A)/oh =d c}\asoi:l(zs - zs)/os’
for s = c,h, and since ¢,0,0; ! = c{/?, it follows from (4.5) that
(Zh,A - zh,x)/"h -4 N(0,cf), ash— oo.
Hence, since the Z,, ,’s are independent,
)> (Zh,x - 3h,x)/°h - N(O» z c;‘{), as h - oo,
ES,%S NE
for any A,. Combining this with Lemma 4.3(ii) gives [see, e.g., Billingsley (1968),
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Theorem 4.2] that
Y (Znx— 2n,0)/0n =4 N(0,Ic]|2), ash - oo.

Since ||c||, = 1, this is the same as (4.13).

We shall next use the following standard facts: If G, and G, are d.f.’s where
G, has a bounded continuous density G| and G, is arbitrary, then the convolu-
tion of G, and G, also has a continuous density which is bounded by the same
constant. Similarly, if G{ has a bounded continuous derivative, then the density
of the convolution has a derivative which is bounded by the same constant. [The
first result may be obtained by applying the mean value and dominated conver-
gence theorems to show that [A Y (G (z+ h—y)— Gz — y))dGy(y) -
[Gi{(z — y) dGy(y) < sup,|Gi(x)|. The second result follows by the same argu-
ment].

By (A.5) of the Appendix and Lemma 4.1, (Z, — 2,)/0, has a uniformly
bounded continuously differentiable density, which has a uniformly bounded
derivative, and it then follows from (4.15) that Z nA — 2p,2)/0, has the
same property for any A with ¢, > 0. Let A be such a value. Then, since
(Zp,x = 21,0)/0n = (Z3,5 —2,3)/0h + Znwx(Zn x — 25,0)/04 it follows that
X(Z,,,\ — 2zp,1)/0; has a continuously differentiable density, r;, say, with both
r,(z) and |r/(2z)| bounded uniformly in z, A > h,, with h, as in Lemma A.l.
Thls together with (4.13) can be seen to imply that r,(2) converges to

e %/ 2/V2# , uniformly for z in bounded intervals [this follows, e.g., from the
Arzela-Ascoh theorem, see [1], page 221: we leave the details of the argument to
the reader]. Thus, since ko, = 0, in particular r,(z/(ho,)) = 1/ V27, as h -
o0, for fixed z, and in addition r, is for large » bounded by some constant. Now,
the expression on the left in (4.14) equals [°exp{—ho,2}r,(2)dz and, by
dominated convergence,

hohf ~honzp,(2) dz = f e *r,(x/(hoy)) dx — f ~x gy /\Bm = 1/¥27,
which proves (4.14). O

5. Proof of (3.14). We now turn to the result (3.14) on the asymptotic
behavior of the moment generating functlon ® of Yc,Z,, recalling that A, is
defined by (3.12), i.e., by

(5.1) 2, =2z, + x/28/9,

for x fixed. In the result we include two additional pieces of information, for use
in Section 6 and in the companion paper [7], respectivély.

LEMMA 5.1. Suppose the assumptions of Lemma 4.3 are satisfied, and let
®(h) = I1,0,(h) be as defined by (3.7). Then,

(i) ®(hy) ~ ®(h)exp{p(p — 1)x}, ash — oo,
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for fixed x, and the same result holds for general ||c||, provided x is replaced by
llell g

(i) (D(h) = exp{p—q/Pq—lhq + nhl/"},

where |n| = |n(h)| is bounded by some constant which does not depend on h > 0,
and the result holds for general |||, if h is replaced by llcll 5.
(iii) Let ®,(h) = II,_,®,(h). Then, for 0 < h < n’,

®,(h) < exp{C Y c,‘h},

n<i

for some constant C which does not depend on n or h, for h in the specified
range, and the same result holds for general ||c|,.

ProOOF. (i) It is straightforward to see that [{(s) — 1| < constant X s, for
s > 0 in bounded intervals, and since ®,(A) = y(c,h) convergence of the infinite
product which defines ® is assured by ¥|c,| < oo, which in turn is a consequence
of (1.2).

By standard arguments [cf. Feller (1969)] it follows from (3.2) that

_ d d
EZ, \= ‘I’fl(h)ﬁq’x(h) = EIOg ®,(h)
and hence

(52) 108 0(h) = ¥ log®y(h) = LEZ,

the interchange of the order of summation and differentiation being permissible
_since the EZ, ,’s can be majorized uniformly in bounded A-intervals along the
lines of (5.3) below. From Lemma 4.3(i) and (3.8)

Y EZ, = Yzp\ + O(LIEZ, \ — 23,)
(5.3) =z, + O(h=9/%*%,)
=2z, + O(h~*?%), ash - co.
Now, 2z, = z,(1 + x/23) by (5.1), and since 2, = (h/p)?/P, we have that
hg/p = h"/"(l + qu/hq)
and thus
by —h={(1+xp?/h9)"? - 1}n’
~ p?tlg~xh'~ 9
= p¥Pp(p — 1)xh~9/P
=p(p—1)x/z,, ash— oo.
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Inserting (5.3) into (5.2) and integrating then yields that
logo(h*) - logQ(h) p— fh*zsds + O(lh* _ hlh—l+1/0)
h

= (hy — h)z, + O(|h* — hllz;, - zh|) +o(1)
->p(p-1)x, ash— oo,
which proves part (i).
(i) According to (5.2) and (5.3) there is a bounded y = y(k) such that

d
%logd)(h) =z, + yh~ 1tV

=p~9/Ppa/P 4 yp1+1/0,

Since ®(0) = 1, (ii) follows at once after integration.
(iii) It follows from (4.8) (as was explicitly used in the proof of that inequality),
that

IEZh,AI < Cey,
for 0 < h < n®. The result then follows from integrating

d
%log o(h) < Cngxc,‘,

in the same way as for part (ii). O
We now have all the ingredients needed to prove the main result.

ProoF oF THEOREM 1.1. Suppose first assumption B.1 from Section 2 is
satisfied. Then the hypotheses of Lemma 4.4 and Lemma 5.1 are satisfied, so that
(3.11) and (3.14) hold. However, in Section 3 it was shown that this is sufficient
to establish (1.3).

Next, assume that B.3 is satisfied. Let

o*(h) =TT ®y(h), @ (k) =TI &x(h),

where II* and II~ signify products over A for which ¢, >0 and c, <0,
respectively. By Lemma 5.1(i), :

(5.4) ®*(hy) ~ *(h)exp{p(p — 1)llc*|ix}, ash - oo,

and since for ¢, < 0 we may write ¢,Z, = (—c\(—Z)) = ¢; (—Z,), and since the
density f(—z) of —Z, is assumed to satisfy the hypothesis of Lemma 5.1(i), it
also holds that

(5.5) ®~(hy) ~ @~ (h)exp{p(p — 1)llc7||§x}, ash - co.
Since ®(k) = ®*(h)® (k) and ||c*||2 + |lc7||Z = |lc]|§ = 1, it follows that
(5.6) ®(h,) ~ ®(h)exp{p(p — 1)x}, ash— oo.
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Similarly, with ¥ and £~ denoting summation over A with ¢, > 0 and
¢\ < 0, respectively, we have that, as in the proof of Lemma 4.4,

Y (Znr — 202)/0n > N(0, lIc*)12),
Y (Zyr—212)/00 =4 N(0,[Ic7I|2), ash > co.
Thus, by independence
E(Zh,)\ - zh,}\)/ah -, N(0,1), ash - oo.

The remainder of the argument of Lemma 4.4 can now be repeated to show that
the same conclusion holds also in the present situation. Thus, since this and (5.6)
were the only results needed in the proof of the first part of the present theorem,
it follows that the result also holds under assumption B.3.

Finally, if B.2 is satisfied, then again (5.4) holds and, writing ¢’ = (1 — 1/p’),
with p’ > p as specified in B.2, we have that 2z} = (h/p’)?/? =
(p/p")Y /P27 /P'D gand thus, by (5.1),

z’,l‘ — z;,(l + x/z’;:)pQ’/(p’q)

= zj(1 + 0(1/2%))

L p'a/q’
= Z;u(l + 0(1/(2’1:0 /(P q)) )

= z;(1+ 0(1) /(24)"),

since ¢ > q’ and z;, — oo.
It then follows from Lemma 5.1(i), with ® replaced by ®~ and p by p’ that
& (hy) ~®(h), ash— oo,
since ®~(A) is monotone for large h-values. Similar reasoning shows that the
conclusion of Lemma 4.4 holds, with ||c||, = 1 replaced by lc*lly =1, and the

validity of the result under assumption B.2 now follows in the same way as
above. O

6. Complements. Of course the final goal is to find not only the local
behavior of the tail of the distribution of Y¢,Z, as in Theorem 1.1, but to
describe the global behavior as well. However, it can be seen that restrictions on
the tails of Z alone, as in B.1-B.3, are not enough to determine the tail behavior
of ¥c,Z,, in general. Here we will first give a rough estimate for the global
behavior which is generally valid, and then discuss a special case, viz. finite sums,
where precise estimates can be found. .

THEOREM 6.1. Suppose B.1 or B.3 holds. Then
P(Ze\Z) > 2) = exp{ ~(2/lell,)” + O(2")},
for y = p/(8q), and for any constant D > O this is uniform in all {c,} satisfying
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lex] < DIA|~%, A # 0. If instead B.2 is satisfied, then
P(ZcAZ}‘ > z) = exp{ —(z/||c+||q)p + O(z”)},

with vy = p max(1/(8q),q’/q), forq’ = (1 — 1/p’)"", with p’ given by B.2, and
the O-term is uniform in the same way as above.

PROOF. Assume B.1 holds and as usual that ||c||, = 1. By (3.9), the definition
of 0;,, and Lemmas 4.4 and 5.1(ii) we have that

P(ZcAZA > zh) ~ ®(h)e "*/(V27 hay,)
= exp{ —hz;, + p~Pq"'h? + O(h/?)}, ash - .

As before it follows from (3.8) that Az, = pz}, that p~9Pq~1h? = pqg~'2%, and
that h/¢ = O(z2/*?), and thus, replacing z, by z,

P(ZcAZA > z) = exp{—(p — pg™")z? + 0(2")}
= exp{ —2” + O(2")}, asz — oo.

The claimed uniformity can be verified by inspection of the proof. The proof
under B.3 is similar. To establish the result under B.2, the proof has to be
modified in the same way as in the last part of Theorem 1.1. Since this is
straightforward we omit the details. O

Next, we show that if only finitely many, say & > 0, of the c,’s are nonzero
and B.1 holds, then

61)  P(Xenzy > 2) ~ R(2/lell,) "exp{ —(2/llell,)"}, asz— oo,
" with
é¢=rk{a+3-p/(29)} -p/2,
(6.2) K= K*2x /gz)(k-l)/i’ pla/P=0/2-ka/2T (¢, /| c||q)(°‘“/2)"/”"/2.
A

If instead B.2 or B.3 are satisfied, then (6.1), (6.2) are replaced by slightly more
complicated expressions, which we leave to the reader to derive. However, in the
special case of B.2 when f(z) is symmetric, (6.1), (6.2) remain unchanged.

These relations can be proved directly, e.g., by partial integration in convolu-
tion formulas, but are also readily deduced from the methods used to prove
Theorem 1.1. As before, assume for simplicity that ||c||, =1 and suppose B.1

holds with only & < oo nonzero c,’s. It follows from (4.3) and (4.4), with z = 0,
that '

Y(h) ~ (27) %6, D(2)) e %,

and hence, writing s, = ¢,/ and using that ||c||, = 1, we have that

@(h) = [Tw(sy) ~ @n)**([To, D(2,,))e".
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Hence, by (3.9) and (4.14),

63) P(Y ez, > 2;) ~ (ho,,v/2_7r)_le""’h(2w)k/2(Ho,ng(zs,\))e""“"o

~ K*27)* "*(ho,) _1( l_[osAz;"x)e‘(hz""'"5’°).

Here, by (3.8), hz, — h%,= 2§, and for y= — 1 + q/(@2p) also (ho,)"! =
1 Ry, D 1)/251/2" h
(h/p) 1" p~ —v+q/pg2/ = z; A*VP/ap(a/P=1/ gy/% and

0,2, = (h/p)"p?~9/Pgy /2y oa /Py
= p'Y_Q/sz—1/2z;:+yp/qcx+aq/p.
Thus, writing z for z,, (6.3) becomes, with & as in (6.2),
P(ECAZ;\ > z) ~ Kk(2'rr/g2)(k_l)/2p(4/P—1)/2+k(7—¢I/P)(l—[cx+aq/p)z&e_zp,

which is the same as (6.1), for ||c||, = 1. The general result then follows after
division by ||c||,. O

There is of course one more case when P(Xc,Z, > z) can be computed
explicitly, viz. when Z is normal with mean zero and variance 3, and thus has a
density f(z) = =~ '/%exp{ —22} which satisfies (1.1) with K = #~/2, ¢ = 0 and
P =q =2. Then y2X¢,Z,/||c| ¢ 1s standard normal, and it follows from the
estimate 1 — ®(2) ~ (27) 'z~ 'exp{ —2%/2} for the standard normal distribution
function @ that

P(XeZy > 2) ~ 277 V2( 2 jcfl,) ~le— /1",

For the case of a finite sum this agrees with (6.1) as it should since the normal
distribution is symmetric.

Finally, the conditions used in Theorem 1.1 and in this section are to some
extent used for technical reasons, in order to make proofs work. In particular this
is so for the smoothness restriction (2.4), and it seems likely it can be relaxed,
and even the existence of a density might not be crucial, but nevertheless it is
probably not possible to dispense completely with all smoothness restrictions.
The reader is referred to [7], Section 9 for a more detailed discussion of this and
of the conditions in general.

APPENDIX
Here we need more precise information on the exponent function (4.2), i.e., on
(A1) g(x) = —p~*((1 + 2)" ~ 1 - px}

than the estimate .
| 8(x) ~ —g,x%/2, asx -0,
for g, = p(p — 1)p~9, which was used in Lemma 4.1. The term in curly brackets
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in (A.1) is just the remainder term in a first-order Taylor expansion of (1 + x)?,
ie.,
X -—
8(x) = & (y - )1 +5)"" dy.

Hence for any x,,x, with —1 <x, <0 <x; and for x € [x,, x,] there is a
y* € [x,, x,] with

8(x) = &,(1+5*)" " [(y-x) de

=g,(1 + y*)P "} (—x2/2).

Hence, for A = 27 g,min{(1 + ¥)?~?% x, < y < x,}, we have that A > 0 and
that

(A.2) g(x) < —Ax?, forx,<x <x,.
Further, it is seen at once from (A.1) that if x, is chosen sufficiently large, then
(A.3) g(x) < —Ax, forx, <=x.

Finally it follows readily from a second-order Taylor expansion that there is a
B > 0 with

(A4) |g(x) + g,2%/2| < Blx|?, forxy<x <ax,.

LEMMA A.l. Suppose f satisfies (1.1), (2.1) and (2.4) and let f, be as in (4.1).
Let —-1<xy<—-1/p and 1 <x, be such that (A.2)-(A4) hold, and put
U, = x02,/0,, Uy = X,2,/05, With 2,, o, given by (3.8). Then there are constants
hy, C, D > 0 such that

fh,(z) Ce_'z's 2 E [lhs uh];
A. <
(4.5) f+(0) = {C(|z| + 1)e—Dz‘*” PAS [l,,, uh],
and

fh(z) Ce_lz" zZ €& [lh’ uh]:
(4.6) f4(0) = {C(e‘l’z2 +e ), ze[l,,u],
for all h > h,,.

ProoF. It is seen from (2.1) and (4.1) that f,(4+ o0) = 0 for 4 > ¢, and hence
(A.6) follows readily from (A.5) by integration, and we only have to show that
(A.5) is valid. Let y and C > 0 be generic constants, whose values may change
from one appearance to another. It follows by differentiating (4.1) that

££(2)/£,(0) = (ePCmn+an /( (z,)eh))

X {ho,f(z0y, + 25) + 05 f (20, + 2,,)},

(A.7)
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and for z > 0, using (2.3) and (4.3), this can be written as

(A8) £1(2)/fx(0) = (D(z0, + 2,)/(D(2}))) e 8n/20

Xoh{h - p(z0, + 2,)" "' + D'(z0,, + 2,,) /D(z20,, + zh)}.

We first consider the interval z < [,. Since pz?~'/h = 1, by (3.8), we have
that x < — |x,|p2z2~"/h, for x < x, (< 0), and thus also

x+27"/h < (1= 1/(plxol))x
< Dx,
with D > 0. Inserting x = 20, /2, < x,, this gives that
| zhoy, + 2}, < Dzhe,, forz <1,.
It then follows from (1.1) and (2.1) that

ehzontzg, f (20, + 2,,)

i(2,)e" < ChYe*hon*#h| f/(zo), + z,) |
h

< ChYeP?t| f '(zay, + 2,) |
< ChyeDzha,,e—c(zo,,+z,,)

= ChYe™ cz;.ez(Dha,,— cop— 1)e_|2‘
= O(e ™),

since h%exp{—cz,} — 0, and 2(Dho, — co;, — 1) < O for large h and 2 < [, < 0.
Since (2.1) implies that also f(2) < ce™ %, for z < 0, similar considerations for
the first part of (A.7) lead to the same conclusion, and hence (A.5) holds for
z<1,.

Next, for the central interval [, < z < u;, we have to be more careful. To
estimate the first part of (A.8), we use (2.3), (A.2), (3.8) and that ¢,/z, =
h=92g;1/% by (3.8), in the first step, then Taylor’s formula for the second, and
again (3.8) for the last step,

D(zo, + 2 ' _
_(F(";h_)_’ilehqgao,./zh)oh{h - p(zo, + 2,)° 1}
(A.9) < Ce“‘zz/gzahhll — (20,/2), + l)f_ll

< Ce™4%" /826, h|zo, /2,

< Ce™47°/81z|,

Similarly, for the second part of (A.8), using the same arguments as in the first
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step above, together with (2.4) we obtain that

D(z05 + 25) eH8zon/2)g
h
D(zy)

D'(zoh + zh)
D(zo, + z,)

(A.10) .
< Ce™4% /&g, /(z0, + 2;)
< Co,2; (xp + 1) le 427722,

Since 0,z; ! — 0, it follows from (A.9) and (A.10) that (A.5) holds for [, < z < u,,.
Finally, by the same arguments, but now using (A.3) instead of (A.2), i.e,, the
estimate g(z0,/2,) < —Az0,/z,, which is valid for z > u,, we obtain that

f4(0)

< Chye—Ah"o,,z;‘z

= ChYe #(Ah%0425' ~1)p— 2|
= o),
for z > u,, since then
2(Ah%,z2; - 1) = x,(Ah? - 0} '2,) = x,( AR? — h9/%g}?).
This concludes the proof. O
ProoOF OF (4.11). Let x,, x, be as in Lemma A.1 and again write [, = x(2,/0,,
u, = x,2,/0,. First, using the upper bound in (A.6) and that f,(0) » 1/ V2# by
(4.4), we have that

|B(Z, - 2,)/a| =| [41.2) &|

(a11) = [et o) | + Ofute+ o)
lS

= /""zfs(z)dzl + 0(s~v%),
lS
by the definition of [, and u,, since
(A.12) 2,/0, = s9/%g}/2.
Next, it follows from (A.12) and (A .4) that for I, < z < u,,
|s%(20,/2,) + 2%/2| = s°|g(20,/2,) + ga(20,/2,)/2]
< Bg;%?s9/%z3,
Hence, by (4.3), for s7 9223 < 1, '
f(2) = f,(0)e="/*D(o,2 + 2,)/D(2,)

= fs(z)|1 — exp{ —(s%(z0,/2,) + 22/2)}|
= f,(2)z]°0(s %),
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and, using (A.6) and (4.4) to obtain dominated convergence of the last integral,
Jo 2y de = [ 21,0 D(o,z + 2)D(z,) " de
)

_g9/8

W)~ o) [ 2(2) e
= 0(s~9?).
Since £,(0) is bounded, it follows readily from (A.6) that
[ A2 dz = (5=,
and since D(o,2 + z,)/D(z,) is bounded for /, < z < u,, also
js ::szfs(O)e'zz/zD(osz +2,)D(2,) " dz = O(s~92).

Of course, the same estimates hold for the integrals over (I,, —s9%/¢], and hence,
by (A.13)

(A.14) ‘ fl “of(2) dz — fl “2f,(0)e~*/2D(o,2 + zs)D(zs)_ldz‘ = 0(s~92).
Further, using first the mean value theorem and then (2.3), (2.4) and (A.12) we
have for z € (u,, /,] and for some z* € (u,, [,] that
|D(z0, + 2,) — D(2,)| =|20,D"(2%, + z,)|
D'(z*q, + 2,)
D(z*0, + z,)
= 1210(0,2;'D(z,))
= 1210(s~2D(2,)),
uniformly for z in the prescribed range. Hence, since f,(0) - 1/ /2x,

[ oA @) D0,z + 2)D(2) " de — [“of,(0)e 7 dz‘

D(z*o, + 2,)

D) Y

= |2lo,

(A.15) = O(s"’/z)fs(O)fzze":f/2 dz

= O(S_Q/z).
Since [ze~?*/2 dz = 0, it is trivial to see that

[0
L

and it hence follows from (A.11), (A.14) and (A.15) that
|E(Z, - z,)/0,| = O(s~9?),

= O(S-q/2)

i.e., (4.11) holds. O



TAILS OF WEIGHTED SUMS 747

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[2] CRAMER, H. (1938). Sur un noveau théoréme-limite de la theorie de probabilités. Actualités
Scientifiques, No. 736 (Collogue consacré a la theorie des probabilitiés, 3) 5-23.

[3] Davis, R. and RESNICK, S. L. (1985). Limit theory for moving averages of random variables with
regularly varying tail probabilities. Ann. Probab. 13 179-195.

[4] EssCHER, F. (1932). On the probability function in the collective theory of risk. Scand. Actuar.
J. 15 175-195.

[5] FELLER, W. (1969). Limit theorems for probabilities of large deviations. Z. Wahrsch. verw.
Gebiete 14 1-20.

[6] RootzEN, H. (1978). Extremes of moving averages of stable processes. Ann. Probab. 6 847-869.

[7] RoorzEN, H. (1986). Extreme value theory for moving averages. Ann. Probab. 14 612—652.

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

5, UNIVERSITETSPARKEN

DK-2100 COPENHAGEN @

DENMARK



