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RECURRENCE AND INVARIANT MEASURES FOR
DEGENERATE DIFFUSIONS

By WoLFGANG KLIEMANN

Towa State University

For a second-order (hypoelliptic) operator &= A, + ;L A; on a d- A
dimensional manifold M, let x, be the diffusion governed by &/ and (%) its
associated deterministic control system. We investigate the relations between
transience, recurrence and (finite) invariant measures for x, using the control
theoretic decomposition of M? with respect to @(¢). On the invariant control
sets for p(¢) we obtain the same classification for x, as is well known for the
nondegnerate case, while outside these sets the diffusion x, is transient.

1. Introduction. Degenerate elliptic operators of second order and their
associated diffusion processes have been studied from various points of view, see,
e.g., [16] or [26]. In this paper their qualitative behavior, such as transience,
(positive) recurrence, existence of invariant measures is classified.

For nondegenerate diffusions this topic was investigated, e.g., in [4], [6] and
[15]; some results for strong Feller processes are obtained in [2], [18] and [23]. On
the other hand, Azéma, Kaplan-Duflo and Revuz in [2] and [3] and Getoor in
[13] considered Hunt processes with their fine topology; see [19] for a survey.
This paper intends to fill the gap between these approaches: We study Feller
diffusions, where the recurrence notions are with respect to the given topology of
a manifold.

This is motivated, e.g., by the study of stochastic systems of the form
% = f(x,£), where the process ¢ is governed by some stochastic differential
equation. So the pair (x, §) is given, e.g., by

x f(x,¢) 0
%) ( a(t) )d” (A(&)) W
with suitable initial conditions, giving the pair (x, £) as a continuous Feller
process, which is not strong Feller in general.

In [1] we introduced weak recurrence notions to take into account the
degeneracy of such systems. Here we introduce more smoothness in assuming
that the coefficients are C*® on a C*®. manifold. It turns out that the (classical)
transience and recurrence notions are sufficient in this case to characterize the
qualitative behavior.

We consider diffusion processes whose differential generator is given in
Hoérmander form, i.e.,

i=1

(1°1) dx, = Ao(xz) dt + E Ai(xt) o dW,,
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on a d-dimensional C* manifold M? with C* vector fields A,..., 4,,, “°”
denoting the symmetric stochastic integral. Then x, is a continuous Feller
process with generator

m
(1-2) M=Ao+%ZA§$

i=1
compare, e.g., [17], Chapter V, for the setup. Denote by ¥= Z«{A,,..., A,}
the Lie algebra generated by A,,..., A,, and by %, the ideal in # generated by
A,,..., A, In order to use geometric control theory we will assume that the
distribution A, defined by % has the maximal integral manifold property, see
[30], which holds, e.g., if £ is locally finitely generated (in particular if every-
thing is analytic) or dim A ,(x) = const. for all x € M. Thus M splits into
maximal integral manifolds I, of £. In view of the support theorems (cf. [17],
[21], [27] and [28]) we have for the induced probability measures P, on C(M)
that supp P, is contained in the closure of the continuous paths on I, if x € I,.
Hence without loss of generality we can view I, as the new state space of the
diffusion process (1.1). So we assume throughout this paper

(H) dimAg(x) =d, forall x € MY

And since we do not deal with the question of explosion of x,, all vector fields in
& are assumed to be complete, i.e., the systems group is defined for all ¢ € R.
While x, is always a Feller diffusion, it is strongly Feller if and only if

J) dimAg =d, forall x € M?,

cf. [16]. Hence if dim A ;,(x) = d — 1 for some x € M, we have to deal with the
situation mentioned in the beginning, since then x, is merely Feller.

In order to characterize the transient and recurrent points of (1.1) precisely
for Feller or strong Feller diffusions, we associate to (1.1) a deterministic control
system

(1.3) o(2) = A(p(1)) + gui(t)A,-(qo(t»,

where u is taken from the set of admissible controls %, the piecewise continuous
functions with values in R™. Let us denote by ¢(¢, x, u) the solution of (1.3) at
time ¢ with initial value x under the control action u. Then the positive orbit of
X €M at time t is defined as 0*(x,t) = {y, there exists u € # such that
¥y =o(t,x,u)} and 0*(x) =U,, (0" (x, t). In terms of control systems, condition
(H) means accessibility, i.e., int 0*(x) # @ for all x € M, while (J) means strong
accessibility, i.e., int 0*(s, t) # @ for all ¢ > 0. Surprisingly enough manifolds
on which (H) holds for some .7, but not (J), have some global geometric
properties; e.g., in the analytic case, if the universal covering space of M is
compact, then (H) implies (J), compare [7] for a discussion of related results.
To state the main results of this paper, we need the notion of invariant
control sets. To this end, let A € M be such that for all x, y € A we have
y € 0*(x). For any such A there exists a unique maximal set B D A with this
property, see [1]. Those sets are called control sets for (1.3). [Notice that always
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x € 0*(x), but we include as control sets only those one point sets, which are
steady states, i.e,, Ay(x) = A,(x) = 0.]

DEFINITION 1.1. A set B C M is called invariant for (1.3) if ¢*(x) C B for
all x € B. A control set C C M is invariant, if 0*(x)= C for all x € C.

Now we can summarize our main results as follows:
Any x € M not lying in some invariant control set for (1.3) is transient for
(1.1) and on invariant control sets we have the following diagram:

not transient

Theorem 3.2

recurrent »existence of a o-finite invariant measure
4 . Proposition 4.1 1

Lemma 4.2

- existence of an inva}'iant probability
of. [15]

existence of a stati(;nary solution

positive recurrent «
Theorem 4.1

Counterexamples concerning the missing implications are furnished by the Wiener
process in R2 or R3.

This picture is exactly the same as for nondegenerate diffusions. Notice that
in the nondegenerate case, where dim A 2(x) =d for all x € M with &, =
L (A,,..., A,), the whole manifold M is the invariant control set for (1.3).

We first study in Section 2 some properties of invariant control sets from the
point of view of geometric control theory, making heavy use of the hypoelliptic-
ity condition (H). Our method then uses, as is often done in recurrence studies,
embedded Markov chains. But as our processes are not strongly controllable (cf.,
e.g., [22]), we have to pay attention to the time evolution of the diffusion, i.e., we
give estimates on upper and lower bounds for exit and entrance times. For the
uniform behavior of x, on invariant control sets continuity properties of exces-
sive function are needed. In Section 3, we discuss the transience—recurrence
dichotomy and in Section 4, the relations between (positive) recurrence and
invariant measures are shown.

Beforehand we fix some notation:

P, diffusion measure of x, with initial value x € M;
E, corresponding expectation;

P(t, x, -) transition probability;

T, associated semigroup;

U(x,V) = [P(t, x,V)dt for V'a Borel set in M;
oy first entrance time of a set U;

Ty first exit time;

0, shift operator in the space of trajectories.
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For a subset U ¢ M we use
U, U¢, 3U to denote the closure, the complement, and the boundary of U.

Since the qualitative theory for one-dimensional strong Markov processes is
completely known, cf. [14], we restrict ourselves to the case d > 2.

2. Properties of control sets. The geometric theory for nonlinear control
systems (see, e.g., [8] or [29]) is concerned with accessibility and controllability
problems for systems of the form

21) o(2) = Ao(p) + };A,-(qo)ui(w

on manifolds M¢ We assume all data to be C* and suppose (H) to hold true.
Then we have the following results for invariant control vets of (2.1):

LEMMA 2.1. Let C C M be an invariant control set for (2.1). Then

(i) C is closed in M;

(ii) int,,C + @;

(iii) C is C-invariant, i.e., for all x € C, 0% (x) C C;

(iv) 0*(x) = int C for all x € int C;

(v) C is path connected and two invariant control sets C,,C, are either
identical or d(C,, C,) >0, where d(A, B) =inf,., ,cp{e(x, )}, 0 a
Riemannian metric on M,

(vi) there are at most countably many invariant control sets in M.

PRrROOF. (i) C invariant means 0 (x)c C for all x € C. Let y € C. Then
first of all 0*(y)c C because: if there exist £, > 0 and u, € % such that
Yo = P(to, ¥ Ug) & C, then there is an open neighborhood U(y,) with U(y,) N
C = & and hence an open neighborhood U( y) such that @(t,, 2, u,) € U(y,) for
all z€ U(y) and C would not be invariant. Now for all y € C by (H),
int 0*(y) # @ and hence there exists £ € int @"(y) N C. On the other hand,
0" (%)= C and thus y € C.

(ii) Since C is invariant int C D int0*(x)+ & for all x € C and by (i)
Cc=_C.

(iii) For all x € C we have 0*(x)c C = C.

(iv) First note that for all x € C, 0*(x)= C by invariance and control set
property and thus int ¢*(x) = int @*(x) = int C by [22], Proposition 4.2. To see
that 0*(x) c int C for x € int C we use coordinates and the characterization of
dC in [21], page 42: Each A,, i = 1,..., m, is tangent to dC and A, is in the
inner direction. If A, is tangential at y € dC, then for each exterior normal
vector » in x,, Ay(x,)and » are orthogonal. Hence there exists an open ball, B,
centered at x, with x, € dB(x,) such that all A;, i =0,..., m, are tangent to B
at x, and LA (A;, i=0,...,m)(x,) <d.So A, is strictly in the inner direction
for all x € d4C.
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(v) C is path connected by (iv). Let y € C; N C,, then by (ii) there exist
ty>0, ug€ %, x €int C,, such that x = @(¢,, ¥, u,), hence by continuous
dependence on initial conditions there exist £ € int C, with (%, £, u,) € int C,,
which is a contradiction to the maximality of control sets. The last assertion
follows from (i).

(vi) Since M has a countable dense subset, there are at most countably many
invariant control sets by (ii). O

If M is compact, we have furthermore:

LEMMA 2.2. Let M be compact. Then
(i) there exists at least one invariant control set;
(ii) there exist at most finitely many invariant control sets.

PROOF. (i) We show that for each x, € M there is an invariant control set
C,, € 0%(x,): for x, € M consider the collection x = (07 (x), x € 0% (x,)} #
@. All sets in x are invariant, x satisfies the assumption in Zorn’s lemma w.r.t.
set theoretic inclusion “ C .” Thus there is a minimal element C, = 0*(x,) for
some x; € 0% (x,). C,, is invariant and 0¥ (x)= C,, for all x € C, because C,
is minimal, hence Cx0 1s an invariant control set.

(ii) Assume that {C,, i € N} is a collection of disjoint invariant control sets in
M. Choose x; € int C; and denote by x the limit of a subsequence x,. Let
y € intC, defined in (i), then there exist ¢, u, such that y = @(¢,, x, u,) by
Lemma 2.1. For an open neighborhood U(y) C int C, there exists an open
neighborhood V(x) such that ¢(t,, 2, u,) € U(y) for all z € V(x). Hence for
some N € N we have C, = C, for all n > N by Lemma 2.1. O

Noninvariant control sets need not have a nonvoid interior, even if they are
compact:

ExaMpLE 2.1. Consider in R% ~ {0} the control system

x(t)) _ ( —u? 1)(x(t))

(¢) -1 0/\x(¢)

Its eigenvalues are A, , = —u?/2 + (ju* — 1)/%, hence for u =0 the system
moves on circles centered at 0, so any of these circles is contained in a control set.

For u # 0, Re A <0, hence the circles are the control sets, but they have void
interior and none of them is C-invariant.

AIn view of Lemma 2.1 an invariant control set can serve as a new state space
of the system (2.1) with lifetime oo. If a trajectory leaves a control set it will
never hit it again, so for noninvariant control sets it is sufficient to consider the
trajectories until their first exit from C, which amounts to a system with finite
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explosion time:

LEMMA 2.3. (i) Let D be a noninvariant control set, x € D. Then for all
y€ 0 (x)~ Dwe have 0F(y) ND = 2.

(ii) Let x € M? be in no control set. Then for all U(x) there exists a V(x)
such that for all y € 0 (x)~ U(x) we have 0" (y) N V(x) = .

PrOOF. (i) By contraposition. Assume there is z € 0*(y) N D, then for any
open neighborhood U(x) there exists an open neighborhood V(z) such that
0*(3) N U(x) + @ for all £ € V(2) since z is in a control set by continuous
dependence of the solutions of (2.1) on initial conditions. On the other hand,
z € 0*(y), i.e., there exists Z € 0*(y) N V(2) and hence x € 0*(y). We also
have y € 0*(x) which would entail y € D by the maximality of control sets.

(ii) is proven just the same way. O

The proof of Lemma 2.3(i) in particular shows that for all x € D there is an
open neighborhood U(x) such that for all y € O*(x)~ D we have O*(y) N
Ukx) = 2.

In [20] Kolmogorov introduced the notion of essential states and essential
classes for Markov chains, and in [2] Azéma, Kaplan-Duflo and Revuz defined
these concepts for Markov processes with respect to the fine topology. In our
situation one obtains the following:

For any x € M we define E(x) = {y, P{oy,, < ©} > 0 for all open neigh-
borhoods U(y)}. Then x € M is called an essential state if for all y € E(x) we
have x € E(y). Notice that if x is essential, so are all y € E(x), and if x, y, 2
are essential and y € E(x), z € E(y), then z € E(x). Hence for two essential
states x and y, E(x) and E(y) are either identical or disjoint.

DEFINITION 2.1. E C M is an essential class for x,, defined by (1.1), if
E = E(x) for some essential state x € M.

In other words, E is an essential class, if for all x, y € E: y € E(x), and E is
maximal with respect to this property. The connection with control sets is given
by

PROPOSITION 2.1. The essential classes of (1.1) coincide with the invariant
control sets of (2.1).

Proor. If C is a control set of (2.1), then for all x € C and any open
neighborhood U( y) of ¥ € C, there exists £, > 0 such'that P(¢,, x, U(y)) > 0 by
the support theorem, hence P{oy,, < o} > 0. Furthermore, if C is invariant,
then it is C-invariant by Lemma 2.1, hence P{x, € C forall > 0} = 1and C is
an essential class.

To see the converse notice that Pfoy,, < oo} > 0 implies the existence
of an w € @ such that x(¢,, x, w) € U(y), where the trajectory x(-,x, w) is
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continuous. By the support theorem we infer the existence of an u € # with
@(t,, x,u) € U(y), showing that an essential class is a control set. Now
{3, P{oy(,, < o} > 0 for all U(y)} = 0*(x) implies that essential classes are
invariant control sets. O

3. Transience and recurrence. In this section we establish the
transience-recurrence dichotomy for diffusions on invariant control sets and
discuss the long-term behavior of diffusions starting in transient points. OQur
concepts are as follows:

DEFINITION 3.1. A point x € M is called recurrent for x,, if for all open
neighborhoods U(x) we have P{Z%,} = 1, where the event %, is defined by
Ry = {w, x,(w) € U for a sequence ¢, 1 c0}. A point x € M is transient for x,, if
there exists an open neighborhood V(x) such that PJ{J,} =1 with J, =
{w, there exists ¢, >0 and x(w) & V for all ¢ > ty}. The diffusion x, is
recurrent (or transient) on a set A € M if all x € A are recurrent (or transient).

In order to state a transience-recurrence dichotomy for points in M and a
uniform behavior on invariant control sets, we need some continuity property of
the “first hitting map” u: M — R, u(x) = P{oy < o}. In our context we have
the following result (compare [26]):

LEMMA 3.1. Let x, be a diffusion defined by (1.1) and assume (H) holds.
Then the excessive functions of x, are lower semicontinuous (lsc).

Proor. We first show that the operator U*f(x) = [{’e~*T,f(x)dt, a > 0,
maps bounded measurable functions f into continuous ones: By the proof of [6],
Theorem 6.1, for each a > 0 there exists a Green’s function g (x, y) such that
Usf(x) = [g(x, ¥)f(y)dy for all x € RY, f <€ B(R?), where g is nonnegative
and C* except on the diagonal set {(x, x), x € R¢). For these points we force g,
to be Isc by defining g,(x, x) = lim,_,, ,_, .8/, 2). It follows that U°f(x) is
Isc, if f is nonnegative. In the same way for any ¢ > |f| we have that U%(c — f )(x)
is Isc. Now c/a=U%= U%(x) + U%c - f)x) proves that U%(x) and
U“*(e — f)(x) are continuous.

Now if f is excessive for x,, then aU*f < f and aU*f 1 f as a1 0. Using the
above result we see that f is Isc as the monotone limit of Isc functions. O

Using Lemma 3.1 and the arguments in [2] we have the following dichotomy
for points:

PROPOSITION 3.1. Let x, be defined by (1.1), then each point in M is either

transient or recurrent. Furthermore,

x is recurrent iff [P(t,x,U) dt = oo, for all open neighborhoods U of x;
x is transient iff (P(t,x,V) dt < o, for some open neighborhood V of x.
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The connection with the notions in [1] is:

COROLLARY 3.1. For diffusions as in Proposition 3.1 we have

(i) recurrence and “strong recurrence” are equivalent;
(ii) transience and “weak transience” are equivalent.

The proof just exploits the fact that strongly recurrent points cannot be
transient, hence are recurrent by Proposition 3.1.

Our next goal is to show the equivalence of difference notions of recurrence (as
compiled, e.g., in [5]) for degenerate diffusions on invariant control sets. We
prepare some lemmas:

LEMMA 3.2. Letx, y € M such thaty € 0*(x). Then P{oy,,, < o0} > 0 for
all open neighborhoods U( y). Furthermore, let C be a control set and x, y € C.
Denote oy(ty) = inf(t > t,, x, € U}, then P{oy () < o} > 0 for all t;, > 0.

ProoF. The first assertion follows directly from the support theorem. The
second one exploits the fact for x, y € C, x # y, and for any £, > 0 there exists a
control u, on [0, t] for some ¢ > t, such that ¢(¢, x, u,) € U(y). O

LEmMA 3.3. Let C be an invariant control set for (2.1) on M, U c C an open
set with compact closure U C int C. Then there exist t, > 0, a, > 0, such that
sup, cgP{1y > to} <oy <1

ProOF. For all x € U there exists ¢, > 0 such that P{t;, > t,} <p,<1by
Lemma 3.2. Now Lemma 5.4 in [10] shows that for all x € U there exists an
open neighborhood U(x) such that P{r, > ¢t,} <p, <1 for all z € U(x). The
assertion follows from the compactness of U. O

LEmMA 3.4. Let C and U be as in Lemma 3.3. Then sup, ¢ y E. 7, < .

Proor. Applying Lemma 4.3 in [10] we see the above lemma yields
Er,<t,/(1 —a,) < ooforall x € M. O

I view of Lemma 3.2 the statements of Lemmas 3.3 and 3.4 remain valid for
all 7,(f) = inf{¢t >, x, & U}.

LEMMA 3.5. Let C and U be as in Lemma 3.3. Then there exists a closed set
FcUandat, >0,a >0, such that inf, c pP{1, > t,} > & > 0.

Proor. Since for U, c U; we have 7; < 7, we may use local charts. Let
x,€ U, U(x) a coordinate neighborhood of x in U, with image V ¢ R? where x is
mapped onto 0. Then there exists an open ball B(0, r) C V. Define ¥ = B(0, r/4)
and W= {x, r/2 < |x| <3r/4). For each z € F there exists u,,t, such
that |@(¢,, 2, u,)| = 2r/3, hence an open neighborhood V{(z) such that
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o(t,, y,u,) € Wiorall y € V(2). Thus Pz, ,, > t,} > a, > 0. Now compact-
ness of F completes the proof. O

LEMMA 3.6. Let C and U be as in Lemma 3.3, K C C compact. Then there
exist t, > 0, ay > 0, such that inf, . g P{oy; < ty} > a; > 0.

ProOF. By Lemma 3.2 we have for all x € K: There exists ¢,, a, such that
PJo, < t,} > a,. Again using continuous dependence, we see that there exists an
open neighborhood U(x) such that Pfo, <1t,} > a, for all z € U(x) and
compactness of K finishes the proof. O

With these preparations we are able to prove the equivalence of certain
notions of recurrent diffusions on invariant control sets:

THEOREM 3.1. Let x, be a diffusion on M, defined by (1.1) and C < M an
invariant control set. Then the following statements are equivalent:

(i) x, is recurrent on C;
(ii) P{%#y} =1 for all x € C, all open sets U  C;
(iii) P{x, € U for some t > 0} =1 for all x € C, all open sets U C C;
(iv) there exists a compact set K C C such that P{x, € K for somet> 0} =1
for all x € C.

ProoF. (i) = (ii) Fix x € M, y € 0"(x), and let U(y) denote an open
neighborhood of y, denote u(x) = P{oy,, < c0}. By Lemma 3.2 u(x) > a >0
for some @ € R. Now V = {z, u(z) > a/2} is open by Lemma 3.1 and P{.7} = 0
because of the recurrence of x. Hence limsup, _, , u(x,(w)) > a/2 P,-a.s. and thus
P, x{yU } =0.

(ii) = (iii) and (iii) = (iv) are obvious.

(iv) = (iii) Given the open set U C C choose B C U open and bounded and
U, c C such that B U K c U,. Consider the following embedded chain: Choose
ty, &y as in Lemma 3.6 with inf, ¢ x P{o5 < t;} > a, and define

n, = inf{¢, x, € K},
inf{t >, + ¢t,, x, € IU,},

N2

7’2‘ = inf{t > 1’2’:_1 + to, xt (] aUl},
Ngiv1 = inf{t > ny;, x, € K}.

By the strong Markov property and Lemma 3.4 the n; are as. finite. Define
A; = {w, x (w) € B for some t € [ny;_y,My;)} for all i € N. Then we have
P{A,} = P{x, € B for some t € [n;,1,)} > a, for all x € C. Using again the
strong Markov property and setting * = 93 + 7, we obtain

P{Afn A3} = P{A{ N 6,A])

= LCP"(*){AS P(dw) < (1 — ap)?, forallx € C.
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Thus by induction P{N"_,A{} < (1 — a,)" and hence
Pf{x,€ Ufornot> 0} < P{x,€ Bfornot> 0}

< lim Px{ N Af} = 0.

n— oo i=1

(iii) = (ii) Let U c C be open, B C U an open, bounded set with B ¢ U. For
x € C choose an open neighborhood U(x) such that U(x) N U = &.[Forx € U
(ii) is trivial.] Choose £y, @, as in Lemma 3.6 with inf, ¢ 5., P,{05 < t,} > aq.
Consider again an embedded chain

n, = inf{¢ > 0, x, € dU(x)},

Ng; = Inf{t > my,_, + ¢y, x, € IB},
Ngir1 = inf{¢ > my;, x, € U(x)}.
Again the 7; are a.s. finite and we have lim; , ,n,; = co because otherwise the
sequences (x, ) and (x, ) have a common limit, which is impossible since
U(x)NnB=g.
(i) = (i) is obvious. O

To show the uniform behavior of x, on invariant control sets, we again
premise a lemma:

LEMMA 3.7. Let C be an invariant control set for (2.1) and x € C transient.
Then there exists an open neighborhood U(x) such that all z € U(x) are
transient.

ProoF. x € C is transient iff there exists an open neighborhood V(x) such
that [P(t,x,V)dt < co. Let F C V(x) be compact with int ¥ # @ and denote
f(2) = P(¢, z, F). Then limsup, ,, [f(y)dt < [limsup,_, . f(y)dt < [f(x)dt <
o0, i.e., there exists an open neighborhood W(x) with [f(z)dt < o for all
2z € W(x). Define U(x) = int(F NV(x)), then [P(¢,2,V)dt< oo for all z €
U(x) and the z’s are transient. O

THEOREM 3.2. Let C be an invariant control set for (2.1). Then either all
points in C are recurrent, or all points in C are transient.

ProoOF. Let x € C be transient, then there exists a closed, bounded neigh-
borhood F(x) with int F(x) # @ such that U(z,V) < o for all z € F, and
F c V, an open set by Lemma 3.7. Let y € C, then’

U(», F) = By E, ["1:(x) dt]

< E(U(x,,,V)) < U(x,V) + e < o0,
and hence for all y € C we have U(y,int F') < oo. If y € C is recurrent, then by
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the proof of (i) = (ii) in Theorem 3.1 P{%y,} = 1 for all open neighborhoods
of x. This implies U(y, U(x)) = co by the lemma in [2], page 196. For U(x) =
int F we now arrive at a contradiction, and Proposition 3.1 finishes the proof. O

So far we established the recurrence—transience dichotomy on invariant
control sets, which generalizes the known results for nondegenerate diffusions,
since for these the associated control system is always completely controllable on
M, i.e., M is the unique invariant control set. For degenerate diffusions all points
outside invariant control systems are transient:

ProPosITION 3.2. If either

(i) x € M is in no control set for (2.1) or
(ii) x € D, a noninvariant control set,

then x is transient.

Proor. (i) If x is in no control set, then x is no absorbing point for x,, hence
there exists an open neighborhood U(x) such that E, 7y, < c0. Now use Lemma
2.3(ii) and the support theorem.

(ii) By assumption there exists a y € D such that P{r5< 00} =a>0.
Hence there is an open neighborhood U( y) such that P{r5 < oo} > a/2 for all
z € U(y). Now D is a control set, so Pfoy,, < oo} > B> 0 for each fixed
x € D. Hence for all x € D there exists y > 0 with P{rp < o} >y. Now
Lemma 2.3(i) and the support theorem prove the assertion. O

We conclude this part by mentioning results on the long-term behavior of
diffusions starting in transient points:

PROPOSITION 3.3. Let x, be a diffusion defined by (1.1) and D C M the set of
all transient points of x,. Then for all compact sets K C D we have

() [7P(t,x,K)dt < 0, forallz <D,
0

(ii) tlim P(t,x,K)=0, forallx € D.
— 00

The proof is established the same way as Lemma 3.1 and its corollary in [18]
using Lemmas 3.1 and 3.4 and the techniques from Theorem 3.1.
For compact manifolds we have furthermore:

PROPOSITION 3.4. Denote F =UC,, C, the finitely many invariant control
sets of (2.1). Then P{op < 0} =1 for all x € M, M a compact manifold.
Furthermore, E, o < oo for all x € M.

Proor. Let K ¢ M ~ F be compact, then P{rx < o} = 1 by Proposition
3.3. Since F is compact and # @ by Lemma 2.2, for all controls u there exists
an & > 0 such that for all x in a e-neighborhood F, around F there is a ¢ with
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(¢, x, u) € int F. Now choose K such that dK C F,. Then the strong Markov
property and the support theorem imply that P{o; < oo} = 1forallx € M ~ F.
The last statement follows from compactness with an argument similar to the
one used for the proof of Lemmas 3.4 and 3.5. O

On noncompact manifolds transient diffusions may, of course, wander out to
00, even if M is an invariant control set and x, is nondegenerate, as the example
of the Wiener process in R?, d > 3, shows.

The long-term behavior of recurrent diffusions is investigated in the next part.

4. Recurrence and invariant measures. A measure g on M is called
invariant for x,, if p(A4) = [P(t, x, A) p(dx) for all ¢ > 0, all Borel sets A C M.
An invariant measure is extremal, if it cannot be decomposed into the sum of
two different invariant measures, up to constant multiples.

LEMMA 4.1. Let p be an extremal invariant probability measure for x,. Then
supp p = C for some invariant control set and p. is the unique invariant probabil-
ity on C.

PROOF. As in the proof of Proposition 3.2 one shows that suppp c C, C an
invariant control set. Now Lemma 2.1 and the support theorem imply supp p =
C=_C.

To see the uniqueness of an invariant probability on C observe that p has a
C®-density ¢ with respect to the Riemannian volume, satisfying «/*¢ =0,
where &/* is the adjoint operator of /. If there exists another invariant
probability » on C, then pu and » are mutually singular. Hence the density y of v
is zero on a dense set in C, hence zero on all of C. O

Note that any invariant probability admits a representation as a countable
convex combination of the extremal measures, concentrated on the invariant
control sets.

LEMMA 4.2. Let p be an (extremal) invariant probability on some invariant
control set C. Then all x € C are recurrent.

Proor. By Theorem III, 2.1 in [15] we have

1 .7
lim liminf — [ P(¢,x,US) dt =0,
Jim Ynint 7|, P8, %, 0)
p-a.s. for some exhausting sequence U, of C. Thus for some x, € C,
T, )
B, == | "P(t, x,,-)dt, T, 1 o,

T, 0
converges towards p, in particular,

1

lim inf —-fTP(t, x0,U) dt > n(U) > 0,
T Jo

T— oo
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for all open neighborhoods of U of x,. By Proposition 3.1 x, is recurrent and
thus all x € C are recurrent by Theorem 3.2. O

A partial converse of Lemma 4.2 is given by:

PROPOSITION 4.1. Let the diffusion x, defined by (1.1) be recurrent in the
control set C. Then x, admits a o-finite invariant measure in C.

ProoF. We use the following chain construction: Choose two open sets
U,, U; in C with compact closure such that U, c U,, U, € int C and denote
U, =T, dU, = I. Consider

= inf{¢, x, € I},
ny = inf{¢ >n,, x, € Ty},

Mg = inf{¢ > ny;_y, x, € T},
Ngi+1 = Inf{t > my;, x, € I},
Then x,  is a homogeneous Feller—Markov chain on a compact set T, (see

[12]) hence has an invariant probablhty fi. Using the setup in [12], we denote
= [ 4(x,) dt, the time spent in a set A during one cycle 7. We first show:

(4.1) sup E 7% < o0, for compact sets K c C.

x€T,

Denote by 7’ the time till reaching I';, #” the time to pass from I'| to I;; hence
n =1+ 7". Then

<(4.2) sup E.n’ < sup E,r; < o0, by Lemma 34.

x€T, xeC
On the other hand, if ,,.l{f) denotes the time spent in K until hitting T}, then

sup E, " < sup E, 7.
x€T, x€K

Define A, = {r > t} and let £, be such that P{A,} <a <1 for all y € K,
where ¢, and « exist by Lemma 3.3. Let o(¢) be the infimum of the solutions of
t+ ty= [§P1g(x,)ds. Then x,, € K and we have

‘Px{AZ(t+to)} = Rx{At+to n ao(t)At+to}

- / xz+z0{At+to}Rc(dw)

= xt+to{

t+tp

A, }P(dw)

< a?.
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Hence sup, ¢ x P{A,;+¢,)} < " and thus

(4.3) sup E;rf < (¢+¢,) ) na™' < co.

xeK n=1

(4.2) and (4.3) prove the estimate (4.1).
Now define p(A) = [r E,7* ji(dx) and the proof of Theorem 2.1 in [18] shows

that p is a o-finite invariant measure for x,. O

COROLLARY 4.1. The diffusion x, admits an invariant probability measure in
C if and only if x, is recurrent in C and [r E.n fi(dx) < oo, where 7 is defined in
the above proof.

For this result mimic the proof of Theorem 3.3 in [18] using Proposition 3.3,
Lemma 4.1 and Proposition 4.1.

The recurrence of x, alone does not imply the existence of an invariant
probability, even if the corresponding operator &/ is nondegenerate or the
control system is strongly controllable. Counterexamples are, e.g., the Wiener
process in R%, d < 2, which has the Lebesgue measure as an invariant measure.
On the linear system dx, = Ax,dt + BdW,, where (A, B) is a controllable pair
of matrices. Here the existence of an invariant probability is equivalent to A
being stable, while recurrence is equivalent to A being “of type I,” i.e., A has at
most one 1- or 2-dimensional eigenspace corresponding to an eigenvalue A with
Re A = 0, and all other eigenvalues have negative real part, see [9] and [11].
Remember also that the existence of a o-finite invariant measure does not imply
the recurrence of x,, as, e.g., the Wiener process in R d > 3, shows. But just as
for nondegenerate diffusions we have in our situation that positive recurrence
and the existence of an invariant probability are equivalent.

We call x, positive recurrent in C, if E,0;; < oo for all x € C, all open sets
UccC.

LEMMA 4.3. Consider the diffusion x, defined by (1.1) on an invariant control
set C. Assume E,oy < oo for all x € C, some bounded open set U, C C, such
that U, C int C. ThenExoU< oo for all open sets U C C, all x € C.

__Proor. It suffices to consider open sets Uc U,, U,c U, with Uc U,
U, € U, and U, C int C. We consider the following chain:

n, = inf{¢, x, € U, },

Ng; = inf{t >y, + &y, x, € UL},
Noi+1 = lnf{t > N2i» xl € an}

where we choose £, as in the proof of Theorem 3.1, (iv) = (iii) such that
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inf, c g, P,{oy < %} > a > 0. Then using this proof we have again

n
Px{ N Af} <(1-a)" withA;={x,€ Uforsomete [nzi_l,nzi)}.

Hence E UU < Ex’"l + El=1(1 - a) ?"2‘
We may assume that x € dU, and thus

sup Em, < sup Eoy(t,) + sup 7y < B < 0.
x€9U; x€dl, x€dly

Putting this together yields E,0; < ¢ + BZ2,i(1 — a)' < 00. O

The assumption of Lemma 4.3 can be verified, e.g., if x, has some boundedness
properties, we refer to [15], Chapter II1.7, [24], [25] and [31]. We now prepare a
lemma on the smoothness of E.o;, which is crucial for the following; compare
[18], Lemma 5.3.

LEMMA 4.4. Let x, be a diffusion defined by (1.1) and o= Ay + LI 1A? its
generator. Let U be an open set with compact closure U C int C in some
invariant control set. If Ep; < oo for a dense subset of C, then Eoy is C* in
c~U.

Proor. Let K, be an increasing sequence of compact sets exhausting C and
denote by 7, the first exit time from K, ~ U. Since x, is recurrent in C by
Theorems 3.1 and 3.2, we have 7, 1 oy, and lim E,1, = E 0. Now #E .7, 1 in
the distributional sense. For any ny €N, E,oy=E,1, + X2 ,(Em7., — E,1),
where all terms u; of the infinite sums are positive and fulﬁll KLu;=0. Hence by
Bony’s form of the Harnack inequality (see Theorem 7.1 in [6]), the series
converges uniformly in K, , since it converges on a dense subset by assumption.
Now for any C® test function ¢ with compact support, suppe C K, for
some n, and since for n —» oo we have E,1, = u, 1 u = E, 0y, one sees "that
fu,p dx = [updx. Thus in the distributional sense Lu=—-1inC~ U. As &
is assumed to be hypoelliptic, u is C® inC ~ U. O

THEOREM 4.1. The diffusion x, defined by (1.1) is positive recurrent in an
invariant control set C if and only if there exists a (unique) invariant probability
measure p for x, on C.

ProOF. (i) To show that there exists an invariant probability u means in the
light of Corollary 4.1: [ E.n i(dx) < 0. To see this use the setup of Proposition
41 and let U C U0 be an open set with U c U,. Then E,oy < E,oy for all x
and E,o; is C* in C ~ U by Lemma 4.4. Hence sup, < E:n < sup, er B, 7y, +
sup, cr,E,0y < o, giving us the “only if” part.

(ii) In a first step we show that there exists a bounded open set U C C such
that

(44) Eoy < o, pas.
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By Proposition 4.1 and Corollary 4.1 p is of the form
n ~
w(4) = [E( ["1a(x,) dt)(a),
T 0

for some open, bounded set U w1th boundary T'. Define B = {y, E oy = o} and
assume p(B) > 0. Then [-E,78 fi(dx) > 0, hence ji{x € U, P{n > o5} > 0} > 0,
since for all x € C P{n = o5} = 0 because U N B = @. On the other hand,

E.oy 2 E|1 ( (7,>uB)oU)

ZEx((oB+oU°0 1 )

og (n>o0p)

2 E (051 (15 05)) + Eu(1iy> oy Ex, (00))-
Now E, B(oU) = oo by the definition of B and by assumption {n > o} has
positive ji-measure. Hence there exists a subset I'” of I' such that G(I'") > 0 and
E.n = oo for all x € I”, which is a contradiction to [rE n fi(dx) < oo, thus (4.4)
is proved.

By Lemma 4.1 (4.2) is true for a dense subset of C and so by Lemma 4.4 for all
x € C. Now use Lemma 4.3 to conclude the “if” part of the theorem. O

(n>o0p)

Theorem 3.2, Proposition 4.1 and Theorem 4.1 now provide the diagram given
in the introduction. Counterexamples for the missing implications can be ob-
tained by considering the Wiener process in R2 or R?.

On compact manifolds all invariant control sets are compact, hence each of
those is the support of an extremal invariant probability measure.

For recurrent diffusions one obviously has a strong law of large numbers p-a.s.
The construction above even guarantees a law for all points in invariant control
sets: If x, is a recurrent diffusion on an invariant control set C with invariant
probability p, then for any f € LY(p) and all x € C

Px{ lim % [ de= [ (=) du} -1

This is Theorem 5.1 in [23]. Furthermore, if M is compact with invariant control
sets C,, a = 1,..., 1, define for x € M, P{o; < oo} = p,. By Proposition 3.4 we
have p, = 1 and if p, is the invariant probability on C,, then for all x € M,
B, = LDp,t, is an invariant probability on UC,. Now the above strong law of
large numbers for compact manifolds reads

. Llor
Q{T% ?fo f(x,) dt—fo(x)dpx} =1, forallx € M.

Acknowledgment. The author is very thankful for the comments of a
helpful referee, in particular for pointing out this elegant proof of Lemma 3.1.



706 W. KLIEMANN

REFERENCES

[1] ArNoLD, L. and KLIEMANN, W. (1983). Qualitative theory of stochastic systems. In Probabilis-
tic Analysis and Related Topics (A. T. Bharucha-Reid, ed.) 3 1-79. Academic, New York.

[2] AztMma, J., KAPLAN-DUFLO, M. and REvuz, D. (1966). Récurrence fine des processus de
Markov. Ann. Inst. H. Poincaré Sect. B 2 185-220.

[3] AzEMaA, J., KAPLAN-DUFLO, M. and REVUz, D. (1967). Mesure invariante sur les classes
récurrentes des processus de Markov. Z. Wahrsch. verw. Gebiete 8 157-181.

[4] AzENcorT, R. (1974). Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France
102 193-240. -

[6] BHATTACHARYA, R. N. (1978). Criteria for recurrence and existence of invariant measures for
multidimensional diffusions. Ann. Probab. 6 541-553. Correction in 8 1194-1195 (1980).

[6] BoNy, J.-M. (1969). Principe du maximum, inégalité de Harnack et unicité du probléme de
Cauchy pour les opérateurs elliptique dégénérés. Ann. Inst. Fourier (Grenoble) 19
277-304.

[7] BooruBy, W. M. (1977). Transversely complete e-foliations of codimension one and assessibil-
ity properties of non-linear systems. Proc. 1976 Ames Research Center (NASA) Con-
ference on Geometric Control Theory 361-385. Math. Sci. Press, Brookline, Mass.

[8] BROCKETT, R. W. (1973). Lie algebras and Lie groups in control theory. In Geometric Methods
in Systems Theory (D. Q. Mayne and R. W. Brockett, eds.) 43—82. Reidel, Dordrecht.

[9] Dym, H. (1966). Stationary measures for the flow of a linear differential equation driven by
white noise. Trans. Amer. Math. Soc. 123 130-164.

[10] DYNKIN, E. B. (1965). Markov Processes 1, 2. Springer, New York.

[11] EricksoN, R. V. (1971). Constant coefficient linear differential equations driven by white noise.
Ann. Math. Statist. 42 820-823.

[12] EzHov, I. I. and SHURENKOV, V. M. (1976). Ergodic theorems connected with the Markov
property of random processes. Theory Probab. Appl. 21 620-624.

[13] GETOOR, R. K. (1980). Transience and recurrence of Markov processes. Lecture Notes in Math.
784 397-409. Springer, New York.

[14] GiuMAN, 1. 1. and SKOROHOD, A. V. (1979). The Theory of Stochastic Processes 3. Springer,
New York.

[15] Has’miNskil, R. Z. (1980). Stochastic Stability of Differential Equations. Sijthoff and Noord-
hoff, Alphen aan den Rijn.

. [16] IcHIHARA, K. and KUNITA, H. (1974). A classification of the second order degenerate elliptic
operators and its probabilistic characterization. Z. Wahrsch. verw. Gebiete 30 235-254.
Correction in 39 81-84 (1977).

[17] IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.
North-Holland, Amsterdam.

[18] KHas’MINsKII, R. Z. (1960). Ergodic properties of recurrent diffusion processes and stabilization
of the solution to the Cauchy problem for parabolic equations. Theory Probab. Appl. 5
179-195.

[19] KLIEMANN, W. (1983). Transience, recurrence and invariant measures for diffusions. In Nonlin-
ear Stochastic Problems (R. S. Bucy and J. M. F. Moura, eds.) 437-454. Reidel,
Dordrecht.

[20] KoLMOGOROV, A. N. (1936). Anfangsgriinde der Theorie der Markoffschen Ketten mit un-
endlich vielen moglichen Zustinden. Mat. Sb. (N. S.) 607-610.

[21] Kunira, H. (1974). Diffusion processes and control systems. Course at the University of Paris
VI

[22] KuniTa, H. (1976). Supports of diffusion processes and controllability problems. In Proc. of the
International Symposium on Stochastic Differential Equations (K. Itd, ed.) 163-185. Kino
Kuniya Book-Store, Tokyo.

[23] MARUYAMA, G. and TANAKA, H. (1959). Ergodic property of N-dimensional recurrent Markov
processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 18 157-172.

[24] MIYAHARA, Y. (1972). Ultimate boundedness of the systems governed by stochastic differential
equations. Nagoya Math. J. 47 111-144,



DEGENERATE DIFFUSION PROCESSES 707

[25] MIYAHARA, Y. (1973). Invariant measures of ultimately bounded stochastic processes. Nagoya
Math. J. 49 149-153.

[26] ROYNETTE, B. (1975). Sur les processus de diffusion de dimension 2. Z. Wahrsch. verw. Gebiete
32 95-110.

[27] STROOCK, D. W. and VARADHAN, S. R. S. (1972). On the support of diffusion processes with
applications to the strong maximum principle. Proc. Sixth Berkeley Symp. Math. Statist.
Probab. 3 333—-359. Univ. California Press. .

[28] STROOCK, D. W. and VARADHAN, S. R. S. (1972). On degenerate elliptic—parabolic operators of
second order and their associated diffusions. Comm. Pure Appl. Math. 25 651-713.

[29] SussMaNN, H. J. and JURDJEVIC, V. (1972). Controllability of nonlinear systems. oJ. Differen-
tial Equations 12 95-116.

[30] SussManN, H. J. (1973). Orbits of families of vector fields and integrability of distributions.
Trans. Amer. Math. Soc. 180 171-188.

[31] WonHAM, W. M. (1966). Lyapunov criteria for weak stochastic stability. J. Differential
Equations 2 365-377.

DEPARTMENT OF MATHEMATICS
Iowa STATE UNIVERSITY
AMEs, Iowa 50011



