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BROWNIAN EXCURSIONS AND MINIMAL THINNESS. I

By KRrzyszTor BURDzZY
University of California, San Diego

Integral-type criteria for thinness and minimal thinness are given for a
class of sets. A Kolmogorov-type criterion for Brownian excursions is ob-
tained as a corollary.

Introduction. The relationship between Brownian motion and potential
theory has been studied for years and two recent books by Port and Stone (1978)
and Doob (1984) have been devoted exclusively to this subject. More recently the
excursion theory of Markov processes has been initiated by It6 (1972) and
generalized by Maisonneuve (1975) to excursions starting at a random point. It
has become clear that excursions are also closely connected with potential theory
and some work in this direction has been done, e.g., Rogers (1983). The present
paper will follow the path started in Burdzy (1986a) where the local properties of
Brownian excursions have been related to the boundary behavior of the Green
function. '

The present article is the first in a series of three articles. The first (i.e., the
present) one gives some criteria for minimal thinness and shows how to apply
them to study the local properties of Brownian excursions. The second article
[Burdzy (1986b)] is devoted to the boundary behavior of the Green function. The
third one [Burdzy (1986¢c)] presents applications of probability in general and
Brownian excursion laws in particular to the angular derivative problem. For
ease of reference there is a continuous numbering of sections, formulae and
theorems throughout all three articles of the series.

The methods used in the paper include Brownian motion and potential the-
ory [see Port and Stone (1978) and Doob (1984)] and excursion theory [see
Maisonneuve (1975) and Burdzy (1986a)].

The main results of Part I are:

(i) an estimate of capacity for a class of sets [Theorem 2.2, cf. Landkof

(1972), 11, Section 3.14, and Port and Stone (1978) Proposition 3.3.4];

(ii) an integral-type criterion for thinness for a class of sets (Theorems 2.3
and 2.4); :

(iii) a lemma relating minimal thinness and thinness in a special case (Theo-
rem 3.1);

(iv) an integral-type criterion for minimal thinness for a class of sets (Theo-
rem 3.2);

(v) a Kolmogorov-type criterion for Brownian excursions (Remark 3.2).

aReceived April 1985; revised August 1986.
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BROWNIAN EXCURSIONS 677

1. Brownian excursions. In order to keep this section short the reader is
referred to Doob (1984) for definitions of Brownian motion in a region D, Martin
boundary and topology, attainable Martin boundary points and related concepts.

The probability space Q@ will be the set of all paths w: (0, 00) - R™ U {8}
which are continuous on (0, R) and have a left limit at R if R < 0. The lifetime
R of a path w is defined as the time of the jump to the isolated trap & in
R™ U {8} (possibly R = o). :

The process X is the coordinate mapping, i.e.,

X,(w) = w(¢t), forall wand ¢.
Let
FP= No(X(s),0 <s<u)

u>t
and
F°=0(X(s),0 <s< ).

F, and F are the universal completions of F? and F° in F°.

The hitting time T, of an analytic set A C R" is defined as inf{t > 0:
X(t) € A} and T,_ = inf{t > 0: lim,_,,_X(s) € A} where inf & = 0.

Let D C R” n > 2, be a Greenian domain. Its Euclidean (minimal Martin)
boundary will be denoted dD(3¥D). It will be understood that the convergence
to a Euclidean (Martin) boundary point takes place in the Euclidean (Martin)
topology.

The distribution of the Brownian motion (Brownian motion in D) starting
from z € D will be denoted P? (Pj). Analogously, P* (P}) will be the distribu-
tion of Brownian motion (Brownian motion in D) with the initial distribution p.
“Brownian motion in D” will be abbreviated to BMj,. In the present setting
R =T,,_, Pjas. for every z € D.

DEFINITION 1.1. A o-finite measure H*, x € d¥D, on (Q,F) is called an
excursion law in D (or equivalently an excursion law from K, K = R”\ D) if

H*( lim X(t) #x) =0
>0+
and H* is strong Markov for BM, transition probabilities in the following sense.
For all everywhere positive F, stopping times 7', F9-measurable a and F°mea-
surable b

H*(a - b(8;)) = H*(a - P§7(b)),

where 6 is the usual shift operator.

“ There is no natural normalization of infinite measures, so “unique excursion
law” will mean “unique up to a multiplicative constant excursion law.” “Dis-
tinct” should be understood in the same spirit.
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DEFINITION 1.2. An excursion law H” is called standard if H*(Tp < o) < oo
for all compact sets B C D. An excursion law H* is called null if H*(Q \ {w;}) = 0,
where wy(t) = 6.

THEOREM 1.1. If x € dMD is attainable, then there exists a unique nonnull
standard excursion law H*.

REMARK 1.1. (i) The above result has been given in Burdzy (1986a) as
Theorem 4.1.

(ii) If D is a bounded Lipschitz domain, then the minimal Martin boundary
and topology coincide with the Euclidean boundary and topology [see Hunt and
Wheeden (1970)]. In such a case all boundary points are attainable by the results
of Cranston (1985). This can be extended to unbounded Lipschitz domains by the
last exit decomposition, i.e., even if D is unbounded, then every point z € 4D
corresponds to a unique attainable minimal Martin boundary point (but not vice
versa).

(iii) If n =2, ie, D is a plane domain and if D is bounded and simply
connected, then the minimal Martin boundary points are represented by the
prime ends [see Doob (1984), page 199, and Ohtsuka (1970), Section 3.2]. If a
prime end is accessible [see Ohtsuka (1970), page 253, for definition], then it is
attainable, as has been proved in Burdzy (1986d).

An element x € R” will be also denoted (x,, x,,..., x,) and the symbol 0 will
be used instead of (0,0,...,0). The Euclidean norm of x € R” will be denoted
|x|. A set A will be called regular for a measure P if P(T, +# 0) = 0.

THEOREM 1.2. Let D = {x, > 0} C R™ Then there exists a unique excursion
law H® in D.
) The H°-density of X(R — ) (wrt surface area measure) is proportional to
lx|™", x € dD.
A set A C D is regular for H® if and only if the set

df
Al = {x (S Rn+2: (Vx12 + x% + xg ’x4)°'-’xn+2) € A}

is regular for P° in R™*2,
See Theorems 3.3(iv) and 3.4 of Burdzy (1986a) for a proof of the above result.

2. Wiener’s test and its applications. Theorem 1.2 can be successfully
applied only if one has a usable test for regularity. The well-known Wiener’s test
(Theorem 2.1 below) is rather abstract. The rest of this section is devoted to
deriving more applicable forms of this test for special sets. Attention will be
focused on n-dimensional spaces, n > 4, due to a particularly simple form of the
results. Also, Theorem 1.2 requires a regularity criterion only for n > 4.

Iiet A CR”™ n > 4. Choose A\, 0 < A < 1, and define

A,={z€A: N+ <z| <M},  Ek>1.
Let C(B) denote the Newtonian capacity of a set B.
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THEOREM 2.1 (Wiener’s test). A set A is regular for P° if and only if

Y MM L C(A,) = w.
k=1

Various proofs of the above theorem may be found in Doob (1984), Landkof
(1972) and Port and Stone (1978).

The next theorem will be used to obtain special forms of Wiener’s test.

Fix an n > 4 and denote

df
L={xeR™ x;,=x,=2x3=0}.

The orthogonal projection on a k-dimensional hyperplane N, k2 < n — 1, will be
denoted projy. Let h: L > R be a nonnegative Lipschitz function with a
constant K, K < oo, i.e.,

|h(x) — h(y)|<K|x —y|, forallx,ye L.
Define

A= {x ER™ Jxl +xf+axf < h(projo)>.

Throughout this section “constants” c, ¢y, ¢;,... are strictly positive and finite
numbers which may depend on n and K only.

THEOREM 2.2. There exists a constant c such that
cf h(x) dx < C(4) < c—ljh(x)dx,
L L

where the integral is taken wrt surface area measure.

PrOOF. Suppose first that [;A(x)dx < oo and therefore 4 is bounded.
Assume also that 4 < 1.

Some more notation will be now introduced.

ai
B = proj, (A).

For each integer k, k > 1, let @}, QZ,... be the sequence of all sets of the form

k, ky,+1 kg ky+1 k, k,+1
{xEL:E;<x4<——2k—-,—2—k<x5<7,...,§;<xn< oF },
for some integers &4, k;, ..., k,,.

. A set E c R™ will be called a set of class 1 if there exists a set @{ such that
E = {x € A: proj x € Q{}

and h(x) > 27! for some x € @/. Call E, the union of all sets of class 1.
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Sets of class %, & > 2, will be defined inductively. _
A set E c R™ will be called a set of class k if there exists a set @;, such that

k-1 .
E= {x € A\ U E,,: proj,x € Q,’e}
m=1

and A(x) = 27* for some x € Qi. E, is the union of all sets of class %. |
Let A, A,,... be a sequence of all sets belonging to any class defined above.
The class of the set A, will be denoted x(%).

df
B, =proj A,, k>1.

There exists a constant c, such that each set A, is contained in an n-dimen-
sional cube with side length 2~X(¥)c,. By scaling, the capacity of a cube with side
a is c;a™ 2 [see Port and Stone (1978), page 60]. Therefore

C(Ay) <. (co- 2"‘(""))"_2 = ¢, - 27 X(RXn=2)

It follows easily from the definition of the class and the Lipschitz property of &
that for some constant c,

2.9 x(kXn-2) 5 f h(x)dx > ¢y - (27XW)"73. g=x(k)
(2.1) B,

= ¢y - 2 XRNR=D)
Thus
C(A,) < c2-c3'1f h(x) dx.
B,

It is easy to see that C(A,) = C(A,) for all k > 1 where A, is the closure of A,.
Since A(x) = 0 for almost all (wrt surface area measure) x € B\ UY_,B,, it
follows that

c(4) < ,?; C(d;) - ki C(4,)
< 1§102 : ca‘lfB h(x) dx

=c2-c3_1th(x)dx.

It remains to prove the first inequality of the theorem. Assume that A is
bounded. Let r, be the diameter of A and assume WLOG that 0 € A.
Define an order > among positive integers by declaring that j > k if
| x(J) > x(k)
or
x(j) =x(k) and j> k.
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Choose ¢, so small that for each & > 1 there is a sphere S = SJ(x*, ),
ry, = ¢4+ 27X® guch that
SPc A, dist(S, A\A4,) =2 c - 27X
and
dist(proj x*, A\ A4,) = ¢, - 27X®),
Such a choice is possible due to the Llpschltz property of h. For each k> 1 a
new sphere S, will be defined such that S, is concentric with S and has radius
cs - 27XB) ¢ < c,. The constant c; will be chosen later. Let S = UZ_,S,. If
o0

(2.2) Y P*(Tg, < o) < o,

k=1

then

P*(Tg < 0)
(2.3)

Px( U (1, < oo})

ZP"(TS <o) - Y P¥T, < o and Ts, < ).

>k

If S° = S%y, r) is a sphere and |x — y| > r, then

re- 2

e =y~

Suppose that |x| > 2r,. Since A C {|x| < r,}, then for each y € A
lx/2 < |x — y| < 2|x].

fu(7§)< dﬂ =

Therefore if |x| > 2r,, then

. 9-x(k))""2 . 9-x(h)""2
(cs ) (es )

(2.4) < P*(Tg, < ) <

(2lx)""? (I=1/2)"*
In view of (2.1)
cn—2
P¥T, < S — dx
(Ts, < ®) < (||/2)"”f h(z)
and
0 n—2
X 5 dx
,EIP (Ts, < ) < ————(lxl/z)n 123 f (x) dx < 0.

Thus (2.2) and therefore (2.3) are valid for |x| > 2r0.
Let dj, be the distance between S, and S;. For every x € S*

(cs- g-x())""?

(dy)"™*

PH(Ty, < o) <
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The strong Markov property applied at Ts _and (2.4) imply that for |x| > 27,
P(Ty, < oo and inf{¢ > Tg,: X(t) € §;} < )

e - 2 XY (o L 9-x(D)* 72
(cs )" (e )

n—2 n—2
(Ix1/2) (d)
2~ x(k)(n=2)9 —x(j}(n—2)
=Cg* cg(n—Z) n—-2Jn—2
|| djk

It follows that for |x| > 2r,
P*(Ts, < w0 and Ty < o) < P¥(Ts, < 0 and inf{¢ > Ty,: X(2) € S} < )
+P*(Ty, < o0 and inf{t > Ty: X(¢) € 8} < o)

92 ~x(k)(n=2)9 —x(J)(n—2)

el

<2.cgr cAnD

By (2.1)

9-X(UXn-2) < CsTlth(y) dy < ca—lfB2—x(j)+1 dy.
J 7

It follows from the definition of ¢, that for some c; and all j > &

ik
dj;, > ¢, sup [proj x" — y|.

Then
2~x()(n-2) 1

— < — 2—x(1’)+1dy
(djk) ? c3(djk) 2'[3?

2-x(N+1 1

= - s b
csc7 2 B,~|Pr0Jka =l 2
and for |x| > 2r,
P*(T, < o0 and Ty, < o0)

2~ x(k)(n=2) 9-x(/)+1 1

<2-cg- D dy

[£[7%  ese™® Jplproj x® — y|" 7

2~ x(k)(n—2) 1 g
- 2An-2)____ -x(J)
=cg*C -2 - dy.
TS B proj x — 3" 2 7




BROWNIAN EXCURSIONS 683

Since x(j) = x(k) for all j > k, then for |x| > 2r,
Y. P*(Ty, < 0 and Ts, < )

J>k
2—X(k)("—2) 1
< Z 08 . cg("_2).—_—__—_2 . 2_X(k) ~ % =3
j>k |¢|™ B;lproj x* — y|*
(25) 2—X(k)("*'2)
S Cq * 02("_2).__—____
8 %5 |xln—2
X 27 x(B) dy < 0.

. _ : k _ n—2
{lproj  x* —y|= ¢, 27 X(R)} [proj , x Yl

Note that the value of
1

. _ : k _ n—2 .y
{Iprojpx* —y|= ¢, 27x(®)} |pr0JLx yl

2~ x(k)

does not depend on k. Therefore it is possible to choose c; so small that (2.5) is
less than
1 (¢ 2—x(k))”‘2
(2.6) S
(2lx1)
The constant c; chosen in this way depends on c,, but ¢, may be chosen
independently of c;. Thus the definitions of the constants involved are not

circular.
By (2.4) and (2.6) the left-hand side of (2.3) is not less than

(c5- 2—x<k))"—2 (c5- 2—x(k))"‘2 cr2

— ~ > Z 2~ x(k)(n-2)
) (2le)n 2 (2|xl)n 2 gn-— ll |n 2

1
2

T8

2"| = fh(x) dx.

The last inequality follows from (2.1) and imphes that

lim inf P*(T

|~ 00

By (6) of Port and Stone [(1978), page 59]

: Thus the theorem is proved in the special case when [zh(x) dx < o0, h(x) < 1,
and A is bounded. These additional assumptions will be now removed.

Suppose that A is unbounded, but [zA(x)dx < o0 and A < 1. Then there

exists a Lipschitz function h,, 2, < h, with the same constant as A such that the
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corresponding set A, is bounded and
[ () dx > 3 h(x) dx.
B B
It follows that
C(A) > C(4,) > cgfhl(x) dx > %cgfh(x) dx
B B

and therefore the theorem holds for unbounded sets A (with a different con-

stant c).

If [ph(x) dx < oo but 4 is not necessarily bounded by 1, the result is obtained
by scaling.

It remains to treat the case when [yh(x)dx = co. In this case A is an
increasing limit of a sequence of Lipschitz functions A, A,,... with the same
constant as % and such that [zh,(x) dx = k. Thus A is the union of a family of
sets A, (corresponding to A,’s) which have capacities greater than c,,k. O

Let L, h and A be defined as in Theorem 2.2. Recall that it is assumed that
n > 4.

THEOREM 2.3. If h is Lipschitz then A C R™ is regular for P° if and only if
h(x)

g dx = o0.
an{lxlsl}lxI" ?

PROOF. Let A = ; and A, be defined as in Theorem 2.1.
B B A@ N L.

Consider two cases. First assume that limsup,,, _, ¢2(x)/|x| > 0. Then there
exists a sequence of balls M, £ > 1, in A with a constant ratio of the radius to
the distance from O and such that 0 is a cluster point of their union. Let
N, = U5 _.M,,. Elementary properties of Brownian motion (scaling, continuity
of paths, etc.) imply that

PY (T, =0) > P°( kﬂl {TNk < oo}) = kl.i_,H:OPO(TNk < )
> lim P%(Ty,, < ®) = ¢, > 0.
By the 0-1 law, ¢, = 1. It is easy to see that
h(x
LT
Lojxi<1y %]
and: the theorem follows. '
Now suppose that lim,_, ,A(x)/|x| = 0. This and the Lipschitz property

imply that there exist a constant c,, 0 < ¢, < 1, and sets A}, A2, k& > 1, such
that for all % larger than some k,, A} and AZ correspond to Lipschitz functions
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h}, and hZ with the same constant as A,
A, Cc A,c Al
and

02f h(x)dx<jh (x)dx<j h(x)dx<fh (x)dec;Ith(x)dx.

The existence of sets A}, and A% may be shown, for example, using families of
sets analogous to E,’s defined in the proof of Theorem 2.2. Thus by Theorem 2.2

c(4,) = c(4y) = chh;(x) dx>c- csz h(x) dx
and
C(A,) <C(A2) < c‘lj;hi(x)dx < c‘lcglj;; h(x) dx,

for k > k,. For x € B,

22—n ( 1 )k(2—n) 1
<

W =S\2) S
so
1 k2-n) 1 k(2-n)
(5) -C(Ak)z(-z—) c°c2f h(x) dx
h(x)
> 2% sz = — dx
and

(%)k@ n) . C(Ak) < (_;_)km_n)c—lc;ljl;kh(x) dx_
cle —1/ h(x)
|x|n 2

for k> k,. It follows that [z(h(x)/|x|""%)dx < o if and only if
© 1(3)¥@=™C(A,) < oo and this completes the proof in view of Theorem 2.1. O

Let L, h and A be as in Theorem 2.2 with the exception that A need not be
Lipschitz but A(x) = h,(|x]) for some nonnegative function A,: [0, o0) — R.

THEOREM 2.4. Suppose that h, is nondecreasing in some neighborhood of 0.
Then A C R™ is regular for P° if and only if

(2.7) fL f(x—)dx= .

A<y 1x|" 2
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REMARK 2.1. 'The condition (2.7) is equivalent to
h(r
f i) dr = oo.
0

+ r?

Proor. - If limsup, _, 4&,(r)/r > 0, then
h(x
[ kde oo
Ln(xl<1) %]
and it also easily follows from the Wiener’s test that A is regular for P°,
Suppose now that k(r)/r - ,_ ,0 and assume that

h(r 1
i(r) <§, forr <1.

(2.8) .

The proof is analogous when A, (r)/r is bounded by another constant. Define
B,=Ln {271 < x| <27%).

Let g, be the least Lipschitz majorant with the constant 1 of %, on (0,1) and let
&, be the greatest Lipschitz minorant with the constant 1 of A, on (0,1). It
follows from (2.8) that for all x € B, and for all y € B, _,

&(lxl) < sup hy(|2]) < (1)),

2€B;,_,

and therefore

f &(lx) dxs/ SuszBk_lhl(lzl)
B, B

|2 A || "2
< 22()1—2) hl( le)
- By, 1%|"

Analogously, for all x € B, and y € B, ,,
&;(|x]) = zei%f hi(12]) = Ay(1y))

k+1

and
x inf, h(|z
j‘ g2(1_|2) dxzf B,,;l_21(| )
B, |x| By ||
> 9-2An-2) hl(klz)
Bh+2 le
It follows that
x h(|x ‘
j‘ gl(,l,_lz) d _f 1('1_2 dx - 9%
lx|<1/4 |%| lx|<1 ||
and ’

_[ &,(1x)) de > f ha(1x1) dx - 2-2n=2)
|

<1 |%|" 72 lei<1/4 |72



BROWNIAN EXCURSIONS 687

Obviously,

8x(|x|) hy(|x]) 81(Ix)
fl s fl s /lxlsl/«t ||~ “

Thus (2.7) is equivalent to either of the conditions

1(1x)) 8,(|x)
f %dx = o, f e

x|<1/4 |x|" 72 x|<1/4 |x|*72

lx|<1/4 |X lx|<1/4 |X

Let A' and A? correspond to g, and g, in the same way as A, corresponds to A.
Then

A! is regular for P°
implies

A is regular for P°,
which in turn implies

A? is regular for P°.

The first and last conditions are equivalent to (2.7) by Theorem 2.3 and
previous remarks. Therefore the middle condition is also equivalent to (2.7). O

REMARK 2.2. For n = 4 and suitable & the set A considered in Theorems 2.3
and 2.4 reduces to a thorn [see Port and Stone (1978), page 68]. Thus the results
of this section extend Proposition 3.3.5 of Port and Stone (1978) in the case
n=4.

Note that the original proof of Port and Stone does not require (at least in the
case n > 4) the assumption of monotonicity of h(r)/r; the monotonicity of A(r)
is sufficient.

It seems that the just mentioned proposition of Port and Stone remains true
for n > 3 and A monotone or Lipschitz, and might be proved like Theorems 2.3
and 2.4 above.

3. Minimal thinness and excursion laws. The concepts of thinness and
minimal thinness [see Doob (1984), 1 XI 1 and 1 XII 11] are equivalent to
regularity, as indicated below.

Aset A CR" n>2,is thin at x € R" if and only if A is not regular for P*
[see Doob (1984), 1 XII 12]. '

Let Pj denote the distribution of an A-process in D starting from x € D U
d¥D [for definition see Doob (1984), 2 X 1 and 3 III 2]. Fix an arbitrary x° € D.
A set A C D is minimal thin at an attainable minimal boundary point x if and
only if A is not regular for Pf where h(-) = Gp(x°, ) [see Doob (1984), 3 III 2
and 3 III 3].

Suppose x € IMD is attainable and let H* be a standard, nonnull excursion
law in D. ’

LEMMA 3.1. A set A C D is minimal thin at x if and only if A is not regular
for H*
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Proor. Fix a point x° € D. Let B, and B, be two spheres such that
x°€ B, = B)(x%r) c B, = By(x°,2r) c D.

Let h(-) = Gp(x" -).
The H*-distribution of {X(#), 0 < ¢ < Ty } conditioned to hit B, is equal to
P for some harmonic function A, on D\B [see proof of Theorem 4.1 in

Burdzy (1986a)].
It is easy to see using formula 2 X (2.1) of Doob (1984) that the P;- and
Pj; -distributions of {X(¢), 0 <t < Ty} are mutually absolutely continuous.

Therefore A is regular for Pj if and only if A is regular for P;. By the 0-0 law
for excursion laws [Lemma 4 1 of Burdzy (1986a)] the last property is equivalent
to A being regular for H* which completes the proof. O

For the rest of this section D will denote the halfspace {x, > 0} C R", n > 2.

THEOREM 3.1. A set A € D is minimal thin at 0 € 3D if and only if the set

A = {x e R (\/xf +xZ+ x§,x4,...,xn+2) EA}
is thin at 0 € R™*2,

PrRoOOF. The minimal thinness and thinness are equivalent to regularity as
shown at the beginning of this section. It remains to use Theorem 1.2. O

REMARK 3.1. Naim (1957) gave a test for minimal thinness similar in spirit
to Wiener’s test for thinness. The above theorem establishes a link between the
two tests in the special case of halfspace.

Denote L = dD. Let h: L —» R be a nonnegative function and

A={xe€D:0<x, <h(proj,x)}.
THEOREM 3.2. Suppose h is Lipschitz or h(x) = h,(|x|) for some monotone
function h,: [0, ©) = R. Then A is minimal thin at 0 if and only if
f h(x)
La(x<1y 1%]*

dx <

ProoF. Use Theorems 3.1, 2.3 and 2.4. O

REMARK 3.2. (i) In view of Lemma 3.1 the above theorem gives a criterion
for H'regularity where H® is the standard excursion law in D. This extends a
two-dimensional Lemma 3.1 of Shimura (1984) and a multidimensional Corollary
3.1 of Burdzy (1986a). (i) See Essen and Jackson (1980) for related results on
minimal thinness.
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