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EDGEWORTH EXPANSION FOR STUDENT"S ¢ STATISTIC
UNDER MINIMAL MOMENT CONDITIONS

BY PETER HALL!
University of Glasgow

Recent advances in the theory of Edgeworth expansion allow rigorous
estimation of remainder terms, under explicit regularity conditions. However,
even in the important case of Student’s ¢ statistic, the moment conditions
required are unrealistically stringent. In this note we relax those conditions
to the minimum needed to define terms in the Edgeworth expansion.

1. Introduction and results. The fundamental work of Bhattacharya and
Ghosh (1978) makes rigorous the classical formalism of Edgeworth expansion.
When applied to the case of Student’s ¢ statistic, these results allow an expan-
sion with a remainder o(n~*/2), provided the sampling distribution has finite
2(k + 2)th order moment. This sharpens the earlier work of Chung (1946),
among others, but still falls short of what a statistician would regard as
“minimal” conditions for Edgeworth expansion. Notice that terms before the
remainder o(n~%*/2) depend only on moments up to the (& + 2)th, and so the
assumption of 2(% + 2)th moments appears to be “twice as stringent” as neces-
sary.

The purpose of this note is to show rigorously how to relax moment assump-
tions to statistically “minimal” conditions, in the case of Student’s ¢ statistic. As
prerequisites for an expansion with remainder o(n~*/2), we need only finiteness
of (k + 2)th order moments plus nonsingularity of the sampling distribution.
Edgeworth expansions of Student’s statistic have more than half a century of
history [see reviews by Wallace (1958), Bowman, Beauchamp and Shenton (1977)
and Cressie (1980)], but there appears to be no previous derivation under
minimal conditions. This is surprising, given the very extensive literature on the
distribution of Student’s statistic under nonnormality.

We pause to introduce necessary notation. Let X, X,, X,,... be independent
and identically distributed random variables, and set X = n™'L7_, X; and p,, =
E(X*), whenever this quantity is finite. The Studentized mean is given by
T, = n/%(X — p)n X2, X2 — X?)""/? where p=p,. Let P, be the poly-
nomial of degree 3i — 1 appearing in the formal Edgeworth expansion of the
distribution of T}

W) P(Ty<y)=0(3) + ¥ n-B(»)e(y) + o(n~H3),

i=1
where ®, ¢ are, respectively, the standard normal distribution, density functions.
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The coefficients in P, are functions of y,,..., p;,,; for example,
P(y) = §7(2y* +1),
B(5) = > (5 + 25 = 8) ~ x(y - 9) + 35+ 3),
where 7= E(X — p)(var X) %%, k= E(X — p)*(var X)"2 - 3.
THEOREM. Assumek > 1, E|X|**2 < o and the distribution of X is nonsin-
gular. Then expansion (1.1) is available uniformly in —oo <y < oo.
In particular, if E|X|® < co and X is nonsingular, then
(1.2) P(T, <y) = ®(y) + n™*47(2y* + 1)(y) + o(n™'/?)

uniformly in y. The work of Callaert and Veraverbeke (1981) gives P(T, < y) =
®(y) + O(n~'/2), under the condition E|X|*® < oo but without the assumption
of nonsingularity.

There is no difficulty in extending our techniques to obtain expansions of
E{f(T,)} for functions f. However, statistical implications are clearer in the
form (1.1).

2. Proof. Define sgn(x) =1if x >0, —1if x < 0 and 0 if x = 0, and given
Y € (-0, 0), let S(y) = sgn(X — y), p(y,x) = P{S(y) = 1||X — y| = x},
Y(y)=(X-y) - E(X-y[IX -
=X - y[S(¥) - (2p(3,1X = y) - 1}],
¥(y,t) = E [exp{itY(y)}|IX — ]
= exp[~it|X — y|{2p(,1X - »I) - 1}]
X[p(y,1X = y))e ™21+ {1 - p(y,1X — y|)}e#X].

Lemmas 2.1 and 2.2 establish that for some y, Y(y) conditional on | X — y| has a
nondegenerate distribution with useful properties. In the integrand of (2.1),
interpret the ratio 0/0 as 0 whenever it appears.

LEMMA 2.1. Let f be a density on (— o0, ). The set of y such that
@1 [THa (=t 9 {fx+y) + (—x + )} d >0
has strictly positive measure.

Proor. Fix a > 0, and define g(x) = min{a, f(x)}. The integrand in (2.1)
dominates (2a)g(x + y)g(—x + ), and so if the lemma is false,
(2.2) | &z +y)g(-x+y)dc =0,

for almost all y. Now integrate (2.2) over — o0 < y < oo, obtaining 1(fg)? = 0.
This contradicts the hypothesis that f is a density. O
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LEmMA 2.2. If X is nonsingular, then for some real number y,
(2.3) supE{|¢¥(y,t)|} <1, foralle> 0.

|t]>e

Proor. We may write dP(X < x) = gf(x)dx + (1 — q) dG(x), where ¢ > 0,
f is a density and G is a distribution. Let 8, 8’ be, respectively, the left-hand side
of (2.3), and the value § would take if X had density f. Then § < g6’ + 1 — gq,
and so it suffices to consider the case where X has density f.

Choose y such that (2.1) holds, and then let a equal the left-hand side of (2.1).
Then g(x)=a f(x+ y)f(—x + y){f(x +y) + f(—x + y)} ! is a density on
(0, 0). By the Riemann-Lebesgue lemma,

B() = [(1 ~ cos(2tx))g(x) ds — 1

as |f| = oo, and trivially B(¢) > O for ¢ # 0. Therefore b, = inf|s>8(¢) > 0. If X
has density f then | X — y| has density f(x + y) + f(—x + ¥), x > 0. Thus,

[E{lv(», )}]’
= (E[1 - 4p(3,1X = 3){1 = p(5,1X - y)}sin*(#( X — »)}]"/*)°
<1-2["f(x + N i(=x + ) {f(x+3) + (-2 + )}

X {1 — cos(2tx)} dx.
Consequently, sup,.. .E{|[¢(y, t)|} < (1 — 2ab,)"/? < 1, as required. O

One consequence of (2.3) is

(2.4) E{Y*(y)} = E[E{Y*(y)|IX - yI}] > 0.

We may assume that (2.3) holds with y = 0. Notice that we are now not
permitted to assume X has zero mean. Let % be the o-field generated by

1 Xy, - 1 Xal S = sgn(X)), p; = p@O, |X})),
Y= X; - E(X|1X) = {S; - (2p; - 1) )IX},
By = E(YA1X))) = 4p,(1 - p) X}, By = E(VHIX)),
vo=E(By) >0 [see(24)], v,=E(By),

lAl’j(t) = E{exp(itY})llle}, s?= Z :sz, T= Z Y;
Jj=1 j=1

Let C,, C,, ... be constants depending on the distribution of X but not on n or
other quantities, and let D,, D,,... be absolute constants. Conditional on &%,
the variables s~'Y; are independent with zero means and variances s~%8, ;. [This
type of conditioning argument has been used in the past; see, for example,
Albers, Bickel and van Zwet (1976) and Bickel and van Zwet (1978).] Our first
task is to derive an Edgeworth expansion of the distribution of s~ 'T. To more
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clearly illustrate our argument we shall concentrate on the case & =1, and
establish (1.2). Result (2.7) below indicates the route taken if 2 = 2. It will
become clear that there are no essential differences between treatments for
different values of %k, and at various points in our proof we shall indicate
generalisations for arbitrary k.

LEmMA 23. LetZ,,...,Z, be independent random variables with finite third
moments, zero means and Y7_,E(Z?) = 1. Set

) k+2 1
x,;(t) = E(e"%) and X\,;(t)= E{exp(ith) - go—r—!(ith)r},

and choose [ so large that

(2.5) .:lE{z}’I(|zj| >1)} <4

Jj
Then whenever |t| < 1/121,

[J'Ellxj(t) - {1 + él)\lj(t) + 3(ie)’ ilE(Zf)}e—tz/z]

2

(2.6)

< D,|t|e"*/®

él (E(22))" + { JéEszP)}

If each E(Z}) < oo and if |t| < 1/121,

j]':'[lxj(t) - (1 + é)\zj(t) + 1)’ éE(zj’»)
+(i0)' ¥ [58(2) - 1(£(2))]
* e—t2/2

2.7) i %(it)“{ élE(Zf)}

n

£ (@) + § 5(z)m00)

Jj=1

< Dy|tle /8

2

+{ f} E(|z,.|3)}2 + {JéE(Z;‘)}

Jj=1

Inequality (2.6) may be derived from Lemma 2.1 of Hall (1982), and (2.7) may
be proved in a similar manner.
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Given 8 € (0,3) and A > 0, let &, be the event:

n
E XJZ - nﬂ.2

j=1

|2 — nv,| < dnv,, <dnpy, |X;| <dén'/?

for 1 <j < n and { < As™, where
[=i f{l > 0: 572 2 E[15.2I(|};.| > Is)|#] < g}.

We first prove that if E|X|* < oo, then for large A, P(&,) = o(n™'/?). [In the
case E|X|**% < 0, P(£)) = o(n‘k/“’), where € denotes the complement of &.]
Use Theorem 28, page 286 of Petrov (1975), and E|X|® < oo, to get

> X7 —np, + nP(|X| > 8n'/?)

Jj=1

P(|s% — nvy| > 8nv,) + P > dnp,

=o(n™?),

for each 8 > 0. Let »(A) = E{Y?I(|Y,]| > A)}, and choose A so large that
vy 'v(N) < . Arguing as before, we see that the event

< %nv()\)}

& = {|32 — nyy| < %nvz} N { zn: E[Y}ZI(W}l > }‘)I‘gz’]
Jj=1

has probability 1 — o(n~'/2). On &,,
n
57 ¥ B(YI(Y) > M)|#) < (nvy/2) {3n0(M)/2) < &,
j=1

and so [ < As™ L. The estimate P(&,) = o(n~'/2) follows from these results.
Take Z; = Y,/s, conditional on #, in (2.6). Let E’ denote expectation condi-
tional on 37 On 8

él{E'(lc-/s)z}z + {élE;(m/sP)}

2

n n 2
s Y X!+ 64s—6( Y |X,.|3)

Jj=1 J=1

< s~ *8n'/? Z |X)1? + 64s7%n' 2np,(1 + 8) Z 1 X

11 Jj=1

< Con2 Y IXP,
j=1
Y E(Yy/s) — n V252, | < Czn'3/2{

2:: (Bsj—v3)| + 8 f |Xj|3}’

Jj=1

]Alj(t)] < Dys™* Z tX|* < Cytton=%2 Z‘, 1 X%,

Jj= Jj=1 Jj=1
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Substituting into (2.6) we obtain on &

n
TTx,(e) = {1+ 2@ty n 22 Je 72
Jj=1

Zn‘. (.st - ”3)

< c4,t|e—t2/6n—s/2{
j=1

n
+6 Y |X j|3}.
j=1
Now apply the smoothing lemma for characteristic functions [Petrov (1975),
Theorem 2, page 109] with T = n, obtaining on &,

sup |P(T < sy|F) - {@(y) + §n7 203 ¥ 2y(1 — y)o(¥)}]

—o00<y<oo

B .

+SZ|X|3+n }

Jj=1

+05£/12A{jf=ll]¢j(t/s)]} dt.

This inequality continues to hold if y is replaced by any %#measurable random
variable U, indexed by y. Use that inequality on &, and the trivial upper bound
2 (for large n) on é”l, and take expectations:

1
sup |P(T < sU,) - E{(I)(Uy) +on V(1 Uy2)¢(Uy)}

—0<y<oo

< CSE(X*)n~1/2 + Cyn'/? fl f‘*l'j:z{Elxpl(t)Hndt +o(n"V2).

Use Lemma 2.2, and the fact that 8 is arbitrarily small, to get

sup |P(T <sU,) - E{<I>(Uy) + 1n~ V252, (1 - Uyz)q)(Uy)}l
(2.8) —o<y<ew

=o(n"172).
(For general k, this expansion is carried to terms in n~=*/2)
Define
u, = —n‘1/2u2‘1/2uy2(1 + n—ly2)_1
wy = vy 1+ n7y2) Ty (g — 0?) + g2},
n
U, = (1 + n_lyz){(ﬂz - F'Z) + n_ll-"zyz} . ( - Hz)

i=1

if X2 > np?, U, = —1 otherwise,

= _”2_1/2"_1/2 E {(2Pi - 1)X| - M},

U, =
i=1
U, = vy 'n"Y(s2 — nr,),
U, = {u, +uy(1+ U2+ G} (1 + Uy) 7%
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Note that P(XX? < np?) = o(n~2). If LX? > np?, then T, < y if and only if
T < sU, (see the Appendix). The remainder of the proof of (1.2) consists of
substituting this formula for U, into (2.8), and checking that

sup |E(0(T) + i1 - UZ)a(U))
(2.9) ,|y|<l°gn

—{2(») + n71(25* + 1)8(3)} | = o(n"/2).

[The case |y| > logn does not require attention; for example, if y < —logn,
then an Edgeworth expansion of P{n'/*(X — ) < x} shows that both sides of
(1.2) are o(n~'/?). If E|X|**? < o0 and y < —logn, both sides of (1.1) are
o(n=*/%)]

To make our proof of (2.9) easier to follow, we decompose it into five distinct
steps. Many details are omitted. We assume the distribution of (2p, — 1)|X,]| is
nondegenerate; otherwise the proof is very easy.

Step (i). Elimination of U, from U,. Let &; be the event |s? — nv,| < 8nv,,
where 8 € (0, 100), let U, = u; + uy(1 U D% + U,, and take ¥(y) to be either
®(y) or 1—y*)¢(y). On &, |1+ U) *— (1 - 3U;)| < U2, and also
P(&,;) = o(n™'/?). By treating separately the expectation on and off &;, we
obtain

sup |E (U,) —v(Uy,) + iU, Uyl¢’(Uy1)}| < C.8V2n7 V2 + o(n~1/2).

lyl<logn

Since § may be taken arbitrarily small,

(2'10) sup |E U) - ‘P(Uyl) + %U3 Uyl‘l’/(Uyl)}| = O(n_1/2)~

ly| <log n

Step (ii). Expansion of E{y(U,))}. Let X* = X,I(|X,| < 8n'/2), let &, be
the event |7, X*2 — np,| < 8np,2, define V, VZ, V,;: by replacing X; by X* in
the deﬁnitions of Uy, U, U,,, respectively, and set Vyz =u, tu,+ V2 Then

|E{¢(V,1) = ¥(V,2) = SusViw' (V) }]
(2.11) < G| yE{V2|¥"(V,, + RV |I(8,)) + P(&,)
+WIE{|Viw (Vo) [1(&,)}] = ¢,

where R is a random function of y satisfying |R| < C, on &,. Choose 8, € (0, 15
and & > 0 so small that whenever & € (0, §,), we have |V, + yRV]| > ¢y| on
the event &, N {|V,| < €|y|}. Then

tscm({yz sup [(2) || E(VZ) + (suply) BV Vil > eio))

|2]>& |yl
+B(&) + [E(viv ()P 8)] 7).
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Choose &, > 0 so small that |V;| < &,|y| implies |V,,| > &,|y|. Then

y2E{V12¢’(Vy2)2} < {y2| IsupI l\P'(z)Z}E(Vf)
z|>ely
+(supy/|)* y2E{ VEI(Vy| > e5ly]) ]

It is easily checked that P(&,) = o(n~'/?) and E(V?2) < C,,6n"'/2 + o(n"'/2)
uniformly in |y| < log n. Therefore if we prove that for each ¢ > 0,

(2.12) sup y2E{VZI(Vy] > ely])} < Cio(€)8n% + o(n~1/2),
lyl<logn

then it will follow from the estimates below (2.11) and the result

sup  |E{¥(U,) — ¥(V1)}| < 2suply))nP(X| > 8n1/2) = o(n"'72),

p
—oo<y<o

that
sup |E(¥(Uy) — ¥(Vy) — 3uVit' (Vi) |
(2.13) ly| <log n
< Cdn~12 + o(n~12).
Step (iii). Proof of (2.12). Notice that for |y| < log n,
n 2
Vi< CM{n‘l Y(x*2- EXi*“’)} +C 8721,
i=1

and so we need only prove that

yZn—ZE

[ £ (x - mxo)| 101> em)] < Cop(e)3n + o(n"7?)

i=1
uniformly in |y| < log n. The left-hand side equals
— 2
yn ' B{(X*? - EX*?) P(|Vyl > elyl|X, )}
+y%(1 = n )E{(X? - EX*?)(X2?)P(Vy| > elyl|X,, X,)).
Both terms are handled similarly. To indicate the method, we prove

2.14) YE{(X}*?*— EX*?)(X3? — EX*?)P(V, < —e]y||X,, X,)}

< Ci6(e)dn"2 + o(n=1/%)
uniformly in |y| < log n. Let p* = E(X*), v} = E{(2p, — 1)|X*| — p*}* and
V(2) =1-@(2) = I 2(sd) (1 - 2%)9(2).
The classical derivation of Edgeworth expansions [Petrov (1975), Chapter 6] may
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be modified to yield

£,= sup (1+22)

—o0<2<o00

P| £ (@n- vy - ) > ()| - 0,2

=o(n"1%).

This result, and the fact that Z, < —e|y| is equivalent to
n
()72 X (@0 = DIXX| = p*} > 4 — &,
i=3
where {; = (v,/v5)%e|y| + (n/v#)/*(n — p*) and

$o= (’”’2"‘)_1/2 E {(2Pi - l)lXi*l - M*},

i=1
show that the left-hand side of (2.14) is dominated by
PIE{(X*? - EX#?)( X% - EXp2)0,(4 - )|

2.15
(2.15) v B

(X2 - EX2?)(X22 - EX) {1+ (4 - )7} |-

For some constant &5 > 0, §;, — ¢, > &,|y| — ¢; ' uniformly in 0 < 6 < 1, with

probability one. For a random 6 = 6(y) € (0,1), the first term in (2.15) equals

YIE[(X? - EXp?)(X32 - EXF)(%,(6) - §%:(6) + 3395 - 68,))] |
< g{yi’ sup |\If,;'(z)|}E{|(X1*2 — EX*?)(X3? - EX2?) |12}

2>g5ly| —e3!
< C;6n"Y2 4+ o(n"12).
The second term in (2.15) is dominated by

Curkal EIXi# = EX2%) supy(1 + (65— 57)°) " = o(n"112),

¥y>0
Result (2.14) follows on combining these estimates.

Step (iv). Refinement of (2.13). Let
ug=(1+n7"2){(ny — p2) + n uyy?} 7,

Vis=u, + uy — (nv,) 2 Y {@p; — V)1X*| - p},
i=2

= _(n”z)nl/z{(2p1 - 1)|X1*| - l-"}-
Then V= V.3 + A, and since V3 is independent of X *,

E{Vﬁb'(Vyz)} = u3E{(X1*2 - M2)‘1’I(Vy2)}
(2.16) = — () " u B[(X2 - 1) {20, — VIX)) - p}]

XE{‘V'(V}s)} +r(y),
where |yry(y)| < Cygdn~'/2 + o(n~"'/2) uniformly in |y| <logn. To simplify
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E{y"(V,3)}, let V,,= (nvy) V2L {(@p; — DIX*| — p} and Vis=n+%—
V,4- A nonuniform Berry-Esseen bound [Petrov (1975), page 125] gives

m,=  sup (1+|2]°)|P(V,, < 2) — ®(2)| = O(n~'72).

—o0<z<o0

Therefore
E(y" (Vi) = [~ 97(n+ 2~ 2)o(2) dz + 1 9),

D <) W7 (n+nm-2)|1+ ) de.
Substituting into (2.16) we conclude that for a polynomial ;,
sup [JuE{ V' (V) — o 2m()()|
(2.17) ly| <log
< Cdn~2% 4+ o(n=1/2).
A similar but simpler argument gives an expansion of E{y(V,,)}. In the cases
¥(¥) = (), ¥(¥) = (1 — y*)$(y), we have, respectively,
sup |E{¢(V,s)} — @(y) — n?m(5)9(9)| < Coedn ™72 + o(n™12),

ly|<logn
sulp IE{‘I’(V;‘Z)} - ﬂs(y)‘i’(y)l < Codn™ 12 + 0(n™1/2),
|yl <logn

for polynomials 7, m;. Combining with (2.13) and (2.17), and noting that § is
arbitrarily small, we obtain for polynomials =,, ;,

(218)  sup [E{@(Uy)} - @(y) = 7 n(5)8(5)] = o(n77%),

|yl <log n

(2.19) . |E{(1 - U2)(U,1)} - m(5)9(5)| = o(1).
y|<log n )
Step (v). Completion. Modifying arguments in Steps (ii)—(iv), we obtain in
the cases Y(y) = ®(y), ¥(¥) = (1 — ¥*)¢(y), respectively,

sup |E{U, U/ (Uy)} = 0 m(9)6()| = o(n12),

|yl <logn

sup IE{U3 Uyl‘V(Uyl)} - 777(y)¢(y)| = 0(1)'

|y <logn
Combining with (2.10), (2.18) and (2.19), we get

sup [B(0(1,)) ~ 0(3) —n”H{m(5) = im()9(3)] = o(n "),

|yl <log n

sup |E{(1- U2)e(U,)} — {7(») = m()}6(3)] = 0(2).

|y] <log n
Result (2.9) is now immediate, provided

(2.20)  m(y) = $me(y) + §v2 ¥ Pus{ms(y) — dm(y)} = §7(25° + 1).
Tracing back through arguments prior to (2.9), we see that (1.2) holds if and only
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if (2.20) is true. Now, coefficients of m,,..., 7, depend only on the first three
moments of X and (2p, — 1)|X,|. Expansion (1.2) is known to be correct when
E(X®) < o0, and this case covers all possible values of the aforementioned
moments. Therefore (2.20) holds whenever E|X|? < co.

APPENDIX
Proof that if 1X? > np® then T, < y if and only if T < sU,.
Step (i). Simplification of Ty <y. Let D= X — p. Then

n ~1/2
Ty =n"?*(X - p,)(n'l YX2- X—z)
1

n ~1/2
= nl/zD{n'1 YX2-pr- (D% + 2p,D)} ,
1

and so the equation T2 = y? is equivalent to
n
Q(D) =D*(1 +n""%?) + 2n uy®D — n‘lyz(n‘1 Y Xx2- p2) =0.

This has solutions
n

1/2
— _(1 + n_lyz)_l[n"lp,yz + n_l/zy{(l + n—ly2)n—l ZX;'Z _ M2} }
1

= Dl’ D2:

say, where D, < D,. If y <0 then the inequality T, <y is equivalent to
(D<0)N(Q(D)=0),and so to D < D,, i.e., to

n 1/2
(A1) D<—(1+ n_ly2)_l[n'lp¢y2 - n‘l/zy{(l +n y)n 1Y X2 - p,2} ]
1

If y >0, then T, <y is equivalent to (D < 0) U {(D > 0) N (@(D) < 0)}, and
so to D < D,, which again reduces to inequality (A.1).
Therefore T, < y is equivalent to (A.1).

Step (ii). Simplification of T < sU,. Note that 1+ U; = s?>/n»,, and so
T < sU, is equivalent to
T < (n9y)*{uy + u,(1 + U)V2 + Uy},
which we write as
(A.2) n'l{T - (nvz)l/zUz} < (1/2/n)1/2{u1 + u,(1 + Ul)l/z}.

A little algebra shows that the left-hand side of (A.2) is just D, while the
right-hand side is identical to the right-hand side of (A.1). Therefore inequalities
(A.1) and (A.2) are identical.



EDGEWORTH EXPANSION 931

Combining steps (i) and (ii), we see that T;, < y if and only if T < sU,, as had
to be proved.
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