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THE CONTRIBUTION TO THE SUM OF THE SUMMAND OF
MAXIMUM MODULUS!

By WiLLiaM E. PRUITT

. University of Minnesota
Let X, beiid., S,=X; + -+ +X,, and XV the term of maximum
modulus among (X;,..., X,.}. Let 4, = P(2* < |X,| < 2¥*!||X,| > 2*}. The
main result is that X{V/S, - 1 as. iff Tu? < co. Furthermore, for
any positive integer r, liminf,_ |X{/S,| =r"! as. iff S ul = 0 and
Trupt! < 0. If T4uf = oo for all r then liminf, _, |X"/S,| =0 as.

1. Introduction. Let X, X, X,,... be a sequence of independent, identi-
cally distributed nondegenerate real valued random variables having common
distribution function F. Let S, =X, + --- +X, and let X" be the term of
maximum modulus among {X,..., X}, ie., | XP| > |X,| for k = 1,..., n. Feller
(1946) observed that XV could be used as a tool for studying the behavior of the
large values of |S,| whenever E|X| = co. This idea has since been exploited in a
variety of ways by numerous authors. It has also been observed that X may be
used to study S, throughout its range if the tail-of F is sufficiently fat. Darling
(1952) showed that with nonnegative summands, if 1 — F(x) is slowly varying
then X{V/S, — 1 in probability. This was extended to general summands by
Arov and Bobrov (1960) and the converse was obtained by Maller and Resnick
(1984). Maller and Resnick also gave separate necessary and sufficient conditions
for X /S, — 1 a.s. and proved their conditions were equivalent under a supple-
mentary hypothesis. In the present paper we will show that the two conditions
of Maller and Resnick are equivalent in general. In order to completely answer
the question of when X! contains essentially all the information about S, one
wants to know when |X(V/S,| is bounded above and below. We will answer this
on the lower side by evaluating liminf|X{"/S,| in general; it may surprise the
reader that the only possible values of this lim inf are zero and r~! where r is a
positive integer. With nonnegative summands, X{"/S, <1, so the ratio is
automatically bounded above. But with general summands the question of when
limsup|X{M/S,| < oo a.s. remains. More information including an explanation of
why the liminf is of the form r~! is given in the statement of the theorems.
Examples are given at the end of the paper.

2. Results. We need to introduce a little notation. Let X{” denote the rth
largest in modulus of {X,..., X,}. In case of ties, they may be broken in any
reasonable manner. (Ties may present a problem if the support of X is bounded;
see the first part of the proof of Theorem 1.) Next (")S, will be the trimmed sum
with the r largest summands discarded, i.e.,

= 1 _
", =8, — X® = ... =X
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Also for x > 0, define
G(x) = P{|X| > x}, H(x) =1- G(x) = P{|X| <x}
M(x) =x'E|X|1{|X| <x}, K(x)=x2EXA{X|<x}.
Finally, for ¢ € (0,1), let ;
u, = P(2* <|X| < 28+ |X| > 2},
v, = v,(e) = P{e7® <|X| < 7% |X| > s_k}.

These are not well defined if G ever vanishes; in this case we make the
convention that u,, v, = 1 whenever the condition has probability 0. Now we
can state the first result.

THEOREM 1. Let r be a positive integer. Then the following are equivalent:

M(x) \"dH(x)
@ f( G(x) ) Gx) =
K(x)\"dH(x)
® Mo G <=
G(ex) — G(x) \"dH(x)
(3) f( G0x) G(x) < oo for every ( for some) e € (0,1),
(4) Y (vu(e))"! < 00 for every ( for some) & € (0,1),
k
(5) Lupt < oo,
k
”s,
(6) X -0 a.s,
X’(Lr+1)
(7) W -0 a.s.,
X+
(8) limsup%(l)— <1 a.s.,
@)
9) li'fl_l’iol.}f I‘I’;'; | > % a.s.,
(10) " imint Rl 2 5.

n—o |Sn| r+1

REMARK 1. Condition (1) with r =1 is Maller and Resnick’s sufficient
condition while condition (3) with » =1 and the quantifier for every is their
necessary condition. Condition (5) is simply condition (4) for ¢ = 1.
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REMARK 2. All the conditions except (6) and (8)—(10) are in terms of the | X,|
and we will see in the proof that (6) and (8) could be formulated that way as
well. Thus much of the theorem is a result about nonnegative summands. But
the implication (10) = (1) seems to require more work for general summands.

Proor. We will start by showing the equivalence of the analytic conditions
by proving (1) = (2) = (3) = (4) = (1). Then we will complete the proof by
showing (5) = (6) = (7) = (8), (6) = (9) = (10), and finally either (8) or (10) =
(4). Note that the integrals in (1)—(3) are well defined but will diverge if G ever
vanishes. In conjunction with our convention about v, this shows that none of
(1)-(4) holds in this case. Also it is clear that (except as noted below)

(T)Sn ’(Lr+ 1)
lim sup = o0 limsup ——— =1,
n—oo Xl(ll ’ n— oo X7(tl)
X
lim inf =0 as.

n-oo  |S,|

when the distribution of X has compact support. (The second statement may
fail if |X| < @ and P{X = a} > 0, P(X = —a} > 0. If one breaks the ties in a
capricious manner, one might arbitrarily take X = a, X? = —a for all large
n. However, if the ties are broken according to the order of occurrence, as usual,
then one will have limsup, _, X{"*V/X = 1 with positive probability in this
case and so (8) will fail.) Thus for the remainder of the proof we assume that
G(x) > 0 for all x.

(1) = (2): This is clear since K(x) < M(x).

(2) = (3): This follows from

K(x)2x72 [ 2 () 2 (G (ex) - G()).
ex<|y|<x

(3) = (4): Here we assume (3) for some &> 0 and we will show that

L.(v,(€))"*! < oo for that e We let
Ay={xeR:et<x<e ).

Then

f (G(sx) - G(x) )'dH(x)
A, G(x) G(x)

> (6(7) ™" [, (G(ex) - 6())" dH(x)

= (G(e™) T PlelXy] < IX}| < 1Xy], S = 2,..., 7+ 1;|Xy| € A}
2 (G(e™®) TPleF < |X| < Xy, j=2,..., 7 + 151X, € A,)

1 — -r—1 .
2r+1(G(e k)) P{IleeAk,J=1,...,r+1}

(”k(e))rH-

r+1
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(4) = (1): First note that v,(¢) —» 0 which implies G(e"*~!) ~ G(¢*). Since
G is monotone, this means that G is slowly varying. Choose p € (¢,1) and find
N so that

G(E_k_l)
G(e7*)
Let x, = ¢~ N. Now by Fubini or integrating by parts
1
M(z) = [(G(wr) = G(x) d.

For e *<x <e* 'and £ > N we have

>p fork > N.

m@s%+zf’xmw)amuu

x.
2

IA

®|&
+

]
| &
+
'M»gM»gM»

e H(G() - Gt )

~

k
a7 £ o6(e)

~

) [ &

< + e~ lzvpl k— lG(s—k l)
Jj=N i=j
x
S—O+G(x)va‘ k-1 Ze" !
x ay?
xo . i _1
< — + G(x) E vp kT lek i (1 — ),
x i=N
Thus for e * < x < e *, k> N, we have
M(x) Yo
2.1 +C !
@) G(x) = %6(x) Z(”)

The first term in the bound causes no difficulty since it leads to an integrand of
Cx~"(G(x))"" ! > 0 as x > oo since G is slowly varying and r > 1. Since the
integrand in (1) is bounded on any fixed interval we may start the integration at
x, and use the second term of the bound in (2.1). This leads to a bound for the
integral of

G(e_k) - G(s_k‘l)( 3 . .
C"Z —— ZD‘ ep‘l i
ok G(e k 1) = z( )
< C1Z Z V0, - Dir(ep_l)kr_il_ i,
k zlsk i<k
< Clz: IS E (DZ'FI + D{l+l + .. r+1)(8p_1)kr_i‘_ _ir.
k i<k i<k
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For the v}*! term we sum first on i,,..., i, and since & < p, this will lead to an
estimate of C,X,03*". For o7, sum first on i,,..., i, to obtain a bound of

Csz )y O{lﬂ(ep_l)k-h’
k i<k
and then summing over % leads to a bound of C,X;v}*". The other v;, terms are
handled the same way. Thus the integral in (1) converges.
(5) = (6): This one is easier when F is continuous. We will assume this for
now and explain how to complete the proof at the end. First we will prove
another analytic condition:

o [ x M(x) (G(x) - G(y) |\ dH(y) dH(x) _
0<x<y<oo )Y G(x) G(x) G2(x)

Then we will show that (0) = (6). (If F is not assumed continuous then the G(x)

in G(x) — G(y) in (0) should be replaced by G(x~).) We will use the bound (2.1)

for M(x)/G(x). As above, G is slowly varying so the first term in the bound

leads to an integrand which approaches zero as x — oo and so can be ignored as
above. We will consider

(2.2) 2/ <x <2/, 2k <y < 2kt

and then sum over j and k. Since

k+j+1
G(x) - G(y) < G(27) - G2*/*2) = ¥ u,G(2)
i=j
k+j+1 k+j+1
<G/ Y u;<CG(x) Y u,;,
i=j i=j

the contribution to the integral in (0) for the region in (2.2) is at most

J L k+j+1 T2
02‘k(2uz(2p) 1) ou| (U + Uprjin)y;,

=1 i=j

the last two terms coming from the y and x integrations. Thus we must bound

k+j+l k4j+1 s
XYY Y - X 27%2p) (g + Uy Uty - Uy
J ok lsj i=j i_g=J

Since the u,, ; and u,, ., terms are similar we will only do the former. Then we
must consider

k+j+1 k+j+1 )
EEL B o B oamee)(ut gt sttt e ).
J <j u=Jj i_g=J

We now consider each of the u terms separately:

u}“: Sum first on i,...,i,_, and I Recall that 2p > 1. This leads to a bound
of C(k + 2)" 22 *y*1. Now sum on k.
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uztl: Sumon iy,..., 1,y and [ to obtain a bound of C(k + 2)" 22 *u;}}. Now
change variables letting £ + j = m and sum on k.

ur*': Sum on i,,...,i,_, and then j to obtain a bound of C(k + 2)""22 *yJ*+1,
Then sum on k.

u’*1: Sum on the other i’s and [/ to obtain a bound of C(k + 2)"32‘ku£+1.
Now sum on j. Thebounds j<i,<k+j+ lbecomei,—k—-1<j<i,
so there are at most & + 2 values of j that occur for fixed i, and k. Thus
the bound is C(k + 2)"22"’°u{fl and now sum on % as before.

Since all the terms lead to bounds of the form Y,ul*! the integral in (0)
converges. Now we need to prove that (0) = (6). We will actually prove that
72,11 XP)/1XD] - 0 as. Since this ratio is increasing on intervals where
|X{V| is constant we only need to consider those n for which |[X{V| < |X,,.|.
Next observe that if X and X" are given then the n — r summands smaller
than |X{?| = x, say, are i.id. with distribution dF(2)1{|z| < x}(1 — G(x))™ ™.
This is where the continuity of F is used. Using Markov’s inequality, we obtain

P{ X IXP) > e XD XD < IXn+1I}

k=r+1

< ff0<xsy<w%6¥(y) dP{|X{P| = x,1XP| = y)
(n),

r)xM(x)
‘ffo<x<y<wey(1 a@) * ey
X(1 - G(x))""(G(x) - G(»))""* dH(x) dH(»)

e'n ’“ffoquj — (G() )G(y)(l — G(z))"”

X (G(x) - G(¥))"* dH(x) dH(y).

Now we sum on 7 in order to use Borel-Cantelli. This yields

ZP{ X X > el XD, X0 < IX,,HI}

n k=r+1

sof[ I etew@)

x (G(x) = G(¥))" " dH(x) dH(y).
After replacing G(y) by G(x) this is the integral in (0) except for the factor
1 — G(x). This does not affect convergence of the integral as the integral clearly
converges for x < C for any C.
It remains to prove that the continuity of F' is not needed. We introduce a

new sequence of independent, identically distributed uniform [0,1] random
variables {U,} which are independent of the {X,} and let Y, = X, + U,. Since

G(x+1) < P{|Y}| >x} <G(x—-1)
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and since (5) implies that G is slowly varying we have P{|Y;| > x} ~ G(x). Also
for k> 1,

P(2* < |Y)| < 2**!} < G(2*71) — G(2%+2),
so that
P2k <|Y,| < 2541 |Yy] > 2%} < Clup_y + Uy + Uys).

Thus the condition (5) holds for the sequence {Y,} which has a continuous
distribution. By what we have already proved, (C%_,.,|Y®)/|Y | - 0 as.
Finally

[1XP] - 1¥®)] <1

for all n, &k so

n n
rIXP- X Pl <n,
k=r+1 k=r+1

and since G is slowly varying, it is easy to check that n~ 1| X{"| —» oo a.s. Putting
these facts together yields (6).

(6) = (7): We consider the (random) subsequence n, defined by n, =1 and
fork>1

ny=min{n > n,_;: | X+ > |XTO| )
Then for n,_, < n < n, we have
|Xr(¢r+1)| |X(r+l)|

N1

: < ’
XSO T XY |

Ng-1

so it is enough to consider the behavior of this ratio along the subsequence.
Furthermore,

IXr(z:+l)| = |(r)Sn,¢ _(r)Sn,,—ll

and then (7) follows from (6).

(7) = (8): Trivial.

(6) = (9): We have for large n

1S, < 1XD] + <+ + (X5 + O8] < (r + ) X5V

(9) = (10): Trivial. '

(8) or (10) = (4): With nonnegative summands there is an easy argument that
(10) = (8) since (r + 1)X{"*D < §,. However, we can see no connection between
them in general without using the analytic conditions. Thus we will prove the

contrapositive of both statements. We assume that X,(v,(¢))"*! = o for ¢ < 1
and will prove that

X’(lr+l) |X’(L1)| 1
2.3 limsup ——— =1, lim inf <—— as.
( ) n—»oop X'(ll) n— oo ISnI r + 1

For now we also assume that G is slowly varying. The remaining case will be
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handled at the end of the proof. We fix ¢ and define

_ {1, fPle*<X<e® 1) > 1Pe* < |X| <e* 1),

£, = ,
—1, otherwise,

and for given > 0 let

Cn,k = An,k N Bn,k’ Bn,k = {|('“)S,,| < 88_’2},

A, = {eh <6 XD <e L j<r+ LX) < ek (X, > e k1),
Since G is slowly varying, M(x)/G(x) = 0 as x — oo (see Lemma 2.5 of [5]).
Thus we find &, such that

) 1
(2.4) M(e7*) < EG(&"’) and G(¢7*) < 3 forall & > k.

Now we define
I={(n,k): k> ko, nG(e*) <1}.
Note that

P(4,4) = (, 5 1 )Pt <X <t 1)1 - G(e k)" I6(e Y
and
P(A, B¢ ,) = (r:f 1)(P{s"‘ <£X <e* 1)) G(e ) P(D, ),
where
D, = {Ile <ek j<n-r-—1,|8,_,_, > 85"’}.

By Markov’s inequality, for (n, k) € I using (2.4),

P(D, ;) <8 %[ IS,_,_,|dP

(1Xj|<e™*, j<n—r-1)

< 87 %etn(1 — G(e7F))" " ? f _X|dP

1X| <e
—87n(1 - G(e )" M(e ) < (1 - G(eH)" P EnG (e )
<{1-G(e k)"
Thus we have
1P(A, ) < P(C, ,) < P(A, ,) forall(n,k) €.
Letting
L={(nk): k>kyi<nG(e*) <1},
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we have
n _ b r+1
L PGzt T (3)(Rt<ax et )T
(n,k)el (n,k)el,

X (1 - G(s_k))"_r_lG(s—k—l)
ze ¥ amG(e™H) - Ge™H) TG (e

(n,k)el,
> T (664) 70 - 66H) 6
>c, X (vp(e))™ = co.

k>k,

Next we will obtain a bound for P(C,, ;C, ,) which is good enough to allow us to
use a generalized Borel-Cantelli lemma [see page 317 of Spitzer (1976)]. Since
the C, , are disjoint for fixed n, we consider m < n. Let Z %) be the kth largest
in modulus among X, . ,,..., X,. Then for (m, j),(n, k) € I

P{Cm,jcn,k; X, € {X,(,l),..., X,(.Hl)}}
<P{A, et <£29 <ot Li<r+ 11209 <KX, > e k1)
= P(A, ;)P(Ay_p_1,1)
<4P(C,, )P(Cpr_pmr.1)-

Also we have

L (G Gk X © (X0, X))

{(m, )el: m<n}

r+1
= Z Z P{Cm,an,k; Xm+1 = Xr(zl)}
{(m, HeIl: m<n} I=1
r+1
= Z E P{Cm,jcn,k; Xm+1 = Xr(tl)}

=1 {(m, j)el: m<n}
< (r+1)P(C, ,)

since with n and [ fixed the events C,, {X,,., = X"} are disjoint as j and m
vary. These two bounds take care of the supplementary Borel-Cantelli condi-
tion. Thus we have

P(C, yio0.(n, k) €I)>0.

Since the C, , are disjoint for fixed n, this means infinitely many n will be
involved. Thus

X0

(C, xi0.) C {W >e, j<r+1;|8,| < 81XV i.o-}
n
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and for those n for which the event on the right occurs,
1S, = XD + -+ + XD — |8 > [(r + 1)e — 8] XD
By taking ¢ near 1 and 8 near 0 we see that with positive probability
X(r+n XD 149
lmsup - 21-m  Hminfoo P <o

By Hewitt—Savage, this probability is 1. Since 7 is arbitrary this proves (2.3).
We must still deal with the case when G is not slowly varying. Fix ¢ € (0,1).
Then there is a sequence x, — oo and C > 1 such that G(ex,) > CG(x,). Let
n; = [(G(ex,))~'). Then very much as above, we have with £, now defined in
terms of the interval (ex,, x,],

P{sxk <HEXD <xy, j<r+ 1}
2 (r + 1)2 "~ I(G(Exk) - G(xk))rﬂ(l - G(Exk))nk ~

> c(ny(1 — CHG( xk)) ~¢, > 0.
Thus X{"™*V/X® > e i.0. with probability 1 by usmg Hew1tt—Savage, so the first
statement in (2.3) is valid. The other statement in (2.3) is clear if

{ J > (r+ Dexy, | XD < axk} > (2¢)7" i.o.
by a similar argument, so we assume this probability is < (2e¢)~!. Then, since
P{|X;(.i)| < Exk} =(1-G(exy))™ ~ e,
we have for large &
-1
P18, | < (r + 1)ex,, |IX®| < ex,) > (3e)
Letting m, = n, + 2r + 3,
Plex, < £, X < xp, J < 2r + 3; |1 X29] < ex,,, 27498, | < (r + 1)ex, )

> (2::_ 3)( (G(ex,) — G(xk)))2'+3 {X(1)| < exy, [S,,| < (r+ l)sxk}

> c.
Whenever this event occurs, we have

1S, | > | XD+ ... +X(2r+3)| — |er+3g |
ml — my,
> (2r + 3)ex), — (r + 1)ex, = (r + 2)ex, > (r + 2)e|XJ)|.

Again using Hewitt—Savage, this will occur infinitely often with probability 1
and so if ¢ > (r + 1) /(r + 2) we have completed the proof of (2.3). O

The main result is now an immediate consequence of Theorem 1.

THEOREM 2. The series Lu} converges iff
xmw
S,

n

(2-5) -1 a.s.
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If r is an integer greater than 1, then

(2.6) Yui,=0, Yui*'<ow
k k

uf

2.7 limi flx'(‘l)| :

2.7) s IS, r a8

If Y ul = oo for all r then the liminf is 0.
REMARK 3. The series Lu, always diverges.

PrOOF. The first statement is because (2.5) is equivalent to S,/X{" — 0
a.s. The second condition in (2.6) implies that the liminf in (2.7) is at least r~!
by (9) while the first condition implies that it is at most r~! since (10) must fail.
The final statement follows since (10) fails for all r.

There is an analogue of (2.5) for general r with nonnegative summands that is
worth pointing out. However, unlike (2.5), it is not valid with general summands.
If, for example, X has mass k% ‘exp{—%°} at +2* for large k& with the
remaining mass at 0 where 1 < a < 2, then Yu} < oo as in the examples below,
but X = —X? i.o. as in the proof of (2.3) so that (2.8) fails. For a continuous
example, spread the mass at 2* uniformly over [2%,2* + 1], etc. Then (2.8) still
fails since {S,} is transient. The converse is true (by Theorem 1) without
assuming X > 0. O

THEOREM 3. Suppose X > 0 a.s. Then T,u;*' < oo iff

X0 4 ... 4 X
(2.8) 2 s “— > 1 a.s.

n

PRrROOF. (2.8) is equivalent to
(r)Sn( Xr(:l) + ... +Xr(zr))_1 -0 as.,
and with nonnegative summands,
XO<XO+ oo + X0 <rX®O.
Now use Theorem 1. O

ExaMPLEs. Let G(x) = exp{—(logx)*}, x > 1, where 0 < « <1. By the
mean value theorem, there is a { € (x,2x) such that

G(x) — G(2x) = —xG'(§) = a(log §)* ¢ %G () < a(logx)* 'G(x)
so that G is slowly varying. Then a similar lower bound shows that
G(x) — G(2x)
G(x)
Thus u, = k*! and so by Theorem 2,
XM
S,

n

= (logx)* "

-1 as. iff 0<a<3i;
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this was already observed by Maller and Resnick (1984). But we can also say
that for r > 2,

S X® 1 r-1 r
lim inf = — iff <a< .
n— oo Sn r r r+1
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