The Annals of Probability
1987, Vol. 15, No. 4, 1501-1514

CONDITIONAL BROWNIAN MOTION IN RAPIDLY
EXHAUSTIBLE DOMAINS

By NEIL FALKNER

The Ohio State University

Let D be a domain in R? and let A, be the set of minimal points of the
Martin boundary of D. For x € D and z € A,, let (X,) under the law P* # be
Brownian motion in D, starting at x and conditioned to converge to z. Let 7
be the lifetime of (X,), so X,_ =2z P%* as. Let g € LP(D) for some
p > d/2. Under the assumption that D is what we call rapidly exhaustible,
which is essentially a very weak boundary smoothness condition, we show

that if the qua.ntity
E* % ex| § X,) ds
{ p[/{; Q( a) ] }

is finite for one x € D and one z € A,, then this quantity is bounded on
D X A,. This result may be viewed as saying, in a fairly strong sense, that the
amount of time (X,) spends in each part of D does not depend very much on
the minimal Martin boundary point z to which (X,) is conditioned to
converge.

Let D be a domain, i.e., an open connected set in R¢, where d > 2. Let 3 be a
point not belonging to D (we think of d as a “cemetery point”) and let £ be the
set of functions  from [0, 0] into D U {3}, such that {¢: w(t) = d} is of the
form [7(w), ] for some 7(w) € (0,00] and such that « is continuous on
[0, (w)). For 0 < t < oo, define X, on & by X,(w) = w(t). Let p/(x, y) be the
transition density for Brownian motion killed on exit from D. Given a positive
harmonic function 4 in D, let , p(x, ¥) = h(x)~'px, y)h(y). For each x in D,
there is a probability measure ,P* on @ under which (X,) is a Markov process
starting from x, with transition density ,p, This so-called h-path Brownian
motion was defined and studied by Doob [7], who showed that ,P* a.s., the limit

X, =limX,
ttr

exists in the Martin compactification of D and belongs to the set A, of minimal
Martin boundary points of D. Moreover, he showed that if 4 is the minimal
positive harmonic function in D corresponding to a point z € A,, then X,
z,P* as., so that ,P* may be interpreted as P* conditioned on the event that
X - = 2z. In this case, ,P* is also denoted by P*~ [Of course, P* =, P* is the
probablhty measure on £ under which (X,) is ordinary Browman motion
starting at x and killed on exit from D.] For the sake of concreteness, let us
recall (see [11]) that if D is bounded and Lipschitz, then A; may be identified
with 9D, the ordinary boundary of D.
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1502 N. FALKNER
Now let g be a real-valued Borel function in D, let
t
e(®) = exp| ['a(X,) ds]

for 0 < t < 7, and define the gauge u: D — [0, o] and the conditional gauge v:
D x A, - [0, o] by :

u(x) = E¥{e ()}, o(x,2) = Ex*{e,(r)}.

It is understood that suitable hypotheses must be imposed on D and ¢ to ensure
that e (7) is defined P** a.s. The main object of this paper is to prove a version
of the following result:

CONDITIONAL GAUGE THEOREM. Under suitable hypotheses on D and q, if v
is finite at some point (x4, 2,) € D X A,, then v is bounded on D X A,.

In [9] we proved this result for D bounded, with a C2? boundary, and q
bounded. Here we shall prove it for D rapidly exhaustible (see Definition 2) and
q € L?(D) where p > d/2. The condition of rapid exhaustibility is primarily a
very weak boundary smoothness condition on D. We prove that every bounded
domain that satisfies an interior cone condition (see Definition 4) is rapidly
exhaustible. However, even this small amount of boundary smoothness is by no
means necessary for a domain to be rapidly exhaustible, as we show by an
example. Let us also mention that if the dimension d = 2 and q is bounded, then
the conditional gauge theorem holds with no boundary smoothness condition on
D; it suffices that D have finite area. In [14] Zhao showed that if D is bounded
with C% boundary and q belongs to the Kato class (which contains L?(D) for
p > d/2—see [1]) and if u is finite at some point x, € D then v is bounded on
D X A,. Subsequently, he has proved the conditional gauge theorem for D
bounded with C''! boundary and ¢ in the Kato class. We remark that although
Zhao considers a wider class of functions ¢ than we do, the boundary smooth-
ness conditions he imposes on D are far more stringent then rapid exhaustibility.
One of the keys to Zhao’s proof of the conditional gauge theorem was the
following result:

Basic ESTIMATE. Under suitable hypotheses on D and q, E* ?[ [{|g(X,)| ds]
is bounded for (x, z) varying over D X A, and moreover, if C is a (Borel) subset
of D whose Lebesgue measure N(C) is small then E* ?[ [/|q(X,)| ds] is uni-
formly small in (x,2) € D X A,. (Here and elsewhere in this paper, 1,=
inf(t > 0: X, & C}.)

Chung [4], in an admirable simplification of the argument Zhao used, has
shown that in fact the conditional gauge theorem holds whenever the basic
estimate holds. He did not, however, improve on Zhao’s condition for the basic
estimate to hold: namely, D bounded with C'! boundary and ¢ in the Kato
class. We are indebted to Chung for sending us a preprint of [4]. In Theorem 1,
we prove the basic estimate for D rapidly exhaustible and ¢ € L?(D) for some
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p > d/2. The proofs of Lemma 2 and Theorem 2 (the conditional gauge theorem)
below are taken from [4] with a number of small changes that were needed to
dispense with some unnecessary assumptions.

It is a pleasure to thank Mike Cranston for giving us a preprint of his paper
[5] on the expected lifetime of conditional Brownian motion in Lipschitz do-
mains. We learned some key ideas from this paper. Corollary 1 is a generalization
of the main result of [5]. In this connection, let us point out that a rapidly
exhaustible domain need not be Lipschitz. Even if it satisfies an interior cone
condition, there is no reason why it should satisfy an exterior cone condition. A
more striking example is given below after the proof of Theorem 2.

We should explain why one cannot hope for the conditional gauge theorem to
hold without some boundary smoothness hypothesis on D (at least for d > 3). In
[6], Cranston and McConnell have given an example of a bounded domain D in
R3 having a minimal Martin boundary point z* such that for all x € D,
P% 21 = o0} = 1. Since D is bounded, E*{e*"} is bounded for some ¢ > 0. Then
E**e*} < oo for almost all (in the sense of harmonic measure) minimal Martin
boundary points z. But of course E***(e®*"} = o, so the conditional gauge
theorem does not hold for this domain. For those not familiar with the example
of Cranston and McConnell, let us just mention that the bad boundary point z*
is at the tip of a cusp that points outward from D. This cusp is actually
infinitely long, but is rolled up to fit into a bounded region.

Now let us explain why the conditional gauge theorem may be viewed as
saying, in a sense, that the amount of time (X,) spends in each part of D does
not depend very much on which minimal Martin boundary point we condition
(X,) to converge to. Suppose D is bounded and Lipschitz, so A, = dD and D is
rapidly exhaustible. Let z,, z, be distinct points of dD. Consider

c
q(x) = e

e — » 12-¢°
— 27"

where C, ¢ > 0. Then g € L?(D) for some p > d/2. Hence if
eXP[ f q(X,) dt]
0

has finite expectation when ( X,) is conditioned to converge to z,, it will still have
finite expectation when (X,) is conditioned to converge to z,. But in the former
case, one might have thought that (X,) would not spend too much time near the
pole of g, whereas in the latter case it slams head on into this singularity.

Next, let us recall some standard notation. For 0 < ¢ < o0, 6,: @ — Q is the
usual translation operator defined by (8,w)(s) = w(s + ¢). G: D X D — [0, o0] is
the Green function of D. It is related to the transition density for Brownian
motion killed on exit from D by the formula G(x, ¥) = [{°p(x, y)dt. If f is a
real-valued function on D then Gf(x) = [,G(x, ¥)f(y)dy for all x € D for
which the integral makes sense. We now turn to the detailed statements and
proofs of our results.

DEFINITION 1. An open ball B(p, r) with center p and radius r will be
called dilatable iff B(p,2r) C D. By a dilatable chain of length n from x to y,
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we shall mean a sequence B, ..., B, of n dilatable open balls, where successive
balls have nonempty intersection, such that x € B, and y € B,

REMARK. It follows from Harnack’s inequality that there is a finite positive
constant ¢, depending only on the dimension d, such that if A is a positive
harmonic function in D and if x and y are points of D that can be joined by a
dilatable chain of length n, then

(1) h(x) < c"h(y).

NotaTiON. Let us fix a reference point x, € D. For each x € D, let k(x)
denote the minimum number of balls in a dilatable chain from x, to x. For
n €N, let E, = {x € D: k(x) > n}. Let X denote Lebesgue measure on R<,

DEFINITION 2. We shall say that D is rapidly exhaustible iff for all a > 0,
we have

i ME,)® < .

n=0

REMARK. It often happens that A(E,) goes to 0 geometrically fast. For
instance, this is so if D is an open ball B(x,, r). In this case, E, = E; = D, while
for n > 2,

E,={x:(1-2"")r < lx — x4l < 7).

On the other hand, although A(E,) must go to 0 if A(D) is finite, it is easy to
construct examples in which A(E,) goes to 0 as slowly as desired and thus to
construct examples of domains D that are not rapidly exhaustible. For instance,
suppose D consists of a sequence of open balls, together with very thin tubes
joining successive balls. Then a large number of balls will be required in a
dilatable chain passing through the tube from one ball to the next. Hence it is
clear that by choosing the dimensions of the tubes correctly, one can make D fail
to be rapidly exhaustible.

REMARK. It is clear that whether D is rapidly exhaustible or not is indepen-
dent of the choice of the reference point x ,, although the sets E, depend on x .
It is also clear that whether D is rapidly exhaustible or not is independent of the
particular dilation factor (namely 2) that we choose to use in Definition 1. If we
define a ball B(x,r) to be a-dilatable iff B(x, ar) C D, and if we define an
a-dilatable chain accordingly, then given a number a satisfying 1 < a < oo,
there is a positive integer m such that if x and y lie in a dilatable ball B then
they can be joined by an a-dilatable chain of length m and vice versa. Hence
there is no real gain in generality to be obtained by considering dilation factors
other than 2.

DEFINITION 3. By a cone we shall mean the convex hull of a closed ball and
a point, called the vertex of the cone, which lies outside the ball. The line
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segment from the vertex of the cone to the center of the ball we shall call the
axis of the cone, while any line through the vertex of the cone and tangent to the
ball will be called a generator of the cone. All generators of a cone make
the same acute angle with its axis; this angle we shall call the vertex semiangle
of the cone.

DEFINITION 4. We shall say that D satisfies an interior cone condition iff
there is a cone C such that for all x € D, there is a cone C(x) congruent to C
such that C(x) is contained in D, and x is the vertex of C(x).

REMARK. In an earlier draft of this paper, we used a (strictly) stronger
interior cone condition. We are grateful to Jean Brossard for suggesting the more
general condition stated in Definition 4. Let us also note that this condition
implies that each point z € dD is the vertex of a cone C(2) congruent to C, such
that the interior of C(2) is contained in D. (To see this, let x — 2.) The latter is
a more usual definition of the interior cone condition. We have not tried to
determine whether the condition stated in Definition 4 is strictly stronger. For
our purposes, the important thing is that it is reasonably general and that it is
strong enough for the following result.

PROPOSITION 1. Suppose D is bounded and satisfies an interior cone condi-
tion. Then D is rapidly exhaustible.

ProoF. In fact, we shall show that A(E,) goes to 0 geometrically fast. Let C
and r be as in Definition 4. Observe that we can find a number p > 0 and a
positive integer N, such that if x € D with dist(x, dD) < p, then there is a
dilatable chain of length N from x to a point y € D satisfying

dist( y, D) > 2dist(x, dD).
This follows, by a similarity argument, from the fact that if dist(x, dD) is small
enough, then there is a point jy, on the axis of C(x), such that dist(y,, x) =
dist(x, dD)/4.

In view of the above observation, we will be done if we can show that there is
a constant A < oo such that
(2) A(9.D) < Ae,
for all sufficiently small ¢ > 0, where

3.D = {x € D: dist(x, dD) < ¢}.

[We remark in passing that if dD were smooth, then A(3,D) would be approxi-
mately & times the d — 1 dimensional measure of dD.] Let 6 be the vertex
semiangle of the cone C. It is clear that there are constants a > 0 and 8 < o
such that if ¢ > 0 and L is any line through the vertex of C, which makes an
angle of no more than 6/2 with the axis of C, then the linear (i.e., one
dimensional) measure of the line segment L N C is at least a, while the linear
measure of :
{y € Ln C:dist(y, 3C) < ¢}
is no more than Be.
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Let us digress for a moment. Consider a Borel set S C R such that for each
x € S, there is an interval I of length at least a, such that x € I and the linear
measure of I N S satisfies |I N S| < Be. Suppose n is a positive integer such that
diam S < na. Then |S| < 2nBe. To see this, it suffices to consider the case n = 1,
since if n > 1 then S can be divided into n pieces each of diameter < a. Let
a =infS, b =supS. Then 0 < b — a < a (unless |S| = 0). If I is an interval of
length at least a and I contains a point x € S, then either a or b must belong to
I or be an endpoint of I. Thus for each x € S, either |[a,x] N S| < Be or
I[x, 8] N S| < Be. Let

c=sup{x € S: |[a,x] N S| < Be}.

Then a <c < b, |[a,x] N S| < Be,and for all x € (¢, b] N S, |[x, b] N S| < Be,
whence |[c, b] N S| < Be. Therefore |S| < 2Be. This concludes the digression.

Now by the compactness of the unit sphere in R?, there is some finite set
{L,,...,L,} of lines through the origin such that any line through the origin
makes an angle no greater than 6/2 with some L,. Let L,(x) denote the line
through x parallel to L,. Given ¢ satisfying 0 <e < r,fori=1,..., m let B; be
the set of points x € d,D such that the line L,(x) intersects the axis of the cone
C(x) at an angle no greater than 6/2. Then ,.D =B, U --- UB,, so

m
3) Ma.D) < T A(B).

i=1
By the choice of a and B, if x € B;, then on the line L;(x) there is an interval
containing x, of length at least a, whose intersection with B; has linear measure
at most Be. Let 8§ = diam D. By the digression, it follows that the linear measure
of B,N L/(x) is at most 2nBe, where n is a positive integer chosen so that
8 < na. Then by Fubini’s theorem,

(4) A(B)) < 2nB8% e

From (3) and (4), (2) follows with A = 2mnB8?~1, This completes the proof of
the proposition. O .

REMARK. In a sense (2) says that the dimension of dD is no more than
d — 1, at least as viewed from inside D. More generally, if 0 < y < d, an estimate
of the form A(d,D) < Ae” would say that in a sense the dimension of 4D is no
more than d — y. Note that such an éstimate could have taken the place of (2) in
the proof of Proposition 1. As we shall see, there are rapidly exhaustible domains
whose boundaries are of fractional dimension strictly larger than d — 1.

NoTaTiON. We shall denote by H the set of positive harmonic functions 4 in
D satisfying h(x,) = 1.

+ THEOREM 1. Suppose D is rapidly exhaustible and q is a nonnegative
function belonging to LP(D) for some p > d/2. Then

(5) sup hEx{qu(X,) dt} < 0.
xeD, heH 0
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Moreover, for each € > 0, there exists 8§ > 0 such that for any Borel set C € D
satisfying M(C) < 8, we have

©® sup B [“9(X,) dt} < elal,,
x€D, heH 0
where 7, = inf{t > 0: X, & C}.

Proor. Since D is rapidly exhaustible, A(D) < o. Hence g also belongs to
L7(D) for 1 < r < p. Let r be chosen to satisfy d/2 <r <p and let 8 > 0 be
defined by p = (1 + B)r. Let a = B/p. We shall show that there is a constant
¢, < o0, such that

7) B ["a(X) dt) < cllgl, ¥ AE, 0 0"

n=0

Since D is rapidly exhaustible, (5) and (6) follow from (7). [To deduce (6), apply a
dominated convergence argument to the series on the right in (7).]
Let ¢ be as in (1). For each integer n, positive or negative, let

WA, = {x € D: "' < h(x) < "1},
#B, = {x € D: h(x) = c"}.
Since h(x,) = 1, it follows from (1) that ,A, C E,,, for all integers n. Let
R=inf{t>0: X,&, A,but X, €, A,, for some n}.

Note that
8) h(X,)/h(X,) <c for0<t<R.
Let S, =R,

Sps1=8,+Rebg, k=1,23,....
Then
(9) S, ATTT.

Indeed, if ¢ < 7(w), then since any open cover of the compact set [0, ] has a
Lebesgue number, there is a positive integer m such that for each / € {1,..., m},
there is an integer n for which X (w) €, A, for all s in the interval I,=
[(I = 1)t/m, It/m]. But then each interval I, can contain at most one S,(w), so

Spi1(w) > ¢

Now let T = 7, and let S, = 0. Note that for 0 < ¢ < oo, we have
(10) T=t+ To0, identicallyon {T > t}.
By (9) and (10),

T i Sy AT
[a(x)dt= ¥ 1s,cn [ " a(X,) dt
0 k=0 S

= kiol(sk<r}{[fRATQ(Xt) dt] ° os,,}‘

0
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Therefore, by the strong Markov property,

,,Ex{ fo Ta(X) dt}
(1)  =» E‘{fORATq(Xt) dt}

+ ¥ DB | [ a(X) ] 8, < T, X(,) €4 B
k=1 n 0
Now

0 (i

= fowEY{q(Xt)h(X,)/h(Xo); t<RAT,t<r)dt

< cEy{ [ "a(x,) dt} by (8).
0

Thus if we let

wM, = sup Ey{ f *Ma(x,) dt},

Y ehAn 0
then the first term on the right in (11) is no greater than c¥,,M,, while the
general term in the double sum there is less than or equal to
¢ M, ,P*{X(S,) €, B,}.
If #>2 and X(S,) €, B,, then during [S,_,, S,], the positive ,P*-super-
martingale (1/h(X,)) has either performed an upcrossing of [¢7*" ! ¢™"] or a
downcrossing of [¢™", ¢~ "*!]. Hence by the upcrossing and downcrossing in-
equalities, we have
% 1 c 2c

kglhp{x(sk)e,,B,,}51+c_1 te—g =

Inserting these estimates into (11), we obtain

2 _

T 3c c
(12) B [Ta(X) dt) < —— LM,
0 n
It remains only to estimate ,M,. We have
RAT T
B [*"a(x,) dt) < B{ [(a1cn,a,)(X,) )

(13) . = G(QICn,,A,,)(y)
=< G(qlcnz,,,,)(y)
<7l9lcng, -

for a suitable constant y < «. In the last step we have used Holder’s inequality:
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since r > d/2, sup, . pllG(y, )ll, = ¥ < oo (where r~! + s7! = 1). If d > 3, this

follows from the fact that G is bounded by the explicitly known Green function
of R% if d = 2, it follows from Lemma 1 below. Next, for any Borel set F C D,

1/r
latell, = { farL)

=< {”qr"(l +plLFlla+py

= {[fer ] Pacwypren)”

= llqll,AM(F)".

On taking F = C N E, in (14), and combining this with (12) and (13), we obtain
(7) with

}l/r

(14)

3c2—-¢

¢, =2y —1

This completes the proof of the theorem. O

REMARK. In [6] Cranston and McConnell showed that if the dimension
d =2, then ,E*(r} < ¢,A(C) for a suitable constant ¢, < oo. This holds for an
arbitrary domain D C R2 and c, is even independent of D. (See [3] for a simpler
proof.) Thus if q is bounded and p = oo, then the conclusions of Theorem 1 hold
for an arbitrary domain D C R? whose area is finite.

CoroLLARY 1. If D is rapidly exhaustible then sup, c p e yrE*(7} < .

Proor. This follows immediately from Theorem 1 on taking q = 1, but let
us point out that in fact,

WE*(1} < ¢; ¥ ME,)™7,
n=0

for a suitable constant ¢, < oo which depends only on d. This follows from the
proof of Theorem 1, together with the estimate E*(r} < ¢,A(C)%>, where
¢, < oo is another constant depending only on d. The latter estimate is proved
in [6] and also in [2], page 148ff. O

LEMMA 1. Suppose the dimension d = 2 and the area of D is finite. Then
there are constants c,, ¢, < o such that the Green function G of D satisfies

1
G(x, y) < max{ — “njlx -yl + ¢y, 02}
T

forallx, y € D.
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PrROOF. Recall that G(x, y) = [°p,(x, y) dt. Let t, = A(D)/7. Then
AMD) 1

2wt 2

P> t,) <

for all x € D. By the Markov property,
P*(r> nty) <27"
Thus for ¢t > nt,,

fpt(x, y)dy < P*(7>t) < P*(7> nty) <27"
D
But then for ¢ > (n + 1)¢,,

Pt(x: y) = fpt—to(x’ x,)pto(x" y) dx’

fpt to(x x’) dx’

2~7rt
2 n
= 2wty
Therefore,
0 (n+2)¢,
/ pt(x,y)dt= E/ ° p(x, y) dt
21, n=1"(n+Dt,
(15) 0 9~nr 1

<X

t —_—
ne1 27ty ° 2q
Next, by letting b = |x — y||, we have

2t0 2t0_1_ _b2/2t
j(; p(x, ¥) dtsj; 972¢ dt

1 ;0 e ®
= __f ds,
27 Jp2 /41, 8

where we have made the substitution s = b2/2¢. If b%/4¢, < 1, we have

1 4 1 1 o
dt < — ds + — “*ds
pt(x y) 27T '/1;2/4t s 2”-/]‘. e

(16)
1 4\(D)

= ——ln||x v+ ——ln— + —.

T 27

If, on the other hand, b%/4¢, > 1, then

1

(17) [px )t < o f ds= o~

On combining (15), (16) and (17) we see that we may take
1 4X(D) 1

1
2@ T T
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and

1
C2=_.
T

This completes the proof of the lemma. O

In the following result, which will be needed in the proof of Theorem 2, D
may be an arbitrary domain in R<,

LEMMA 2. Suppose C is a connected open subset of D such that K = D\ Cis
compact. Let F be a compact subset of C. Then

18 inf PYr. =71} >0.
(18) it P =)

Proor. We have
h(y) — (v, h)
h(y) ’

where f(y, h) = EY{h(X(7,)); 7, < 7}. But note that f(-, h) = Pgh, the réduite
of h over K, which is a potential since K is compact. From this and from the
connectedness of C, it follows that A — f(-, h) is strictly positive in C. Next, H
is compact when given the topology of uniform convergence on compact subsets
of D. This well-known fact follows from Harnack’s inequality and Theorem 2.18
in [10]. To finish the proof, it suffices to show that f is continuous on C X H.
Suppose y; = y in C and h; = h in H. Then for each x € C, f(x, h;) = f(x, h).
But the functions f(:, k;) are positive and harmonic in C, so it follows that
f(-, h;) = f(-, h) uniformly on compact subsets of C. Hence f(y;, h;) = f(y, h).
This completes the proof of the lemma. O

WPr, = 1) =

THEOREM 2. Suppose D is rapidly exhaustible and q € L?(D) for some
p > d/2. Let e (7) = exp[ [jq(X,) ds], which is defined a.s. because of (5). If
nE"{ey (1)} < oo for some (x4, hy) € D X H, then

sup ,E*e ()} < 0.
x€D, heH

Proor. First note that we can construct an open connected set C C D whose
measure A(C) is as small as we like and such that D\ C is compact. Indeed, d,.D
is open, D\ 9D is closed in R and bounded [otherwise D would contain an
unbounded sequence of balls of radius ¢, which would contradict the finiteness of
A(D)], and A(3d.D) - 0 as €/0. The only trouble is that d.D need not be
connected. However, it has only countably many connected components. [In fact,
only finitely many, since A(D) < o.] By joining together the components of d,D
with thin tubes through D of small measure, a set C of the desired sort can be
constructed. We shall take A(C) to be small enough so that

(19) b= swp B [la(X,)|ds) <1.
x€D, heH 0
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This can be done, by Theorem 1. It follows from (19) that
(20) E{ep| ["la(X,) ds) <

(To see this, expand the exponential, apply the Markov property and compare
with the series 1 + b, + b2 + --- ) Now let U be an open, relatively compact
subset of D such that D\ C C U. Then dU is a compact subset of C so by
Lemma 2,

21 b, = inf PYr,=17} >0.
(21) b= 0t aPYr =)

1-b,

(The connectedness of C is vital here.) Now we claim that there are constants
¢, > 0 and ¢, < o such that

(22) ¢ shE"{eq('r); T, =1} < ¢y

By (20), we can take ¢, = 1/(1 — b,). To find a suitable value for c,, we apply
(19) in conjunction with Jensen’s inequality,

hEx{eq('r) |'rc = 'r} >, Ex{e_lql(f) "rc = 'r}

> exp{—hE"[/OTIQ(Xs) | ds

o]

Thus we can take ¢; = b,e /%2, Now let T, = 0 and for n = 1,2,3,..., let

> e 0/t

Tyn1=Tono+1y°byp, ,,
Tyn=Ton-1+ 7c°0p, .

For ,P* almost all w, 7(w) < oo (by Theorem 1) and (X))o < <) 18 ulti-
mately outside every compact subset of D. For such an w, there exists an integer
n > 1 such that T,,(w) = 7(w) < co while T3n11(w) = oo. Therefore

wEH{eg(r)} = ¥ wE¥{ey(r); Top=r)
n=1
(23) "
= E hEx{hEX(Tzn_l)[eq(Tc); Te = T]eq(nn—l); T2n—l < T}’
n=1

where the second step follows by a straightforward calculation based on the
strong Markov property. From (22) and (23) we obtain

(24) cp(x, h) <, E¥{e (1)} < cpp(x, R),
vghere ‘b(x’ h) = Z;o-l(l)n(x’ h) and
o,(x, h) =hEx{eq(T2n-—l); Typ-1 < "'}

Ex{eq(Tzn—l)h(X(Tzn—l)); Typy < T}'

1
" h(x)
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By Harnack’s inequality, there are constants c¢; > 0 and ¢, < oo such that for all
heH,

(25) c;<h<ec, onlU.
By assumption,
nE{e (1)} < o0.
We may suppose that U was chosen so that x, € U. Hence, by (24) and (25),
E"O{eq('r)} < cyp(x4,1)

CoCy
é(xo, ho)
C3

IA

CoCy

c—lghoE“{eq(f)}

< 00.

IA

Hence
c; = sup E*{e (1)} < oo.
xelU

This follows from the “Harnack inequality” proved in [1], Theorem 3.10. (For a
simpler proof, see [13].) Then by (24) and (25), for x € U we have

wE*{ey(1)} < exp(z, )
—23—4¢(x, 1)

C2C4Cs
< —.

IA

(26)

C1C3
Finally, for x € D\ U,

hE"{eq(r)} =, Ex{eq('rc); T, = 'r} +5 E"{hEX(’c)[eq('r)] e (r); . < 'r}

CoCyC 1
0103 1—b1

by (20) and (26). This completes the proof of Theorem 2. O

REMARK. The conclusion of Theorem 2 also holds for an arbitrary domain D
of finite area in R2, provided g is bounded. This follows from the proof of
Theorem 2 together with the remark which follows the proof of Theorem 1.

ExaMPLE. We now describe a domain D in R?3 which is rapidly exhaustible
even though it does not satisfy a (uniform) interior cone condition. The boundary
of this domain is very rough: Its Hausdorff dimension is In20/In3 = 2.7. To
construct D, start with a unit cube. Then bore square holes of side 1/3 through
this cube in each of the three obvious perpendicular directions. What is left of
the unit cube may then be viewed as consisting of 20 cubes of side 1/3. Through
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each of these 20 cubes, bore square holes of side 1/9 in each of the same three
perpendicular directions. And so on. After the nth step, what is left of the
original unit cube consists of 20" cubes of side 37". (For a picture of what is left
at the fourth stage, see [12], page 145.) After this procedure has been repeated
infinitely many times, what remains of the original cube is a compact connected
set M which in [12] is called the Menger sponge. By the self-similarity of M, the
Hausdorff dimension of M may be easily computed (see [8], Section 8.3). It
comes out to be In20/In3. Now the domain D consists of the interior of what
was removed from the original cube. The boundary of D also has Hausdorff
dimension In 20/In 3, since it consists of M together with a certain subset of the
boundary of the original cube. Let I = {1,...,20}. Note that what is removed
from the cube at the nth step breaks up naturally into 20”~! pieces U,
s € I"1, each piece having volume (7,/27)271~". Thus the total volume of what
is removed at the nth stage decreases geometrically. Let x, be the “center” of
U.,. Clearly there is a positive integer / such that for any n > /, any s € I},
and any i € I, there is a dilatable chain of length / from x, to x, ;. Using these
observations, and the similarity of the pieces U,, one can readily check that D is
rapidly exhaustible. Indeed, A(E,) — 0 geometrically fast.
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