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THE RADIAL PART OF BROWNIAN MOTION ON A
MANIFOLD: A SEMIMARTINGALE PROPERTY!

By WILFRID S. KENDALL

University of Strathclyde

The usual Itd formula fails to apply for r(X) when r is a distance
function and X a Brownian motion on a general manifold, since r fails to be
differentiable on the cut-locus. It is shown that the discrepancy between the
two sides of It6’s formula forms a monotonic random process (and hence is of
locally bounded variation). In particular, r(X) is a semimartingale.

1. Introduction. A recurrent theme in stochastic differential geometry con-
cerns the use of comparison theorems to analyze the behaviour of Brownian
motion on a manifold. We refer for example to the papers of Malliavin (1974),
Debiard, Gaveau and Mazet (1976), Prat (1975), Vauthier (1972) and the survey
by Pinsky (1978). The basic procedure is as follows. Let M be a complete
Riemannian manifold. Given a fixed point p in M we can define the radius
function

r(x) = dist(x, p), forx € M,

as the distance in M of x from p. If X is Brownian motion on M begun at X,
then by Itd’s lemma

(1.1) r(X,)) - r(X,) = W, + ng‘Ar(Xs)ds,

up to the time that X leaves the domain of smoothness of r. Here A is the
Laplace—Beltrami operator for M and W is a real-valued Brownian motion.
Geometrical comparison theorems can be applied to bound Ar by some function
f(r), given suitable bounds on the sectional curvatures of M. Then a comparison
theorem for stochastic differential equations can be applied to deduce a bound
for r(X) in terms of Y, the solution to

(12) Y,- Yo= W+ & [(Y.) ds.
0

Greene and Wu (1979) give useful geometric comparison theorems, while Ikeda
and Watanabe (1981) provide an exposition of comparison theorems for stochas-
tic differential equations.

This procedure enables probabilistic proofs of theorems which give conditions
for X to explode, to be transient or to possess a 0-1 law at infinity. Examples
can be found in the papers quoted above, the book by Ikeda and Watanabe, and
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Elworthy (1982). Kendall (1981, 1983, 1986) and Goldberg and Mueller (1983)
discuss applications to geometric function theory. Kendall (1984) discusses a
similar result in which the point p is replaced by a geodesic.

The method suffers one irritating difficulty. For many manifolds M, r is not
smooth away from p. Of course, r is never smooth at p, but except in the
one-dimensional case the singleton { p} is polar.

If M is the unit sphere S2, then r is also not smooth at the point antlpodal to
p; again single points are polar and so can be disregarded. If M is the real
projective plane RP? (obtained from the unit sphere by identifying antipodal
points), then r fails to be smooth on “the circle at infinity” (the locus
derived from the great circle forming the equator if p is the north pole).
This set is not polar and in this case r(X) satisfies (1.2) in differential form
only while X does not belong to the circle at infinity. The full specification for
r(X) is obtained by requiring r(X) to undergo reflection whenever r(X) =
dist( p, circle at infinity) = #/2. More complicated examples can be constructed
by smoothly pasting portions of RP™ together with other parts of a Riemannian
manifold.

In general, it is not clear even whether r(X) is a semimartingale (actually this
is the case and shall be proved so in the course of this note). However, it is a
well-known principle among geometers that, “In order to compute an upper
bound of the Laplacian of the distance function, it is sufficient to perform the
computation within the cut locus of the point under consideration” (Yau, 1976),
since the same bound is then satisfied by the Laplacian as an operator on
distributions. This encourages us to suppose that r(X,) — [{U(X,) ds will actu-
ally be a supermartingale for a suitable positive function U.

The purpose of this paper is to give a relatively self-contained account of the
semimartingale property of r(X), proceeding along these lines.

We conclude this introduction by fixing some notation and stating the
theorem to be proved. As above, X will denote a Brownian motion on M and A
will denote the Laplace-Beltrami operator. The function r: M — [0, c0) will
always be the distance from a specified point p. It will be convenient to regard
X as arising from a stochastic system of Stratonovich differentials

d, X =%2d,B,
(1.3) d,==H:dX,
Xo = x, Eo = €0

where = is the lift of X to the frame-bundle O(M) using the Levi-Civita
connection and B is a Brownian motion on R™ the model space for M. The map
H; is the horizontal lift of TxyM to T-O(M). This construction is used in the
proof only to identify the martingale part of r(X) as being (grad r(X)=d;B
(Ito integral).

“The cut-locus C(p)is a geometncally defined subset of M with the properties
that r is smooth on M — { p} — C(p), that M — C(p) is a dense open subset of
M and that dist( p, C(p)) is positive. The definition and properties of C( p) are
discussed in Section 2.
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It is only necessary to discuss the case of compact M, in which case the
diffusion X does not explode to infinity and all the curvatures of M are bounded
above and below.

THEOREM 1.1. If M is compact, then we have
(14) (X)) = r(X,) = [‘grad (X)Ed,B + § [‘Ar(X,)ds — L,
(1] 0

where grad r and Ar are defined to be zero where r fails to be differentiable; and
L(?) is an increasing process, locally constant when X does not belong to the
cut-locus C(p). In particular, r(X) is a semimartingale. [N.B. [Fd,B is the It6
integral of F with respect to B.]

If M is noncompact, then a localization argument shows that (1.4) is satisfied
at least up to the first time that r(X) exceeds a given value. This is immediate
because we may alter M to be a compact manifold, altering M only outside a
suitably large ball. Consequently,

COROLLARY 1.2. If M is noncompact, then (1.4) holds up to the explosion
time
¢ = sup{¢t > 0: r(X) bounded on [0, t]}.

Of course, even if M is noncompact we may still have { = oo almost surely.
This follows from a comparison argument [applied to (1.4) but otherwise as
indicated above] when the Ricci curvatures of M are bounded below.

Theorem 1.1 is proved first by establishing basic geometrical properties of the
cut-locus in Section 2 and then by exploiting these to bound the difference
between the two sides of (1.1). The idea here originated in a geometrical setting
in the paper of Calabi (1958). Alternatively, it would be possible to prove the
result by using a generalized It6 formula as discussed by Brosamler (1970) and
Meyer (1978). However, we prefer a direct and relatively self-contained ap-
proach.

In conclusion we should note that the probabilistic consequences of the
geometrical principle noted above have already been investigated by several
authors, for example, Dodziuk (1983), Ichihara (1984) and Yau (1978). However,
the probabilistic interpretation given here is new.

2. Definition and properties of the cut-locus. Consider a compact mani-
fold M.

The analogue of the stochastic differential system (1.3) when the Brownian
motion B is replaced by a straight-line trajectory is the geodesic equation

. dy(¢t)/dt = £(,)D,
(2.1) d¢ (t)/dt = Hy,(dv/dt),
¥(0) =x, &, isa framein O,(M).
The solution y(1) depends smoothly on the initial conditions x, £,, v and is in
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fact a well-defined function of £,(v) an element of the tangent bundle TM. This
defines the exponential map, a smooth function

Exp: TM - M.

We write Exp, for Exp restricted to T, M.
Given u € S, M (the sphere bundle or set of unit vectors in 7,M) consider the
geodesic

v.(t) = Exp,(tu), fort>0.
The distance to the cut-point for u € S, M is
f(u) = sup{t > 0: dist(v,(¢), x) = ¢}

and the cut-locus at x is

C(x) = {v.(f(u)) = Exp,(f(u)u): ue S,(M)}.

Since M is compact we know f(u) < .

We require some basic facts about C(x) as expounded for example in Cheeger
and Ebin (1975). We refer to this book as C & E in the sequel.

A point y is conjugate to x along v, if it is a singular value of Exp, at some
point along the ray {ut: 0 < ¢ < f(u)} (C & E, page 18). The cut-locus is made up
of conjugate points and points where injectivity fails:

(C&E, Lemma 5.2) The cut-point v, f(u)) is the first point y along vy, for
which either

(a) y is conjugate to x along vy, or
(b) there is more than one geodesic of shortest length connecting y to x.

Since Exp, is injective on sufficiently small balls (C & E, page 8) we know f is
always positive.

Note that C(x) cannot intersect the half-open segment {y,(A f(u)): A € [0,1)}.
For otherwise a point ¥ = y,(A f(u)) is conjugate to x along another geodesic v,

However, dist(x, ) = A must equal the distance from § to x along v, (by
definition of the cut-locus) so this would contradict property (b) above.

LeEmMMA 2.1. The function r is smooth on M — { p} — C(p).

PROOF. An application of the inverse function theorem to Exp, shows that if
r fails to be smooth at y, then either there is more than one shortest geodesic
from p to y or y is conjugate to p along the shortest geodesic. O

The argument about r(X) depends on an interesting “monotonicity” prop-
erty of cut-loci.

LEMMA 2.2. Consider u € S(M), A € (0,1) and y = v,(f(v)) while 5 =
YA f(w)). Then

y & C(5).
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ProoF. By the definition of f(u) we have

dist(y, x) = f(u),

dist(F, x) = M f(u)
and hence by the triangle inequality

dist(y, ¥) > (1 - A)f(u).

But 7 is at distance (1 — A)f(u) from y along the geodesic vy,. Since x is at
distance f(u) from y along v, it follows that ¥ cannot be the cut-point for y
along v,. The characterization of C(y) given above (C & E, Lemma 5.2) assures
us that ¥ cannot be the cut-point for y along any other geodesic, and so
3 & C(y). But the symmetry property for cut-loci (C & E, Lemma 5.3) then
implies y & C(¥). O

Because M is compact the function f is everywhere finite. So from C & E
(Proposition 5.4) we know f: S(M) — (0, ) is continuous.
Let E, = {ve T,(M): v=_0or |o| <f(v/|v])} and E =U, qE(x) C TM.

THEOREM 2.3. Exp provides a diffeomorphism of E onto a dense open subset
of M X M via

(x,v) = (x,Expv).

ProoF. The complement of the image is given by
C={(x,y): yeC(x)}.
Moreover, by the remarks after the characterization of C(x) we know that the
minimal geodesic segment from x up to (but not including) y lies in E,.
Therefore C c Exp E.

From the characterization of the cut-locus it can be shown that Exp: E —
M X M is of full rank everywhere and injective. Hence it is a diffeomorphism
onto its image. Note that E is open by the continuity of f.

It follows from Sard’s theorem that C(x) is of measure zero in M. O

3. Analysis of r(X). As observed in the introduction it is enough to
consider compact M. Consequently, X is defined for all time and we can impose
bounds

—B? < Sect(M) < a2,
on the sectional curvatures of M and
p = inf{dist(x,C(x)): x € M}.> 0,
on the injectivity radius.

_ Consider the function g(u) defined for u € S(M) as the distance in M X M
(using the product-manifold metric) between the set C and the point-pair

(v.(f(w)u),v,(pu/3)).

By Lemma 2.2 we know g is everywhere positive. Since f is continuous the
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point-pair is a continuous function of u. By Theorem 2.3 the set C is compact.
Hence we can choose a positive § with

g(u) =8, forall uin S(M).

In addition, we may suppose & < p/3.
The function U: M — (0, o0) is defined by

m

2_ l,BcothBr(x), if r(x) < p/3,

m-—1
2

U(x) =

Bcoth Bp/3,  otherwise.

By the second-variation formula and comparison with hyperbolic space
H™ (- B2) [see, for example, Greene and Wu (1979)], we see

1Ar(x) < U(x), ifx & C(p).
That r(X) is a semimartingale follows if
r(X) - r(X,) - [U(X,)ds
defines a supermartingale. This in turn follows if
E(r(x,) _H(X,) - jO‘U(X,,) ds) <o,
for all X,, in M, since we may then apply the strong Markov property for X.

LeEmMMA 3.1. Suppose X, = x, € C(p) and T = inf{t > 0: dist(X,, x,) = 8}.
Then

tAT.

E{r(X,0r) - r(X;) = ["TU(X,) ds < 0.

PROOF. Let y(¢) = Exp,(tu) define a distance-minimizing geodesic from p to
x,. If

r*(x) = dist(v(p/3), x) + p/3,
then
r*(xp) = r(x,),
r*(x) 2 r(x), by the triangle inequality.

By choice of 8 we know r* is smooth at X, for ¢ < T and so r*(X) satisfies (1.1)
with obvious changes. If U* is constructed using dist(y(p/3), x) rather than
r(x), then (since 8 < p/3) we know

U*(X,) = U(X,), uptotimeT,
and moreover
1Art(X,) < U*(X,), up totimeT.
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Consequently,
tAT,
r(X,ar) = (%) = [7U(X,) ds

<t (Xoar) = r*(X) = [0 (X,) ds

and this last is a supermartingale of initial value zero and consequently has
nonpositive expectation. O

LEMMA 3.2.

E(r(X,)—fotU(Xs)ds) <r(X,), forallt, allX,.

Proor. Consider the stopping times T;, = 0,
S,=inf{t>T,_,: X,€ C(p)},
T, = inf{¢ > S,: dist( X,, X5 ) = 8}.

Let %5, #r,  be the o-fields of events occurring before S, T, respectively.
Then

E(r(Xo,n) = r(Xn, 0 = [¥ U(X) ds1 7, ) <0,

n—1/

by a straightforward comparison argument, while
T, At
E(r(XTnM) —r(Xg,r1) - j U(X,) ds| Z ) 0,

by Lemma 3.1. Consequently, the result follows if we can shew 7, = oo as
n — oo.
But the process

t - dist(Xg ,,, X )
(conditional on % ) can be compared with the radial part of BM(H™ (- 82))
begun at 0, as 1nd1cated in the introduction and using the bounds on Laplacians

of distance function discussed at the beginning of this section. Consequently, for
some ¢ > 0 we have

P{T,-S,>¢| %}
> P{BM(H™}(~B?)) remains in the ball of radius 8 until time e}

™=
.

It follows that T, — oo almost surely. O

We now know r(X) is the sum of an increasing process and a supermartingale,
and hence is a semimartingale. To establish Theorem 1.1 we need to discuss the
decomposition of r(X) into the sum of a local martingale and a process of locally
bounded variation.
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LEMmMA 3.3. If grad r is taken to be zero on the cut-locus C(p), then
[erad r(X)=d,B
is the martingale part of r(X).

Proor. By the martingale representation theorem [see, for example,
Dellacherie and Meyer (1982), Chapter 8, Theorem 62], we can find a vector-val-
ued process 7 such that

f nEd,B

is the martingale part of r(X). By Itd6 calculus we can show that the local
martingale

N= fnzd,B - /grad r(X)=d,B

must be constant on any stochastic interval during which X does not visit C(p).
Since the complement of C(p) is a dense open set, the set {¢: X, & C(p)}isa
countable union of stochastic intervals. Since C( p) is of measure zero and X has
a transition density it follows that {¢: X, € C(p)} is almost surely a null set. It
follows that the increasing process [ N, N] can increase only on the null set
{t: X, € C(p)}. Since [N, N] is absolutely continuous it must therefore be
constant, and, consequently,

[n=d;B = [erad r(X)=d,B. o
The proof of Theorem 1.1 is concluded by the following lemma.
LEMMA 3.4. If Ar is taken to be zero on the cut-locus C(p), then the process
L =4 [*Ar(X,)ds + [‘grad r(X)Zd,B
0 0
—(r(X,) - r(X,))
is an increasing process, increasing only when X € C(p).

Proor. Let Iy;=U,.([S,,T,], where S,, T, are as in Lemma 3.2 above.
Then it follows from the work of this section that

r(X) = r(X,) - ['srad r(X)=d;B

-3 . Ar(X;)ds— | U(X,)ds
H, g, o (XD ds = [U(X,)

is a decreasing process. The same holds when I is replaced by I; N I, ,: Let the
resulting process be — L™, From comparison of 3 Ar with U we know
L{P™ > L(P.n*D, Consequently, L(P>* = lim, , L™ is a decreasing process
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given by
—LP) = (X)) = r(X,) - [‘prad r(X)Zd,B
0

-3 Ar(X,)ds — | U(X,)ds,
Hf, oy Ar (X ds = [ U(X,)

where I, = lim, _, ,I; N I; ,,. Analysis of I, shows that it equals {¢: X, € C(p)}
which is the time set when X belongs to a set of measure zero. Since X has a
transition density it follows that I, has measure zero and so L(P:®) = L(P),
(That X has a transition density is a consequence of the regularity theory for
the strongly elliptic operator A.)

It is a consequence of It6’s lemma that L(®) changes only when X € C(p). O

From the construction L(?) is clearly related to some kind of local time on the
cut-locus C( p). This is exactly the case in our special example of R P2, It would
be interesting if such a relationship could be made precise in general.
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