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INVARIANCE PRINCIPLES FOR RENEWAL PROCESSES

By MIKLOS CsORGO,! LaJos HORVATH? AND JOSEF STEINEBACH®
Carleton University, Szeged University and University of Marburg

We present a general methodology for proving invariance principles for
renewal processes, resulting in almost sure and probability inequality ap-
proximations. We show that our obtained rates are best possible in the i.i.d.
case.

1. Introduction. Let {Z(¢); 0 < ¢ < o0} be a real-valued stochastic process
and define its inverse, or renewal process, N by

(1.1) N(t) =inf{x: Z(x) > ¢}, 0<t<oo.

The question we address in this paper is as follows. Suppose we have an
approximation for Z, then what can we say about a similar approximation for
N? In particular, assume for example that there exist positive constants p and o
and a standard Wiener process {W(¢); 0 < ¢ < oo} such that, as T — oo,
Z(t) — pt

(12) sup |2 )| -, oo,

0<t<T o
where r(T)? oo (nondecreasing, tends to o), and r(T')/T |0 (nonincreasing,
tends to zero). Then we would like to know what we can say about N in the like
manner.

Motivated by some problems in sequential analysis, Horvath (1984a, b, c)
studied renewals of partial sums. Posing the renewal problem in the above
. generality, Horvath (1986) proved that if r(T) is regularly varying at infinity
and r(T) = O((T loglog T)*(log T')'/?), then (1.2) implies

limsup (T loglog T) ™ "*(log T) ™"* sup |t/ — N(t) — (o/u)W(t/p)]|
(1.3) T-w 0<t<T
=, Vg2,

and also
lim sup (T loglog T) ~*(log T)™/? sup |N(t) + Z(t/p) — 2t/p|
(1,4) T— o0 0<t<T

=, 2W463/2 "1/,
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1442 M. CSORGO, L. HORVATH AND J. STEINEBACH

In (1.2) and (1.3) both stochastic processes Z and N are approximated by the
same Wiener process. By (1.4) we conclude that the best possible rate of any
joint approximation of Z and N is of order (T loglog T)*(log T')/%. This
phenomenon for the sup-norm distance of the uniform empirical distribution
function and its inverse, the uniform empirical quantile function, was first posed
by Bahadur (1966), proved by Kiefer (1970) and was extended by Csorgé and
Révész (1978) to the nonuniform case. Applications of the Bahadur-—Kiefer
phenomenon of (1.4) were given by Horvath (1985a, b) to strong laws for
randomly indexed U-statistics and to nonlinear renewal theorems.

The main aim of this paper is to construct best possible approximations for
N(t). From our discussions so far it is clear that any improvement of (1.3) can
only be accomplished in terms of a Wiener process which must:be different from
that of (1.2). Steinebach (1986) observed that N(¢) can be nearer to a renewal
process based on W(t) than N(t) itself to W(t). Here we first extend Lemma 5 of
Steinebach (1986) to our general setup. Then one can easily check that the
renewal process

(1.5) M(t) = inf{x: \WW(x) =t—x}, 0<t<oo,

where A is a positive constant, has stationary independent increments whose
moment generating function exists. Consequently, we can immediately apply the
Komlés, Major and Tusnady (1976) approximation to M(t). The latter then
combined with our general approach enables us to prove invariances principles
for N(t) which give a better rate of approximation than that of the joint one in
(1.3).

Section 2 is on strong approximation of M(t) of (1.5). A general almost sure
invariance principle for N(¢) of (1.1) is stated and proved in Section 3. When
applying the latter to renewals of partial sums of independent identically
distributed random variables (i.i.d.r.v.’s), we also demonstrate that the obtained
rates are the best possible. Some further examples are also given in Section 3. In
Section 4 we establish probability inequalities for the approximation of N(?),
which also result in bounds for the Prohorov-Lévy distance of N(¢) and its limit
process. The latter bounds will be shown to be optimal in the i.i.d. case again.

Without loss of generality we assume that the underlying probability space
(Q, #, P) is so rich that it accommodates all r.v.’s and processes introduced so
far as well as later on.

2. Approximation of M(¢t). Here we prove an auxiliary result.

THEOREM 2.1. Let {(W(t); 0 <t < oo} be an arbitrary standard Wiener
process, A > 0 a constant and M(t) as in (1.5). Then we can define another
standard Wiener process {W(t); 0 < t < o0} such that for all positive x we have

M(t) -t

T W(¢)

>AlogT + x} < Bexp(—Cx),

0<t<T

(;.1) p{ sup

where A, B and C are positive constants.



INVARIANCE FOR RENEWALS . 1443

Proor. We first show that for 0 < ¢, < ¢, < oo fixed
(2:2) {M(2,) — M(2,)IM(5); 0 < s < t,} = M(t,~t,).
On replacing x by x + M(t,) in (1.5), we get
{M(t,) — M(¢)M(s); 0 <s <t}
= {inf{x: A\W(x + M(t,)) = ¢, — (x + M(8;))}M(s); 0<s < tl}
= {inf{x: A\(W(x + M(t,)) — W(M(t,))) = t, — t, — x}|M(s);
0<s< tl}.

By the strong Markov property of the Wiener process we have that {W(x +
M(t,))) — W(M(t,)); x = 0} and {W(s); 0 < s < M(t,)} are independent. Also,
the o-algebra generated by {M(s); 0 < s < ¢t,} is contained in that generated by
{W(s); 0 < s < M(t,)}. Consequently, we get

{inf{x: A(W(x + M(t,)) — W(M(¢))) = ¢, — ¢, — x}IM(s); 0 < s < ¢t,}
= {inf{x: M(W(x + M(t,)) - W(M(t,))) = ¢, — t, — x}|W(s);
0<s<M())
=p inf{x: A\W(x) = ¢, — ¢, — x}
= M(t, - t,).

Thus we have (2.2), which in turn implies that M(¢) is a stationary independent
increment process.
Next, by Takacs (1967), page 82, for any y > 0 and ¢ > 0, we have

P{M(t) >y} = P{ sup (AW(x) +x) < t}

O<x<y

t=3\ e =Y
=<1>(}\y1/2) —~ o2t/ @( 7 )

(2.3)

This immediately implies that the moment generating function of M(t) exists in
a neighbourhood of zero. Consequently, p(¢) = EM(t) and o2(t) = E(M(t) —
p(t))? are finite for any ¢ > 0, and they are also continuous in ¢. Due to M(t)
being a stationary independent increment process, we get also that

p(t+s)=p(t) + p(s) and o%(¢t+ s) =02(t) + o*(s).
Hence, there exist two positive constants ¢, and c, such that
p(t) =c;t and o%(t) = cyt.
Since
(AW(nt) + nt) — nt
_ ni/2 = 910,11 W(2),
and M(t) is the inverse of AW{(x) + x, by Vervaat (1972) we have also
M(nt) — nt
}\nl/2

(2.4) —9[0,1] W(t).
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On the other hand, M(¢) being a stationary independent increment process, it is
immediate that

M(nt) — ¢;nt
(c2n)1/2
Hence by (2.4) and (2.5) we must have ¢, = 1 and ¢, = A%
In order to prove now (2.1) we first note that by the Komlbs, Major and

Tusnady (1975a, 1976) inequality [cf. Theorem 2.6.1 in Cs6rgd and Révész
(1981)], we have

(2.5) —9[0,1] w(t).

M(k) -k

L8 W)

(2.6) P{ > AlogT + x} < Bjexp(—C;x).

ax
1<k<[T]+1
Also,

M(k) — M(k - 1)
)

> Aylog T + x}

(2.7) P{ L<he(T]+1
< ([T]1+ 1)P(M(1)/A > A,Jog T + x} < Byexp(—Cyx),

due to M(1) having a moment generating function in a neighbourhood of zero.
We have also

(2.8) P{ sup |W([¢]) — W(¢) > Azlog T + x} < Bgexp(—C,x),

0<t<[T]+1

by Lemma 1.2.1 of Csorgd and Révész (1981). Combining now (2.6), (2.7) and
(2.8), we obtain (2.1). O

Using a somewhat different method of proof, Mason and van Zwet (1986) and
Csorg6, Horvath and Steinebach (1986) also proved Theorem 2.1.

3. Almost sure approximation of N(¢{) and examples. For any two
stochastic processes £(¢) and 7n(¢) the statement £(¢) <, n(¢) will mean that for
almost all w € Q there is a ¢, = ty(w) such that £(¢) < n(¢) for ¢t > t,. The
abbreviations

£(t) =,..0(n(¢)) and &(2) =, O(n(t))
will stand for
lim £(¢)/n(t) =0 as. and P{ﬁﬁsuplﬁ(t)l/ln(t)l<°°}=1-

Let {Z(t); 0 < t < oo} be a real-valued stochastic process, and let N(¢) be its
inverse as in (1.1).
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THEOREM 3.1. We assume that with some positive constants p and o we
have

(3.1) sup M

=1 O(r(T)),
0<t<T
where (W(t); 0<t< )} is a standard Wiener process, r(T)to and
r(T)/T }0. Then there exists a standard Wiener process {W(t), 0<t< oo}
such that

- W(¢t)

N(t) - t/u

(3.2) T

- W(t)| =

.. O(log T + r(T)).
0<t<T
Proor. By (3.1)
Z(t)/t>p as. as t—> ©
and hence
N(t)/t—>1/p as. as t— oo.
Thus for every & > 0 we have
(3°3) (1 - 8)/"’ Sa.s. N(T)/T =a.s. (1 + 8)/”“

The statement of (3.1) is equivalent to saying that there are two r.v.’s A = A(w)
and T, = T(w) such that

Z(t) — ut
sup A1) —wt <as. Ar(T),
0<t<T
forall T> T,.
Let
g
(3.4) M(t) = inf{x: W) =t - x}.

Next we show that for every ¢ > 0

(3.5) M( t/p— oAr( - et)/u) <as. N(t) <. M

This is so, for on using (3.1), (3.3) and the definition of N(t), we get
N(t) <, inf{x: x < (1 + &)t/p, Z(x) > t}
<. inf{x: oW(x) + px > t + 0cAr((1 + &)t/p)}
= M(t/p + oAr((1 + e)t/n)/n),
and the left-hand side inequality of (3.5) is proved similarly.

Using now Theorem 2.1 for M(¢), we have a Wiener process W such that with
some constant A,

1+
t/u+ oAr

)

M(t) -t

3.6
(36) sup | =

0<t<T

- W(t) <a.s. A410g T.




1446 M. CSORGO, L. HORVATH AND J. STEINEBACH
Also, from (3.5) we get

856 = o/ = S|

<

M(t/p, + oAr(

(3.7)

+ —E(W(t/u) + W|t/p + oAr

+ %(W(t/p,) - W(t/u — 6Ar

et)
=... O(logt) + o(( (

o ool 5]
=4,

where we applied (3.6) and Theorem 1.2.1 of Cs6rg6 and Révész (1981). Hence by
monotonicity of the rates in (3.7) we arrive at

1+¢
(3.8) sup . T ) ) .

N(t) — t/n - ~W(t/n)| =0
0<t<T 1

Now observing that, on account of r( i)T , we have

1+e¢
r

and, due to r(t)/t|}, we have
1+e 1+e¢
r( T)/(-—— T
M M

r( ! : ST) < max(l, ! : a)r(T).

1+
+(20A/p,)r(

= O(logt +r

O(logT +r

1+e¢
T)Sr(T), if . <1,

1+e¢
< r(T)/T, if >

we conclude
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Since W(¢) = p/2W(t/p) is a standard Wiener process, by (3.8) the proof of (3.2)
is now complete. O

Next we consider some examples.

ExampLE 3.1. Let X, {X;; i > 1} be iid.r.v.’s with
(3.9) EX=p>0 and 0<E(X-p)’=0%< .

Define Z(t) = X!_,X,. Then N(t), defined in (1.1), becomes the usual generalized
renewal process considered in the literature [cf., e.g., Feller (1966)].

THEOREM 3.2. Assume (3.9) and EH(|X|) < oo, where H(x) >0, x >0, isa
nondecreasing continuous function such that x~2~YH(x) is nondecreasing for
some y >0 and x~ llog H(x) is nonincreasing. Then we can define a standard
Wiener process {W(t); 0 < t < o} so that

N(t) - t/p .
3.10 sup |———— — W(¢)| =, O(G(T)),
(3.10) mp | = W) =, O(G(T))
for every € > 0, where G is the inverse function of H. If we also assume
(3.11) liminf H(8x)/H(x) > 0, forall § >0,
then

N(t) -t A
(3.12) '_('lT:z/ﬁ = W(t)| =, 0(G(T)).

0<t<T o/

ProoF. Koml6s, Major and Tusnady (1975, 1976) and Major (1976) [cf.
Theorem 2.6.6 in Cs6rg6 and Révész (1981)] constructed a Wiener process {W(¢);
0 < t < o0} such that

Z(t) — pt

(3'13) sup - W(t) Za.s. O(G(T))‘

0<t<T
On account of x~2"YH(x) being a nondecreasing function for some y > 0, we
obtain that H(x)/x 1 o0, x = o0, and so G(T')/T |0. Hence Theorem 3.1 im-
mediately implies (3.10). Now under condition (3.11) we have that (3.13) holds
true with O(8G(T")) for every positive constant 8 [cf. Lemmas 2.6.1 and 2.6.2 of
Csorg6 and Révész (1981)]. Therefore Theorem 3.1 implies also (3.12). O

REMARK 3.1. Due to Z(t) being defined as a partial sum of ii.d.r.v.’s the
Blumenthal 0-1 law [cf. Itd and McKean (1965)] implies that the constant of
O(G(T)) in (3.13) is nonrandom. Therefore the statement of (3.10) is equivalent
to, .
N(t) - t/p

su
3/2
0<t<T o/p /

where A; is a constant.

(3'14) - W(t) <as. A5G(T)’
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We now turn to the question of optimality of the obtained rate in Theorem
32.Let X = —-(0AX)and X*T=0V X.

THEOREM 3.3. Assume (3.9) and that
(3.15) Eexp(sX~) < o0, in a neighbourhood of zero.

Let G(T)1 o be a positive continuous function, G(T)/ T |0, 1og T/G(T') bounded
and H be the inverse function of G. If there exists a standard Wiener process
{W(¢); 0 < t < oo} such that

N(t) - t/p

3.16 - W(t)| =,.. 0(G(T)),

(3.16) sup | =D~ W(0)| =, OG(T))

then \

(3.17) EH(K|X|) < w0, forsomeK > 0.
Proor. Let

Y(¢) = inf{x: N(x) > ¢}, 0<t<oo. X
Then Theorem 3.1 implies the existence of a standard Wiener process {W( t);
0 <t < oo} so that

(3.8 awp | TOZE |-, o(ac)).

0<t<T
Let R,, R,,... be the ascending ladder points of the process {Z(¢); 0 < ¢ <
o0}, and put
I]i=Ri_Ri-l and ‘/t=Z(Rz)_Z(Rt—l)! i=1’29""
with R, = 0. Then by Feller (1966), Chapter 12, we have that

(3.19) {(U,V,); i > 1} arei.i.d.r. vectors,
and that, as n — oo,
(3.20) R,/n—,, c>0.

We observe that
Y(t) = Z(Rt), if ‘Ri—l < t < Ri'
Hence by (3.18) and (3.20) we get

Z(R;) - pR;

sup - ﬁ:’(Rl) Za.s. O(G(R[T]))

(3-21) 1<i<T
=..s. 0(G(T)).

Next we show that :
(3.22) Eexp(sU,) < o0, in a neighbourhood of zero.

In order to see this, we recall that the {X;; i> 1} are iidr.v.’s. Also, by
definition

P(U,>n} =P{Z(1)<0,...,Z(n) <0}
< P{Z(n) <0} < Eexp(sZ(n)) = (Eexp(sX))", s<0.
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Hence by (3.15) and the assumption that EX = p > 0,
P{U, >n} <p", forsome0<p<1,
we get (3.22). The latter in turn implies

(3.23) sup U;=,,. O(logT).

1<i<T
Consequently, by Theorem 1.2.1 of Csérg6é and Révész (1981) we get
(3.24) sup |[W(R,) -~ W(R,_,)| =,.. O(logT).

1<i<T

On combining now (3.21), (3.23) and (3.24) we obtain
(3.25) sup V;=,, O(G(T)).

1<i<T

Hence, on account of (3.25) and recalling that the {V;; i > 1} are i.i.d.r.v.’s by the
Kolmogorov 0-1 law with some constant K, > 0, we have

P{V,> K\G(i)i.0.} = 0.
Consequently, by the Borel-Cantelli lemma,

2 P{V;> K\G(i)} < o,

i=1
which in turn implies [cf., e.g., Corollary 3 on page 89 of Chow and Teicher
(1978)]

(3.26) EH(KV,) < «, forsome K > 0.
We have also

EH(KV,) > H(KZ(1)) dP = H(KX) dP
(3.27) (KV,) ng (KZ(1)) f{m} (KX)

> EH(KX*) — H(0).
Thus by (3.15), (3.26) and (3.27) we conclude that (3.17) holds true. O

THEOREM 3.4. Assume (3.9) and
(3.28) E(X") < o, forsomer> 2.

Let G(T')1 o0 be a positive continuous function, G(T)/T |0 and H be the
inverse function of G, satisfying the condition that H(x)/x" is bounded. If there
exists a standard Wiener process {W(t); 0 <t < oo} such that

N(t) -t A
(3:29) sup —(lW/M = W(t)| =5 O(G(T)),
o<t<T| O/M .
then
(3.30) EH(K|X|) < o, forsomeK > 0.
Proor. Following the lines of proof of Theorem 3.3 we arrive at
Z(R;) — nR; 2
(3.1 sup [ZRLZER )| -, o(a(r)).
1<i<T o
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Next we show that
(3.32) EU/ ! < .
By Theorem 1 on page 362 of Chow and Teicher (1978) we have
EU/ '= Y n""'P{U, = n})

n=1

<1+ i ((n +1)77 - n’”l)P{ lrggnZ(i) < 0}

<1+(r-1) ) n"ZP{ max Z(i) < O}
<i<n

n=1

=1+(r-1) i n"zP{n — max Z(i)/p = n}

n=1
o0
<1+(r-1) Y)Y n"zP{ max (i — Z(i)/p) = n} < o0,

n=1 1<i<n
provided E((—(X — p))*)" < 0. The latter condition in turn holds true by
(3.28). Now (3.32) and (3.19) give
(3.33) sup U, =,, O(TVD).

1<i<T

Hence by Theorem 1.2.1 of Csorgé and Révész (1981)

(3:34) up [W(R,) ~ W(R;.)| =, o(TV").
<i<
Therefore by (3.31) and (3.34) we get
(3.35) sup |V; — Upl =, 5. O(G(T)).
1<i<T
Using now (3.19) and (3.35), by the Borel-Cantelli lemma we obtain
(3.36) EH(K|V, — U,p|) < 0, forsome K > 0.

An estimation, similar to that of (3.27), now gives EH(KX™") < oo. This also
completes the proof of (3.30). O
COROLLARY 3.1. Assume (39) and P{X >0} = 1.
(i) There exists a standard Wiener process {W(t); 0 < ¢ < oo} such that
' N(t) —t/n
up |———5— — W(¢)| =, O(logT),
o<t<T| 0/ p? (&) ( )

if and only if E exp(sX) < oo in a neighbourhood of zero.
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(ii) There exists a standard Wiener process {W(t); 0 <t < oo} such that

N(t) — t/p
————— — W(t)| =, o(T"), forsomer>2,
o<t=r| o/b*? (£)] =as. of )

if and only if EX™ < c0.

EXAMPLE 3.2. Let X = (X,..., X®¥) (X;; i > 1} be a sequence of ii.d.r.
vectors in R¢, d > 1, with mean p. We assume

(3.37) EIXYI'<w, '1l<j<d, forsomer>2.
Let h: RY > R be a function which satisfies the following regularity conditions:

h is homogeneous of degree one, i.e., for all x € R% and A > 0,
h(Xx) = Ah(x),

(3.39)  h(p) >0,

(3.40) h has continuous partial derivatives of the second order in a
) neighbourhood of p.

The partial sums of the random vectors are denoted by S(¢) = X!_,X,. We
define the extended renewal process N*(¢) by

N*(t) = inf{x: h(S(x)) > tx?}, O<p<1.

We note that (3.38) and (3.39) imply in general that p # 0. If A is any norm
inducing Euclidean topology in R¢, then (3.38) and (3.39) are automatically
satisfied with p # 0 and (3.40) usually places a condition on the expectation
vector p = EX. In particular, if

d 1/2 d
h(x) = ( gle) or h(x) = §1|le’

then (3.40) is satisfied if and only if the components of p are all different from 0.
If h(x) = max, _;_4%;|, the L norm, then we find that (3.40) is satisfied if and
only if the components of p are different from each other and from 0. In these
cases when p = 0, N*(¢) denotes the instant when d-dimensional random walk
leaves for the first time the sphere of radius ¢ about the point 0 for the norm A.

The case of h(x) =x, 0 < p <1, was considered by Gut (1973, 1975) who
preved functional central limit theorems for extended renewal processes of this
special case. Horvath (1984c) developed a strong approximation approach and
Bahadur-Kiefer type representations for extended multidimensional renewal
theory in the above-described general setup. For further references we refer to .
Gut (1973, 1975) and Horvath (1984c).

By (3.40) the function A has continuous denvatlves in p, and on setting

vh(p) = (3h/dx,,..., 3h/0%y) xm )

we define 02 to be the second moment of VA(p)X — p)’ (where ’ denotes
transpose) and assume

(3.41) 02> 0.

(3.38)
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THEOREM 3.5. Assume (3.37)—(3.41) hold true. Then we can define a stan-
dard Wiener process {W(t); 0 <t < oo} such that

N () - (h_(%)w_ qh:u) W((h(tu))l/q) -

where q =1 — p.

sup _o(T'm),

0<t<T

a.s

PrOOF. Let
h(s(¢)) \"*
LGOI
tPh(p)
Horvath (1984c), Theorem 2.2, constructed a Wiener process {W(t); 0 < ¢ < o0}
such that

(3.42) sup 2e) =8 W(¢)| =a.s. o(TV").

o<t<|9/(qh(p))
Let N(t) be the inverse of Z(¢) as defined in (1.1). Then Theorem 3.1 gives

N(t) -t
(8.43) o225k

Now observing that N(¢) = N*(¢7h(p.)), we obtain Theorem 3.5 from (3.43). O

W(t)| =,.. o(TV").

ExXAaMPLE 3.3. The result of Theorem 3.2 can be extended to also cover
sequences {X; i > 1} of non-iidr.v’s. Let Z(t) = £!_,X;. Many authors [cf,
e.g., Philipp and Stout (1975), Berkes (1975), Berkes and Philipp (1977, 1979),
Kuelbs and Philipp (1980), Berkes and Morrow (1981), Sahanenko (1982) and
Sun (1984)] proved strong invariance principles for partial sums of r.v.’s under
various dependency structures. A general formulation of these types of results
can be stated as follows. There exist constants p and ¢ > 0 and a standard
Wiener process {W(¢); 0 < ¢ < oo} such that
(3.49 sup [ZZ8 ()| =, o1,

0<t<T o
for some 0 < p < 1/2. If p > 0, then (3.44) immediately implies a strong ap-
proximation theorem for the renewal process of {X;; i > 1} via Theorem 3.1.

Recently Janson (1983) considered renewals of stationary m-dependent r.v.’s,
obtaining a central limit theorem. We extend the latter result into a strong
approximation theorem. We assume

(3.45) X, {X;; i > 1} are stationary m-dependent r.v.’s,
m-—1
(346) p=EX>0, o2=E(X-p)’+2Y cov(X,,X;,;)>0
, i=1
and
(3.47) E|X|" < o0, forsomer> 2.

Let N(t) be the renewal process of Z(t), defined as in (1.1).
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THEOREM 3.6. Assume (3.45), (3.46) and (3.47) hold true. Then we can
define a standard Wiener process {W(t); 0 <t < oo} such that

sup N(t) —t/p
0<t<T O/F'3/2

forall p > 5/12 + 1/(6r).

- W(t) =a.s. O(Tp)’

PrOOF. Philipp and Stout (1975) proved that (3.44) is satisfied with p >
5/12 + 1/(6r). Consequently, Theorem 3.1 implies the result. O

ExamMpLE 34. Let {{; i>1} be iidr.v’s with continuous distribution

function. For integer p > 1 we say that £,,..., £, , is a run down of length p if
Er1<&p Er>6ne1> 0 > pips Spap S Epipar Let N(®)(n) be the smallest
such integer for which the sequence §,,..., £y, contains exactly n run downs
of length p.
We define
X, = 1{51: Séprr Epr1 > Epa2> 0 > Epipats Spaper < £k+p+2}’

where I{A} is indicator function of event A. Then the sequence {X;; i > 1} is
stationary and {p + 3)-dependent. Levene and Wolfowitz (1944) and Wolfowitz
(1944) computed

p=EX, =(p*+3p+1)/(p+3)
and

p+2
o’ =E(X, - I‘*)2 +2 ) cov(X,, Xi41)

i=1
= (p*+3p+1)(p®+2p%+ 2p — 4)/(p!(p + 3)!).

Introduce now Z(¢) = X!_,X; and N(t), the inverse of Z(¢) defined as in (1.1). It
is easy to see that

(3.48) N®P(n)=N(n-1)+p+ 2.

THEOREM 3.7. Assume that the conditions in Example 3.4 are satisfied.
Then we can define a standard Wiener process {W{¢); & < ¢ < oo} such that
N®(@) —i/p .
——a I = 4
1siasxn o/na/z W(l) a.s. O(n )’

for all p > 5/12.
Proor. Immediate by Theorem 3.6 and (3.48). O

Other processes based on runs were considered by Pittel (1980), Révész (1983)
and Horvath (1986).
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4. Probability inequalities for N(¢) and examples. So far we have con-
centrated on almost sure approximations of the renewal process N(¢). Frequently
there are probability inequalities available for Z(¢), and then it is only natural to
ask whether these inequalities could also be inherited by its inverse N(¢). One of
the aims of this section is to answer this question.

THEOREM 4.1. We assume that with some positive constants p and ¢ we
have

20 —w > (7)) < (1),
0<t<T o

where {(Wy(t); 0 < t < oo} is a standard Wiener process for each T, x(T) > 0,
y(T) > 0, and for some ¢ > 0,
(42) clogT < x(T) <x(T) <x9(T), =x9(T)/T—>0, T- co.

Then there exist standard Wiener processes {WT(t); 0 < t < o0} such that for
each positive a we have

N(t) — t/p
43) P —_—
(43 {OE‘ET o/p?

where C, = C,(a) and C, are constants.

= Wi (?)

(41) o s

- Wi(2)| > Clx(zT/"')} < Co(y(2T/p) + T7°),

ProoF. We have
P{N(T) > 2T/p} < P{Z(2T/p) < T}
= P{Z(2T/p) - 2T < - T}
W (2T —T+ ox(2T/p’
<y(@2T/p) + P{ ° 251/2/“) = ;ic/(z /k) }
< y(2T/p) + K.exp(—K,T),

where K, and K, are positive constants. Let

(4.4)

. o . .
My(t) = {mf{x. ;WT(x) =t x}, if £ >0,

0, otherwise.

We prove
t 1 t 1
P Moy = = S5(ET/0)) 5 N(O) < My + S2@T/m))

(45) 0<t< T}

>1- (4y(2T/n) + 2K exp(—K,T)).
The proof of (4.5) is like that of (3.5), only we use (4.4) here instead of (3.3), and
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(4.1) instead of (3.1). By Theorem 2.1 we can define standard Wiener processes
{Wr(2); 0 < t < oo} such that for each positive K and A,

My, (2) — ¢
46) P{ su B
(46) {OstsK o/p

where a, B and C are constants of Theorem 2.1. Next by Lemma 1.2.1 of Cs6rgd
and Révész (1981) we have

— Wr(2)

> Alog K + }\} < Bexp(—C}),

- 1 -
(4.7) P{ 021:27' WT(t " ;x(ZT/u)) - Walt)

< K,T'%/3/x(2T /).
Given a > 0, we choose K, so that ‘
K, T %/3/x(2T/p) < T~
By condition (4.2) there is a constant K such that

1 1/2
> ( K3;x(2T/u)log T) }

1 1/2
( K3;x(2T/p)log T) < K.x(2T/p).

Consequently, by (4.7) we obtain

(4.8) P{ sup |Wy,

0<t<T

t+ ;lt-x(ZT/u)) - Wp(t)| = st(ZT/p)} <T

and a similar argument yields also

(4.9) P{ sup |Wp(t) — WT(t - %x(2T/p,)) > K5x(2T/u)} <T~

0<t<T

On letting Wy(2) = p/2Wy(t/p), we get a standard Wiener process for each T.
Using now (4.6) with K = T/p = (1/pu)x(2T/p) and A = (a/C)log T, (4.5), (4.8)
and (4.9) result in (4.3). O

Now we illustrate the usefulness of Theorem 4.1 by a few examples.

ExaMpLE 4.1. Let X, {X;; i > 1} be iid.r.v.’s as in Example 3.1. We give a
probability inequality version of Theorem 3.2.

THEOREM 4.2. Assume (3.9) and EH(|X|) < oo, where H(x) > 0,x >0, isa
nondecreasing continuous function such that x~2~YH(x) is nondecreasing for
some vy > 0 and x“Allog H(x) is nonincreasing. Then we can define a standard
Wiener process {W(t); 0 <t < oo} so that for x € (DG(T), D(T log T)'/?)
and every a > 0 we have
N(t) —t/p

o/u¥?
where G is the inverse function of H and D,, i = 1,...,4, are constants. If we

- W(¢)

(4.10) P{ sup > x} < D(T/H(Dyx) + T™*),

0<t<T
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also assume (3.11), then
N(t) - t/p
o/u/?

where Dy — 0 as T — .

- W(t)

(4.11) P{ sup > x} < Dy(T/H(Dyx) + T~°),

0<t<T

Proor. Komlés, Major and Tusnady (1975a, 1976) [cf. Theorem 2.6.7 in
Csorgo6 and Révész (1981)] proved

Z(t) — pt

(4.12) P{ sup - W(¢t)

0<t<T
for every x € (G(T), D,(T log T')'/?), where {W(¢); 0 < t < o0} is a standard
Wiener process. Using (4.12) and Theorem 4.1, (4.10) is proven. Now by Lemmas
2.6.1 and 2.6.2 of Csorgd and Révész (1981), (4.10) implies (4.11). O

> x} < Dy(T/H(Dyx)),

A usual application of inequalities like those of Theorem 4.2 is the estimation
of the Prohorov-Lévy distance d of measures generated by N and its limit
process. Let

N(sT) — sT/p

LT(S) = Tl/zo/p3/2 ’ 0<s<1l,

and let L, be the probability measure generated by the latter stochastic process.
Write W for the Wiener measure.

COROLLARY 4.1. Assume (3.9) holds true.
(i) If E(exp(tX)) < oo in a neighbourhood of zero, then
d(Ly, W) = O(log T/T?).
(ii) If E\X|" < oo for some r > 2, then
d(Lp, W) = o(T~(r=2/2r+h),

Proor. It is well known [cf. Koml6s, Major and Tusnady (1975b)] that

(413) d(Lp, W) < Oinfl(e + B sup |Ly(s) = W(sT)/T"2 > s})

0<s<l1
In case of (i) we let ¢ = Dglog T/T'/%, where Dy is large and use (4.10) with
x = €¢T'/% and a = 1. In the case of (ii) let ¢ = D/"*DT~("=2/CGr+2) gnd use
(4.11) with x = eT? and a = 1. O

We note that, using a different method, Corollary 4.1 was proved by Borovkov
(1982) in the special case of P{X-> 0} = 1. For related results we refer to Csérgo,
Deheuvels and Horvath (1987).

REMARK 4.1. If P{X > 0} = 1, then the inverse of the renewal N(¢) is the
original partial sum. Hence the optimality of the Prohorov-Lévy distance for
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partial sums is inherited by L;. In particular, if {X;; i > 1} are Poisson r.v.’s
with mean one, then there is a constant D, > 0 such that

d(Ly, W) > Dylog T/T"2.

Also, for any function w; — o0, T — o0, there exists a positive r.v. X with
EX" < oo for some r > 2, such that
limsup w,p T~ =2/Cr+2d(L,., W) = o0
T-o
These two statements follow immediately by Theorems 4 and 5 of Komloés,
Major and Tusnady (1975b) and our Theorem 4.1.

When the moment generating function of X exists, then Komlds, Major and
Tusnady (1976) proved a more precise inequality than the one used in (4.12).
Using the latter inequality we can slightly improve upon (4.10) as follows, in this
special case.

COROLLARY 4.2. Assume (3.9) and that E(exp(tX)) < co in a neighbourhood
of zero. Then we can define a standard Wiener process {W(t), 0<t?< o0} such
that for every x > 0,

N(t) —t/p
P{ sup —m
0<t<T o/

where A, B and € are positive constants.

- W(¢)

> Alog T + x} < Bexp(-Cx),

ProoF. We follow the proof of Theorem 4.1. However, instead of (4.1) we use
the Komlos, Major and Tusnady (1976) inequality

(4.14) P{ sup E(-—t)—o—_—”—t— w(t)

0<t<T

> AllogT + x} < Blexp(—élx),

where A,, B, and C, are positive constants and {W(¢); 0 < ¢ < o0} is a standard
Wiener process. First, similar to the proof of (4.4), one gets

P{N(T) > 2T/p + c,x} < cyexp(—c3x),
and then we obtain '
P{M(t/p — (cJogT + czx)) < N(¢) < M(t/pn+ (cogT + c5x)),0 <t < T}
> 1 — cgexp(—cqx).
Now the latter combined with Theorem 2.1, and Lemma 1.2.1 of Csorg6 and
Révész (1981) completes the proof. O

We note that Corollary 4.2 was also proved by Mason and van Zwet (1986)
and by Cs6rgd, Horvath and Steinebach (1986).

EXAMPLE 4.2. Many authors worked on establishing Prohorov-Lévy dis-
tance rates for partial sums of non-i.i.d.r.v.’s. These results can be inverted into
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Prohorov-Lévy distance rates for the renewals of the said sums via Theorem 4.1.
Here we will only consider such results for m-dependent r.v.’s. We will again use
the process {L;(s); 0 < s < 1} of Example 4.1, where now N is the renewal of
stationary m-dependent r.v.’s.

THEOREM 4.3. Assume (3.45), (3.46) and (3.47) hold true with r > 4. Then
(4.15) d(Lz, W) =o(T""),
where p < r/(6r + 6).

Proor. Kanagawa (1982) proved that there are standard Wiener processes
{Wr(t); 0 < t < oo} satisfying

(4.16) P{ sup M - Wr(2)

0<t<T

> 8T(1/2)“’} <8T~",

for every 8 > 0. Using Theorem 4.1 we get
N(t) - t/p
o/u"

for every & > 0, where the Wiener processes WT are those of Theorem 4.1. By
(4.13) we get that (4.17) implies (4.15). O

- Wi (1)
0<t<T

(4.17) P{ sup

> 8T(1/2)—P} < 8T—P’

EXAMPLE 4.3. This example is on runs down of Example 3.4. Let
NP(sT) — sT/u

(p) =
L; (S) - ' T1/20/M'3/2 ’

0<sx<l.

THEOREM 4.4. Assume that the conditions in Example 3.4 are saftisfied.
Then

d(LP, W) = o(T~*),
where p <1/6.

PrROOF. We noted in Example 3.4 that N is a renewal of bounded
stationary (p + 3)-dependent r.v.’s. Therefore Theorem 4.3 implies Theorem
44.0 '
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