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COVERING PROBLEMS FOR BROWNIAN MOTION ON SPHERES'

BY PETER MATTHEWS
University of Maryland, Baltimore County

Bounds are given on the mean time taken by a strong Markov process to
visit all of a finite collection of subsets of its state space. These bounds are
specialized to Brownian motion on the surface of the unit sphere =, in R?.
This leads to bounds on the mean time taken by this Brownian motion to
come within a distance ¢ of every point on the sphere and bounds on the
mean time taken to come within ¢ of every point or its opposite. The second
case is related to the Grand Tour, a technique of multivariate data analysis
that involves a search of low-dimensional projections. In both cases the
bounds are asymptotically tight as ¢ > 0 on =, for p > 4.

1. Introduction. The Grand Tour, as described in Asimov (1985), is a
technique of data analysis that involves visual examination of a sequence of low-,
typically two-, dimensional projections of a p-dimensional data set. Here a
one-dimensional Grand Tour, a sequence of one-dimensional projections, is
considered. One technique to construct a one-dimensional Grand Tour is to
generate a random walk on the surface of the unit sphere 2, in R? and to look
at the projections of the data onto the sequence of lines spanned by the sequence
of points visited by the random walk. If the random walk takes small steps, then
adjacent projections in the Grand Tour will be close together, a desirable quality
for visual inspection. A quantity of interest is the number of steps taken by the
random walk until the sequence of projections has come within an angle ¢ of
every projection. This is the number of steps taken until the points visited by
the random walk and their reflections in the origin are within a geodesic distance
e of every point on the sphere, or the number of steps taken until caps of
geodesic radius e about these points cover Z . Call this the two-cap problem for
the random walk. There is an analogous one-cap problem, the number of steps
taken until caps of radius ¢ about the points visited (and not their reflections)
cover X . ,

Next consider Brownian motion on X ,. Analogous covering times for Brownian
motion are of interest in their own right, and bounds on their expectations can
give asymptotic bounds on expected covering times for random walks as the step
sizes of the random walks shrink to zero. Let C,(¢, p) be the first time a
Brownian path on 2, has come within a distance ¢ of all points of =, and define
Cy(e, p) analogously for the two-cap problem. This article gives upper and lower
bounds on EC,(¢, p) and ECy(¢, p). For Brownian motion with scale parameter
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A on =, the bounds are asymptotically tight as ¢ —> 0 for p > 4 and yield
l_‘(p +1 )
D p—1 log(e™?!
d 2 g( ) (1 +0

A p-3 (E) eP~3
r 2

(1.1) ECy(e, p) =

loglog(e~?) ))
log(e™?)

and
p+1
4/m p—1 P(T) log(e™") (1 N O(loglog(S“) ))
A p-3 I‘(%) eP—3 log(e™?) -1].

(1.2) EC\(e, p) =

For p = 3 the bounds are not asymptotically tight. As ¢ » 0 the asymptotic
results are

L3 4 < Lini f}\EC2(s 3) < m AEC,(&,3) 16

. < < — o =<

43 it ogi(en) < P Togi(e )

and

L4 8 < limi f}\ECl(s 3) e AEC,(&,3) 20
. < < — o <

(1.4) in 20 ) im sup log?(e 1)

Note that the numbers obtained for the one-cap problem are always twice those
obtained for the two-cap problem.

The main result of this article is that the bounds referred to above can be
given in terms of expected hitting times of caps on =, and the number of caps
needed to cover =,. Thus to obtain these bounds it is necessary to be able to
calculate the expected hitting times of small caps on Z,. For Brownian motion
these calculations are straightforward. If expected hitting times could be calcu-
lated for random walks, then the methods of this paper would give bounds on
the one- and two-cap mean covering times for random walks. Similarly, bounding
expected covering times for a random Grand Tour of projections onto planes
requires expected hitting times for a random walk or Brownian motion on a
Grassmann manifold. In a practical sense the answers to the covering problems
for two-dimensional Grand Tours are already known; the space of two-dimen-
sional subspaces of R?, for p reasonably large, is so large that even the most
efficient Grand Tour would take an impractically long time. See Huber (1985) for
a discussion.

The organization of the remainder of this article is as follows. In Section 2
general bounds on the expected time taken by a strong Markov process to visit a
finite collection of subsets of its state space are given. Caps on spheres are
discussed briefly in Section 3. Section 4 covers Brownian motion on spheres and
its relevant expected hitting times. These are combined in Section 5 to give the
results (1.1)-(1.4).

2. General bounds. This section gives upper and lower bounds on the
expected time taken by a strong Markov process to visit all of a finite collection
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of subsets of its state space. Let A be a topological space and (2, F) a
probability space. Let {X(¢), ¢ > 0} be a time homogeneous strong Markov
process defined on (2, F) with state space A. For each a € A let P, be a
probability measure on (£, F) such that X(0) = a, P, as. and X has the same
transition probabilities under P, for all a.

Fix an initial position a, and a collection of N Borel subsets of A,
{A,,..., Ay}, to be visited. Let Sy be the set of all N! permutations of N
elements and G the field of subsets of Sy. Let » denote the uniform distribu-
tion on (Sy, Gy ), and let ¢ denote a random permutation, the identity map from
Sy to Sy. Form the product space (2 X Sy, F X Gy). The probability measure
P, X von this space will be denoted P. When the probability measure P is used
X ‘and o will be regarded as being defined on (2 X Sy, F X Gy) by X(w, 7) =
X(w) and o(w, ) = o6(7) = 7 for (w, 7) € (& X Sy). Thus X and ¢ are indepen-
dent and ¢ is uniformly distributed under P. Finally, let F, be the sub o-field of
F x S, generated by o and {X(s),0 < s < ¢}.

For any nonempty collection {A,,..., A;} of Borel subsets of A define

T(A;) =inf{t>0: X(¢) € A;}, forj=1,...,0
and
T(A,,...,A;) = max T(A)).

Returning to the specific a, and {Al, , Ay} of interest, for i=1,..., N
define A to be the set

{ag) U U A4,

J#Ei

and its regular points. Further define

(2.1) p_= min inf E,T(A))

i=1,..., N qe A;
and
(2.2) p,= max sup E,T(A)).

i=1,..., ae Ai

Next consider times taken to hit random subcollections of {A,,..., Ay}. For

any permutation « = (m,...,my) let A7 denote the =th member of
{A,,..., Ay}. Then for the random permutation o, T(AY{),..., T(A{,..., A})
are hitting times of random subcollections of {A,,..., Ay}. Clearly,

T(A,,...,Ay) =T(AL,..., A}). Define R, = T(A{) and R, = T(AS,..., A?) —
T(AS,..., Al ) for i=2,..., N. R; can be thought of as the additional time
taken to visit A? after AJ,..., A? ; have all been visited. The following
propositions are easy consequences of the definitions.

ProposiTiION 23. For i=1,...,N, P(R;,# 0) <1/i, and assuming
T(A,),..., T(Ay) are distinct and nonzero P a.s., P(R; # 0) = 1/i.
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ProoF. For the second assertion, for = = (m,,..., my) € Sy, let II denote
the event {T(A]) < T(A3) < --- < T(A%)}. By assumption

P(ﬂgs 1'[) =1.

Conditional on any particular II, the event {R; # 0} is the event that o; occurs
further to the right in (m,...,7y) than all of ¢,,...,0;_,. This event has
conditional probability 1/i by the uniformity of ¢ and the independence of X
and o. Thus P(R; # 0) = 1/i unconditionally as well. A similar but slightly
messier argument proves the first assertion. O

PRrROPOSITION 2.4. Fori=1,...,N, T(A{,..., A?) is a stopping time with
respect to the family of o-fields {F,, t > 0}.

ProoOF. Write
{(T(Ag,...,A7) <t} = U {o=n)} 0 {T(A],..., AT) < t}.

TESN

Each of these events is in F,. O

Now define F % to be the o-field generated by ¢ and X(0), and for i = 1,...,
N — 1let F* be the o-field generated by ¢ and {X(¢), 0 < t < T(A{,..., A?)}.

PROPOSITION 2.5. {R;#0}€ F"!fori=1,...,N.

PRrROOF.
N

{Ri= 0} = U {°i=j} N {T(Aj) = T(Af,...,A‘i’_l)}.

j=1
Each of these events is in Fi~L. 0O

Now the main result of this section can be given.
THEOREM 2.6.

N

@7 ET(A,,..., Ay) < p. ¥ 1/i,
i=1

and assuming T(A,),..., T(Ay) are distinct and nonzero P a.s.,
N

(2.8) ET(A,,...,Ay) 2 p_ Y, 1/i.

i=1

ProoF. If either p_ or p, isinfinite, it is easy to see that the corresponding
bound holds. Therefore assume both are finite and write

N N
ET(A,,...,Ay) = EE(R,.) = ;lE(E(RJF"“)).
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By the strong Markov property, time homogeneity and Proposition 2.5,
E(RilFi_l) = I{R,#O}EX(T(A;’,...,Af_l))T(Ag)’ Pas.

On the set {R;+ 0}, X(T(AS,..., A?_,)} € A?. Thus by definitions (2.1) and
(2:2),

I{Rz*o}p’— = E(RilFi_l) < I{Ri¢0)u+, Pas.

Taking expectations, Proposition 2.3 yields the result. O

Similar arguments can be used to get bounds on the moment generating
function of T(A,,..., Ay). See Matthews (1985) for examples of this in the
context of random walks on finite groups.

3. Caps on spheres. Here the number of caps of radius ¢ needed to cover a
sphere and the number of disjoint caps of radius ¢ that can be packed onto a
sphere are considered. The second problem is related to coding theory, and there
is a substantial literature on the subject. See Sloane (1982) for results and
references. The first problem has not been investigated as much; Rogers (1963) is
one reference. Analogous covering problems for pairs of caps will also be consid-
ered. Here only crude answers to these problems will be offered. As is apparent
from the last section, the bounds on the mean time taken by Brownian motion to
visit a set of caps will depend on the number of caps only through its logarithm.
Due to this fact, the following result suffices to give asymptotically tight bounds
on the mean time taken by Brownian motion to become nearly dense on a
sphere.

ProposiTION 3.1. For fixed dimension p, there exist positive constants U
and L depending on p such that.
(i) There are N(p) caps of radius p that cover =, with
N(p) < Up'~>.

(i) There are M(p, 8) disjoint caps of radius p on 2, with pomts in different
caps a distance at least 26 apart such that

L(p+6)"" < M(p,0).
(iii) In both (i) and (ii) the caps can be chosen so the set of cap centers is

symmetric in the origin.

PrROOF. With the surface area of =, normalized to one, the volume of a cap
of radius p is

Lpsin"‘2(x) dx/j:sinl"z(x) dx.

This is O(p' ") as p — 0. Thus at most O((p/2)' “?) disjoint caps of radius p/2
can be placed on X . Place disjoint pairs of caps of radius p/2 with centers
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symmetric in the origin on X, until there is no room for any more. Now
concentric caps of radius p must cover = , implying 2, can be covered by
O(p' ~P) caps of radius p as p — 0. This 1mphes @).

For (ii), place symmetric pairs of caps of radius p + § on = » until no more fit.
Since concentric caps of twice the radius will cover 2, there must be at least
O((p + 6)'7P) of these caps. Takmg concentric caps of radlus p gives the same
number of caps with points in different caps a distance at least 26 apart. This
yields (ii).

Part (iii) is implicit in the discussion of parts (i) and (ii) and gives the needed
covering results for pairs of caps. O

4. Brownian motion on spheres. Brownian motion X, on 2, as a limit of
random walks was studied by Roberts and Ursell (1960). See Watson (1983) for a
more modern description. Here the full diffusion need not be considered; it is
sufficient to focus attention on the cosine of the distance between X, and a
particular point of =, without loss of generality (1,0,...,0). This itself is a
diffusion with state space [—1, 1], drift

p(x) = —Ax/2
and infinitesimal variance
A1l —x
o2(x) = <__1_>

Suppressing the dependence on p, call this diffusion W,. Karlin and Taylor
(1981), page 338, discuss this diffusion briefly.

The arbitrary parameter A is like the infinitesimal variance of Brownian
motion on the line. A random walk on =  is symmetric if the directions of its
steps are uniformly distributed and independent of the lengths of its steps. For a
symmetric random walk on 3, whose step lengths have distribution function
F(x), if time and space are rescaled as usual in the convergence of random walks
to Brownian motion, then the limiting diffusion will be Brownian motion on 2,
with parameter A = [ xzdF(x)

Given p(x) and o%(x) it is an elementary exercise to calculate the expected
time taken by Brownian motion to hit a pair of caps with centers symmetric in
the origin. Without loss of generality suppose the caps have radius cos~!(r) and
are centered at (1,0,...0) and (—1,0,...,0), the initial position of the Brownian
motion is (x,(1 — x2)!/2,0,...,0),and 1 > r > x > 0. Then the time taken to hit
a member of the pair has the same distribution as the time taken by W, to leave
the interval (—r,r) starting from x. A similar argument equates single cap
hitting times for Brownian motion and hitting times for W,.

For W,, let v(x,r) = E.T((—1, —r) U (r,1)). Following Karlin and Taylor
(1981), v(x, r) satisfies

(4.1) e w5 T &
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subject to v(r, r) = vo(—r, r) = 0. Maximal and minimal expected hitting times
for use in Theorem 2.6 will be v(0, r) and ov(x(r), r) where x(r) is slightly
smaller than r. Standard calculations as in Karlin and Taylor (1981), page 194,
give exact solutions to (4.1). The answers are quite complicated but have the
following simpler representations, valid as r — 1:

2y F(p-zu)( 1 )(P—W

(4.2) 0(0, r) = }\(p — 3) I‘(B) 1— 2 (1 + 0((1 - r2)1/2)),
2
p =4,
4
(4.3) (0, r) = X1og( - rz) +0(1), p=3.

For p > 4 and
1 1/2
x(r) = (1 ~ 2= r)log?(1 - r2)) ,

(4.4)
1+0

£_+_l
o(x(r), r) = }\(i‘/f . F(I‘(Iz_)) ) ( 1 2)<p—3)/2

/

i)

1—-r

For p = 3 and x(r) = (1 — (1 — r2?)a®(r))"/? for any a(r) satisfying 1 < a(r) <
(1 -r3

4
(4.5) o(x(r),r) = Xlog(a2(r)) + 0(1).

Next consider the expected time taken by Brownian motion on 2, to hit a
single cap of radius cos™!(r) from a point a distance cos~'(x) from the center of
the cap, denoted u(x, r). Similar calculations yield exact values or u(x, r). As
r — 1, to the order of accuracy given in (4.2) and (4.3), u(—1,r) = 20(0, r).
Similarly, to the order of accuracy given in (4.4) and (4.5), u(x(r),r)=
2v(x(r), r).

5. Expected covering times. In this section upper and lower bounds are
calculated for the mean time taken by X, to come within a geodesic distance ¢ of
all points of =, or their opposites, the two-cap problem. Results will also be
stated for the one-cap problem and can be obtained in the same manner. The
actual bounds are quite involved, and therefore only asymptotic results, valid as
e — 0, will be stated. Since the bounds are asymptotically tight for p > 4 and
not tight for p = 3, the two cases will be considered separately. Recall that
EC\(¢, p) and ECy(¢, p) are the mean covering times in the one- and two-cap
problems, respectively.
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THEOREM 5.1. Forp >4,
1‘(p + 1)
4y -1 log(e™! logl -1
7 p 2 g(e )(1+0( oglog(e )))

A p-3 r(ﬁ) eP~3 log(e™')
2

ECI(E, p) =

and
T B og(e™?! oglog(e™!
2{\? ﬁ—; (r(z) ) 1 §£_3 ) (1 .\ O(l i,lg(gg(-l))))'

(52) ECye, p) =
2

Proor. First consider a lower bound on ECy(¢, p). By Proposition 3.1 there
is a set of at least 1L(e + elog(e™'))' P pairs of caps of radius & such that points
in different caps are a distance at least 2¢log(e™') apart. Choose the caps so
X,(0) is in one of the caps and consider the time taken by X, to hit all the
remaining pairs. This is a lower bound on ECy(e, p) since if X, has not visited
one of the remaining pairs, then it has not been within a distance ¢ of either of
the two centers, so it has not been within & of all points or their opposites. Now
p_, the minimum expected time to hit a pair of caps from X(0) or inside another
pair of caps, is given by

p_ = v(cos(e(1 + 2log(e71))), cos(e)).

Let x(r) =1 — 11 — r?)log?1 — r?))"/2. For & reasonably small cos(e(l +
2log(e™1))) < x(cos(e)), s0

(5.3) o(cos(e(1 + 21log(e71))), cos(e)) = v(x(cos(e)), cos(e)).
The right-hand side of (5.3) is given by (4.4), which in terms of ¢ is

e
\p=9 (2] o

(5.4) 1+0

rll

Theorem 2.6 can now be applied. The conditions for (2.8) are satisfied. Using
(5.4) and the fact that ¥V, 1/i = log N + O(1), (2.8) says

o i
R
2

ECy(e, p) =

X(log(—g(s + slog(s‘l))l_p) + O(l)).
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This simplifies to

QT p—1 F(g;) log(e™1) loglog(e™')
A p-3 I‘(%) eP—3 (1+O(—log(e_1) ))

(5.5) ECy(e, p) =

Next consider an upper bound on EC,(e, p). By Proposition 3.1 there is a set

of at most
U € 1-p
?( log(e™?) )

pairs of caps of radius ¢/log(¢') that cover = p»+ Place concentric caps of radius

about the center of each of these caps. If X, visits one of the enlarged caps, then
it simultaneously comes within ¢ of every point in the smaller concentric cap and
within ¢ of the reflection in the origin of every point in the other small cap of the
pair. Since the small caps cover =, Cy(e, p) is larger than the time taken to visit
all the pairs of enlarged caps. The maximum expected hitting time needed in
2.7) is

py = (0, cos(8)),

which is given in (4.2).
Theorem 2.6 now implies

o T(pTH) ( 1 )<p—3)/2

AMp-3) r(g) 1 — cos?(8)

ECy(e, p) <

(1 + o(sina))(log(@(’i_—l)) e 0(1)).

In terms of &, this is

e I‘(p + 1)
2y p—1 2 log(e™?!) loglog(e™1)
(56) ECy(e, p) < X p-3 r(lz_)) P8 (1+O(W))

Results (5.5) and (5.6) yield (5.2). O

Now consider the case p = 3.
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THEOREM 5.7. On Z,

AEC,(e,3) AEC (e, 3)
8 < lim inf < limsup———+
og’(e™!) ~ log(e ™))
and
AEC,(&,3 AEC,(e,3
(5.8) 4 < liminf 2(8 )) < limsup———+ o 22(6_1))

ProoF. For an upper bound on EC,(e, 3), the same argument as the case
p > 4 is used. Concentric caps of radii ¢/log(¢"!) and ¢ — ¢/log(e™!) yield the
right inequality of (5.8).

The best lower bound is obtained in the same manner as the lower bound for
p = 4. Choose disjoint caps of radius ¢ + Ve /2 and concentric caps of radius e.
In (4.5) let r = cos(e) and x(r) = cos(e + Ve), so a(r) = sin(e + V& )/sin(e). The
lower bound obtained is

4 L 1 \"2
ECy(e,3) > X1og(¢-1)1og(5(e + -2-\/2) )
This simplifies to the left inequality of (5.8). O

6. Discussion. A natural question is: When will the bounds obtained by
this method be tight? Intuitively, they will be tight when p_ and p, are close
together; when the expected time taken by the process to hit a small cap is about
the same whether the process starts quite near the cap or far from it. A process is
rapidly mixing in the sense of Aldous (1983a) if its distribution after a short time
is close to its stationary distribution. For Markov chains, a short time is a
number of transitions small compared to the size of the state space. Aldous
(1983b) gives bounds on mean covering times in this setting. An analogous notion
of rapid mixing for a diffusion is that the distribution should be close to
stationarity before the process has come close to a nonnegligible portion of its
state space. Intuitively, processes in higher-dimensional spaces should be more
rapidly mixing, and the bounds given in Section 2 should be tighter for these
processes. This is exactly what happened here for Brownian motion on spheres.

There is some reason to suspect that for Brownian motion the upper bounds
of Theorem 5.7 are tight and that the lower bounds could be improved. In the
notation of Section 2, most pairs X(T(A{,..., A?_,)) and A{ should be fairly far
apart, leading to the possibility of a better lower bound than that using p_.
Making precise statements along these lines appears difficult, though a crude
technique was successful in Matthews (1985) in getting the asymptotic distribu-
tions of covering times for certain random walks on the discrete cube. If it can be
shown that with sufficiently high probability X(T(A{,..., A7_,)) and A are far
apart, then the lower bounds of Theorem 5.7 can be improved, possibly to the
extent of making them agree with the upper bounds.
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