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GAUSSIAN PROCESSES AND ALMOST SPHERICAL
SECTIONS OF CONVEX BODIES!

By YEHORAM GORDON
Technion—Israel Institute of Technology

We present a simple proof with sharp estimates of Dvoretzky’s theorem
on the existence of almost spherical sections having large dimension in
arbitrary convex bodies in RV,

Introduction. Dvoretzky’s theorem, proved in [1], is a fundamental result
in the theory of local structure of Banach spaces. As developed here, the theorem
states that for every ¢ € (0,1) and integer n > 1, if N > aexp(8ne2) is an
integer (where a, 8 > 0 are universal constants), then for every convex body K in
RN which contains the origin O in its interior, there is a subspace E, of
dimension n and a constant a > 0, such that

aB}cE,NKc(1+¢€)/(1-¢)aBy,

where B} = {x; ||x||, < 1} is the standard unit ball of R". Moreover, the lower
estimate a exp(Bne~?) is independent of K or the location of O inside K. The
fact that this estimate is also sharp for the class of centrally symmetric convex
bodies was communicated to us by Figiel and is based on arguments proved in
[31.

There are several proofs of Dvoretzky’s theorem for centrally symmetric
convex bodies and in these cases the central symmetry naturally leads to
formulations in terms of norms. Milman gave a new proof of the theorem in
1971 with the estimate N > aexp(Bne 2log(2 + 1/¢)) in which he introduced
Lévy’s isoperimetric inequality as a tool for the first time [8]. Recently, Pisier
gave the simplest known proof by essentially reproving Lévy’s isoperimetric
inequality using Gaussian estimates [9].

The case of the general convex body appeared first in [7], but precise
estimates for N were not obtained there.

A different proof of Dvoretzky’s theorem for centrally symmetric convex
bodies was presented in [4]. The approach there was to use Theorem 1.4 which
extends the Sudakov-Fernique theorem, by which the term log(2 + 1/¢) was
eliminated. We now show that this estimate is good also for the general convex
body in RYM. This proof is considerably simpler than the one used in [4], since it
is based on an extension of Slepian’s lemma, Theorem 1, which was proved
initially in [4] and recently given a simple proof by Kahane [6]. Theorem 1 is
easier than Theorem 1.4 of [4]. We end with some additional refinements of
Theorem 5.
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SECTIONS OF CONVEX BODIES 181

Sharp estimates of Dvoretzky’s theorem for general convex sets.
Throughout we shall denote by {&;}1<i<n, 1<j<ms {P:}1, {&;)1 and {g} inde-
pendent sets of orthonormal Gaussian r.v.’s.

We shall use the following theorem of [4] which extends Slepian’s lemma [10].
A simple proof of this theorem in the normal case, which we use here, appeared

recently in [6].

THEOREM 1. Let {X;;} and {Y;} (1<i<n, 1<j<m) be centered
Gaussian r.v.’s such that
(1) E(X}) = E(Y})) for all i, j;
(2) E(X;;X,;) < E(Y,;Y,) foralll1 <i<n,1 <Jjk<m
() E(X;;Xy) = E(Y,;Yy) foralll<i+1l<n,1 <jk<m.

Then, for all real scalars {\;;},
P( nu [XijZM]) ZP( NU[Y, 2\, )
i=1,=1

i=1j=1
COROLLARY 2. LetE = {e=(ey,...,£,)} CR"and ® = {6 =(6,,...,0,)} C
R™ be finite subsets. Let §, = max{||0]|,; 0 € O} and for every e € E and § € ©
define the Gaussian r.v.’s
X,

&

&0,8:; + llell 2008,

Y
s
Mz 1M

I
o
=

n
Y., 8t b X &:h;.
i=1

2

~.
I
—

Then, for all real scalars {A, 4},
P( N UlY,=> >\e,0]) = P( N Ulx.,> As,o])

(1 1) ¢ecE €0 ecE 60

< P(ULX,022.0]) < F(UTLo220])-

€0
Proor. It is easy to check that the identity
(12) E(X, 4X. o)~ E(Y, Y. ) = [62 — <8,0"][llell,llell; — (e &)1 = 0
holds for all ¢, ¢ € E and 6,8’ € ©; hence, E(X, 41X, o) = E(Y, Y, 4), with
equality if ¢ = ¢'.
The left-hand side of inequality (1.1) follows from Theorem 1. If we now

consider X, ; and Y, , as singly indexed processes and use (1.2) and Theorem 1
(with n = 1), we obtain

P(B[K,ozxe,o]) zP(g[Xe,ozke,o])- o

Using now the standard integration by parts formula in inequality (1.1),
EX = [TP(X > t)dt- [[P(x < -t)at,
0 0
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we obtain
COROLLARY 3. In the notation of Corollary 2,

(1.3) E(mem m;lee,o) < E(msln mnge,o) < E(t?a‘\gx Xs,,,) < E(nsl’%x Ys,o)-

REMARK 4. (i) The conditions needed for the proofs of Theorems 5 and 7
motivated the choices of X, , and Y, , of Corollary 2. The main point in
Corollaries 2 and 3 is that they provide the means to estimate the quantities
which involve the sequence X, , by using the simpler corresponding Y, , se-
quence.

(ii) We note that inequalities (1.1) and (1.3) stay true if we replace 6, in the
definitions of X, o and Y, 4 by [|0]|,.

Henceforth, let K be an arbitrary closed convex body with nonempty interior
in RN and the origin O in its interior. Let px be the gauge functional of K,
defined by px(x) = min{¢ > 0; ¢ 'x € K}. The dual body to K, K*, with
respect to a given inner product ( -, -) defined on RY is the convex body defined
by

K*={ye RN;(x,y) <lforallx € K}.

It is well known that x € K if and only if (x, y) <1 for all y € K* and
px(x) = max{{x, y); px(y) = 1}. If K is centrally symmetric, then py(x) =
||x|l, where || - || is the norm of the Banach space whose unit ball is K. We shall
denote by | - | the norm defined by |x| = /(x,x) (x € RY). || -], will denote
the usual Euclidean norm. It will be generally clear from the context what inner
product norm is used to define K*.

THEOREM 5. Let {y}, C R", and {e}]_, be the unit vector basis of the
n-dimensional Hilbert space l3. Consider the linear Gaussian map G, from
I3 = (R™ || - Ils) to (R, | - ),

n m
G,= X Zgi,j(w)ei®yj'
i=1 /=1

Then

[lxflz=1 )

E(Px(igj(‘*’)yj)) - anez({yj};") = E( min px(G,(x))

(14 < E( max pK(Gw(x))) < E(PK(ggj(“’)yj)) + aqe({%)7)s

[lllz=1

where ex({y,}7") = sup{(X( ¥, n)2)i/2; n € K*} and
a,=V2T((n+1)/2)/T(n/2) (a,n""?1lasn - ).
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PROOF. A simple computation shows that a, = E(X} g(w))'/?. Let E be the
unit sphere {||¢l|, = 1} of 17 and © be the set {({(y1, 1);-- -, {Im> M) N € 0K*}.
E and © are compact sets in R™ and R™, respectively, and by continuity,
inequality (1.3) holds in this case too. We conclude by noting that inequality (1.4)
is the interpretation of inequality (1.3). O

Let us denote by d,(K) = inf{c > 0; there exists an n-dimensional subspace
E, and an ellipsoid L C E, with center at O, such that LcKnE,ccL}.
Notice that d (K ) does not depend on the choice of the inner product chosen for
RY. Corollary 6 provides an estimate for d,(K).

COROLLARY 6. In the notation of Theorem 5, if E(px(X7'8;(w)y;)) >
a,e({3)7), then d,(K) < b, where

_ E(ox(Ere/(@)3)) + anes((5)7)
E(px (27 g;(0))) — anea (5)7)

ProoF. For each w € @, let F(w) = max, _, px(G(x)) and f(w) =
min,,. _, Px(Gu(%)) Then by (1.4)

E(px(igjw)yj)) ~ a5 < E(1()) < E(F(o)

< E(px(ig,-(m,)) +ae( (5)7).

Hence, there exists w, € @ for which [ F(w,)]/[ f(w,)] < b. It follows now from
the inequality f(wo)lxll; < px(Go(x)) < Flwo)lizll, (x €15) that if E, =
span{G, (x); x €13} and L = (F(w,)) "G, (B}) is the ellipsoid (where By is
the unit ball of I7), then

LcKNE,cbL. O

THEOREM 7. There exist universal positive constants o, and B, such that for
every ¢ € (0,1) and integer n, if N is an integer satisfying N > a,exp( B,n/€?),
then any N-dimensional convex body K satisfies d (K ) < (1 + €)/(1 — ¢).

PrROOF. Recall the original proof of the Dvoretzky—Rogers lemma for arbi-
trary convex bodies in RN ([2], Lemma 1): If K is an N-dimensional convex
body with the origin in its interior, there exists an inner product norm | - |
defined on the vector space RV and a sequence {}A-, € K N K* such that:

@) 1=yl =px(y) A <j<N).
(ii) There exists an orthonormal basis {u;}Y, for (R",| - |) such that y, =
Tk ¥ it where TR 32 =1 - 32 < (k- 1)/Nforalll <k <N.
(iii) @1ty < @+ m(m — 1)/N)/AT), t})/? for every L<m < N and
for all real numbers {¢;}7. ;.
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The norm | - | is the one induced by the ellipsoid of maximal volume contained
in K and {y,}Y are contact points of the ellipsoid with the boundary dK; thus
{ yJ}N C dK*.

By (iif), ex({}-1) < {2 + m(m = 1)/N and by @),

E(px(fgjyj)) 2 E( max (Tg;3, ) 2 E maX(gk il(yj, yk>g,~|) :

j#k
but if 1 < i < k < m, then by (i),

i k-1 1/2 m—1 m—1
Doy < X i, j Ve, | < )y y}?,j <| X y}?,j < N
j=1

J=1 J=1

hence,

1/2
|<y,, i8] < ( )y g,) (m —1)/N2,
5 =

Therefore,
m m 1/2
E(pK(Zgjyj)) > E| max g, — (ng) (m— 1)/N1/2)
1 <kR<m

> ¢y\flogm — ym?

where ¢, > 0 is a positive constant [we use the fact that E(max,_,_,, &) is
asymptotically equivalent to y/log m ].

If we select m = [N'/3] and substitute the last inequality in Corollary 6,
recalling that a, < Vn, it follows that there exist universal constants a;, 8, > 0
for which d,(K) < (1 + ¢)/(1 + ¢), whenever N > a,exp(8,n/e?). O

REMARK 8. It is easy to see that every n-dimensional ellipsoid L in (R™,
Il - 1lz) has an [N/2]-dimensional spherical cross section, i.e., there exists a
subspace H of dimension [n/2] such that H N L = aBYN N H, where a > 0 is an
appropriate constant and B} is the ball of (R™, || - ||,) [1]. Hence, by Theorem 7,
K has an [n/2]-dimensional cross section which is almost - spherical. This is the
consequence stated in the introduction.

At this point, we include some remarks on the concentration of a Gaussian
operator about its mean. An inequality of Maurey and Pisier (cf. [9]) states that
if f: R® > R satisfies |[f(x) — f(¥)| < o||x — y||, for all x, y € R™, then for all
A>0,

(1.5) P(t;|f(¢) — Ef(t)| > N) < 2exp(—2772N/0?),

where P is the canonical Gaussian measure on R”.
As before, let K C RN be an arbitrary convex body with the origin O in its
interior and let G, = X7_, X7, g; {(w)e; ® y; be a Gaussian operator from I} to
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RY, where {,}7" € R" and {e;}} is the unit vector basis of /3. Consider the two
functions

f(t) max pK(Z Et”gyj)
i=1j=1

Il¢llz =

and

g(t) = min PK( Y X ti,jgiyj)’
i=1j=1

llxllz=1

which map R"™ to R. It is easily seen that for all x = (£;)7 € R" and s, t € R"™,

| £ £ uston] soul £ Eor] el £ £ (1506
i=1j= i=1j=1 i=1j =1
and, since
n m m n 2 1/2
PK( Z Z (ti,j_ si,j)giyj) = ({3’1 )( Z ( Z ( - si,j)gi) )
i=1j=1 =1 \iz

< llxllolt = sllzea( {737,

it follows immediately that both f(¢) and g(t) satisfy the Lipschitz condition
with the same o = &,({¥;}1'). Thus, both functions are concentrated around
their means according to inequality (1.5). By inequality (1.4), it follows
that if E(px (X" g, («)y;)) is much greater than a,ey({y,)7"), then for “large”
values of A/ey({y)7"), both max,, _, px(G.(x)) and min . _; px(G,(x)) are
well concentrated around their means, which are approx1mately equal to
E(p (51 8,(w))-

We shall now apply the following result taken from [5] to get some additional
refinements.

THEOREM 9. Let {X; ;k} and (Y} be two centered Gaussian processes
indexed by {(i, j, k); 1 <i<n,1 <j<m,1 <k <p}, which satisfy the follow-
ing conditions:

) E(X[) = E(Y}) for all (i, j, k).
(2) For any two triples a = (i, j, k) and B = (¢, J', k'), E(X,Xp) > E(Y,Yy) if
i=1andj+#Jj, and E(X,X,) < E(Y,Y,) in all other cases.

Then for all {\;;,} C R,

ijk

P(LiJr)LkJ[Xijkz}‘ijk]) (UﬂU[ uk>7\uk])

Taking A, = A for all (i, j, k), we obtain by integration
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COROLLARY 10.

E(max min maxXijk) > E(maxmin mainjk).
i J  k i J k

A simple example which illustrates this is

ExampLE 11. Let A, B be positive scalars, A,, ¢; and §; be +1 (1 <i<n,
1 <j<m,1<k<p).Define

Yy, 0 =AY Ase8 i+ BYNGE, ;j+ /p(A%n + B’m) g
k,i k,j

and

Xy .9=AYD Xegi+ Byp LOh; + VA?n + B2m Y\, fy,
i J k

where g, &, f, and h (with the proper indices) stand for real orthonormal
Gaussian r.v.’s. It is easy to check that

E(Y)\,e,GYA’,e',O’) - E(X}\,e,OXX,e’,o’)
=[p— (A, N)][A%n + B2m — A%, ¢’y — BX0,0")],

which is zero when A = A’ and nonnegative when A # A’. By Corollary 10, it
follows that

E(max min maxX) > E(max min mng),

N e 8 X e
ie.,
m p n p
E| max (BZ Z ), ,)\k _AZ ng,i)\k )]
(1.6) Me=x1\  j_1|r=1 i=1|k=1

< \/?[Bm ~ An+ p(A’n + B’m) |.

If we interchange A with B and m with n in (1.6), we obtain the estimate

£ ] 45 o]

J=1
2p
>\ — [Bm — An - p(A%n + B’m) ]
T
Let K and H be two convex bodies, not necessarily of the same dimension,
containing the origin O in their interior. Let p, and pj be their associated gauge
functionals and let {x,}?_, C span(K), {y;}~, C span(H)and G: I§ — span(K)
and Gy: I§ — span(H) be the random Gaussian maps defined by
p n p m

Gg= Y ng,iek®xi and Gy= ) ng,jek®3'1’~

k=1i=1 k=1j=1

p
DI
k=1

E| min
Ap==1

p
Z gk,i}\k
k=1
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THEOREM 12. For any positive scalars A, B,
BE [PK(Zhjyj)] - ap\/A2eg({xi}) + stg({yj}) —AE [PH( Zgixi)]
1 1

< Ellgllzigl {Bpx(Gk(N)) — Apy(Gy(N)))

< E||§\I|Tfi(1 {Bpx(Gk(N)) — Apy(Gy(N)))

(+)

1

< BE [pK(ihjyj } + a,A%2({x;}) + B%}({y}) - AE [pn(igixiﬂ,

where a,, is defined as in Theorem 5.

ProoF. We define the sets A € R?, ® C R™ and E C R"” to be A = {(A,)P;
LN, =1}, © = {({y, )15 ¥ € 0K*} and E = {({x;, x)){; x € IH*}).
For each e € E, # € ©® and A € A, define the two processes

P n P m .
Y, .,6=4 MDY Apei&,+ B DY Abig, i+ Cg
k=1i=1 k=1j=1
and
n p m
X)"e’o =A Z sigi + CZ Akfk + B Z 0th,
i=1 i=1 j=1
where C = \/Azsg({xi}) + B2%%({y,}) . It is easy to see that
E(Xy,.0Xx,50) = E(Y,o%,50) = [L = (A, X)][A%e, &) + B9, 6) - ¢?],

which is zero when A = ?1 and less than or equal to zero when A # A, because
(&, &) < e3({x;}) and (0, 0) < e3({y;}). Hence, the conditions of Theorem 9 are
satisfied and it follows from Corollary 10 that

E(max min mglxXA . o) > E'(mfx min mo?XY)‘ . o),
R ve . s

which is precisely the right-hand side of inequality (*). Now, if we interchange in
the right-hand side of (*) the constants A with B, x; with y;, n with m and K
with H, we obtain the left-hand side of (*). O

REMARK. Inequality (1.4) can be obtained from (*) by taking A = 0. How-
ever, if A, B # 0, we cannot obtain this theorem from Theorem 5.
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