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BACKWARD LIMITS!

By HERMANN THORISSON
University of Géteborg

We consider a time-inhomogeneous regenerative process starting from
regeneration at time s and prove, under regularity conditions on the regener-
ation times, that the distribution of the process in a fixed time interval [ ¢, 00)
stabilizes as the starting time s tends backward to —oco (the convergence
considered here is in the sense of total variation). This implies the existence
of a two-sided time-inhomogeneous process “starting from regeneration at
—o00.” We also show that if a time-inhomogeneous regenerative process
admits a limit law in the traditional forward sense, then it is asymptotically
time-homogeneous; thus the backward approach widely extends the class of
processes admitting a limit law.

1. Introduction. “How are things now (and from now on) if they started
long ago?”’ i

The traditional probabilistic way to answer this loosely formulated question is
to start a stochastic process at time 0, consider its distribution in a time interval
[¢, ) and check whether it stabilizes as ¢ = oo. For this to work the mechanism
governing the development of the process must be time-homogeneous, or
asymptotically so in some sense (see Section 5).

In the present paper a reverse approach is proposed: Start the process at an
arbitrary time s and check what happens to its distribution in a fired time
interval [¢, o0) as the starting time s goes backward to — co. As an answer to the
previous question this backward approach is even more natural than the forward
one. Of course in the time-homogeneous case the two approaches are equivalent
—the point is that unlike the forward one the backward approach also works for
time-inhomogeneous processes and thus widely extends the class of processes
admitting a limit law.

As far as I am aware, backward limits were first discussed by Kolmogorov in a
1936 paper dealing with inhomogeneous Markov chains on a finite state space.
Kolmogorov’s results were elaborated by Blackwell (1945), but otherwise the idea
seems to have passed more or less unnoticed.

Here backward limits are considered in the context of time-inhomogeneous
regenerative processes introduced in Thorisson (1983). An example of such a
process is an inhomogeneous Markov chain with a recurrent state j; the regener-
ation times are the times of successive visits to j. Another example is the queue
length process in a queueing system where the service time of a customer and the
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next interarrival time depend on the arrival instant (a relatively simple special
case is the queue with nonstationary Poisson arrivals and i.i.d. service times); the
regeneration times are the times of arrivals to an idle system. Observe in these
examples that if the process regenerates at time u then the post-u process is
independent of the pre-u process but has a distribution depending on the time of
regeneration u, i.e., the regeneration is time-inhomogeneous.

The plan of the paper is as follows: Section 2 contains preliminaries on
time-inhomogeneous regenerative processes. In Section 3 we prove a backward
limit theorem, in Section 4 we prove that the backward limit process is regenera-
tive and in Section 5 we show that if a time-inhomogeneous regenerative process
admits a forward limit law then it is asymptotically time-homogeneous in a
certain sense. In Section 6 we conclude with some remarks. Throughout the
paper we consider convergence in the sense of total variation.

2. Inhomogeneous regeneration. Let (2, #,P) be the probability space
supporting all random elements in this paper. Let Z = (Z,), c [s, o) D€ @ stochas-
tic process with state space (E, &) and with index set [s, c0) where s € (— o0, o0).
In order to make life easy we assume that E is Polish, & its Borel subsets and
that Z is right continuous with left-hand limits (r.c.L.l) (see Remarks 6.2-6.5
below). For ¢ € [s, ) let 6,Z be the post-t process

6Z,=Z.,, uel[0,00).
Thus for a random time T in [s, o0) the post-T process is
oTZ = (ZT+u)ue[0, ) *

Let S; < S, < --- be an increasing sequence of random times in [s, o) satisfy-
ing lim, , S, = oo, let N be the associated simple counting process

N(A)= #{n>0;S,€ A}, Ac%[s, ),

and (B,) the associated age process (in order to have B, defined for u < S, put,
for example, S_;, =s — 1)

B,=inf{y>0; N{u—y} =1} = u — Sy, uj-1, u€ [s, ).

(We say that a real function is of age type if it has finitely many discontinuities
in finite intervals, increases linearly with slope 1 between discontinuity points, is
right continuous and takes the value 0 at the discontinuity points; a real-valued
stochastic process is an age process if its paths are of age type.) For convenience,
we assume that B, is determined by Z,, i.e., there is a measurable mapping b:
E — [0, o0) such that

B,=¥b(Z,), u€ [s,0);

if this is not the case consider ((Z,, B,)), <[5, ) and rename it Z.

According to Thorisson (1983) Z is a (time-inhomogeneous) regenerative
process with regeneration times S, if given the time of regeneration S, the
post-S, process s Z is conditionally independent of the pre-S, regeneration
times S, ..., S, and the conditional distribution does not depend on n, i.e., if
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there is for each A € £[**) a Borel measurable function p(A| - ) such that for
all n > 0,

(2.1) P(6s Z € A|S,,...,S,) =p(A|S,) as.

Two processes satisfying (2.1) for the same p(-| - ) function are of the same type.
Observe that the process in Thorisson (1983) develops in the time interval [0, c0)
while our process develops in [s, 00) where s € (— o0, o0) is arbitrary.

Let P, be the conditional distribution of the interregeneration time S,,, — S,
given S, = u,

P(A)=P(S,,, - S,€AIS,=u), Ac%[0,x).

Clearly S,,, — S, is determined by 5 Z in the same way for all n and thus P, is
independent of n. Also S,,;, — S, is conditionally independent of S,,...,S,
given S,. We shall view (S,)y as a renewal process that is time-inhomogeneous
in the sense that if “renewal” occurs at time S, = u, then the next “recurrence
time” S,,; — S, is governed by a distribution that may depend on u, namely P,
Actually the previous discussion shows that (S,)¥ is a time-homogeneous Markov
chain on [s, 00) with transition probabilities P (A — u).

Z is time-homogeneous if we can choose p(-|-) so that p(-|u) does not
depend on u. This means that 05 Z is independent of S,..., S, and has a
distribution p(-), say, that is 1ndependent of n; thus we can choose p( lw) = p(-).
Also, this means that S,,, — S, is independent of S,,..., S, and has a distribu-
tion F, say, that is independent of n; thus (S,)y is a renewal process on [s, 00)
with recurrence time distribution F and we can take P, = F.

We shall need the following result in Section 5.

PROPOSITION 2.1. A stationary regenerative process is time-homogeneous.

Proor. It is no restriction to assume s = 0. Put for ¢ € [0, ) and n > 0,

St,n = SN[O, ty+n L.

Since NJO0, t) + n is a stopping time with respect to (S,), it is easily seen [cf.
Thorisson (1983), Proposition 1.1] that

(2.2) P(6s, 0,Z € AlS,,) =p(Alt+S,,) as.

By stationarity (6,7, S, ,) =p (Z, S,), where =, denotes identity in distribu-
tion, and thus

(2.3) P(6s, 0,Z € AIS,,) = p(AIS,,) as.

Since the left-hand sides of (2.2) and (2.3) are a.s. equal, so are the right-hand
sides, and since S, , =p S,, we have
p(Alt+8S,) =p(A|S,) as.,te€[0,0),n>0.

This implies p(A|S,) = constant a.s. Thus we can take p(A|u) = p(A), i.e., Z is
time-homogeneous and the proof is complete. O



BACKWARD LIMITS 917

Observe that in the time-homogeneous case our notion of a regenerative
process does not coincide with the traditional one. We only postulate that the
post-S, process g Z is independent of the pre-S, regeneration times S, .. S,,,
not of the whole pre-S process (Z,; u < S,). In the hght of this remark we give
the following definition: Let w be a measurable mapping from E into some

measurable space and call Z regenerative with respect to w if
(2.4) P(6sZ € Al(w(Z,), B,); u<S,) = p(AlS,) as.

If w = constant we obtain nothing more than (2.1). If on the other hand w is the
identity mapping w(Z,) = Z, we obtain the natural time-inhomogeneous version
of the traditional concept of a regenerative process.

REMARK 2.1. Put W, = (w(Z,), B,), let 8 be a state external to the state
space of W and define SS W (W killed at time S,) by 8 W, = W, on {u < S,}
and = é on {u > S,}. For arigorous treatment of the pre-S process( ;u<8S,),
it is convenient to identify it with G W. Thus in (2.4) we are condltloning on
o{8s W} or, equivalently, on

Y =o{9.n{r<8,}, re[s «)},

where ¥, = o{W,; u € [s, r]}, since 95 _= 0{8 Z} [ct. Chung and Doob (1964),
Proposition 25].

3. A backward limit theorem. The total variation norm for bounded
signed measures » can be defined by

l»|| = supr(A) — infr(A).
A A

In particular, when » = », — »,, where », and », are probability measures, then »
has mass 0 and the previous formula can be rewritten as

lIvo = »ill = 2sup(vo(A) - r,(4)) = 2sup|vo(A) - (4.

For random elements X with distribution »,, let X, -, X, and v, >, v,
denote ||, — v || = 0.

From now on we assume that p(-|u) is defined for each u € (— o0, ) and
that p(-| - ) is a kernel, i.e,, in addition to the Borel measurability in u for each
A, we assume that p(A|u) is a probability measure in A for each u. Write
Z4, S;, ete., to indicate S; = s. Thus for each s € (— o0, ),

6,Z¢ is governed by p(-|s)
and
S; — s is governed by P,.
We say that the family Z%, s € (— o0, 0), admits a backward limit law in total
variation if there exists a two-sided stochastic process Z~* = (Z, *)(_ , ») Such
that for all ¢ € (— o0, ),
6,2° >,, 0Z > ass] — o,

and abbreviate it to: Z admits a backward limit law in total variation.
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THEOREM 3.1. Suppose
[e¢]
f supP,[y,0) dy < oo
0 u

and that there exists a nonnegative Borel measurable function f such that
Jf(y)dy >0 and

infP(A) > jf(y) dy, Ae2[0,c0).
u A
Then Z admits a backward limit law in total variation.

REMARK 3.1. The conditions of the theorem are only simple sufficient
conditions. For time-homogeneous processes they reduce to the familiar condi-
tion that F has finite first moment and is nonsingular; in this case the
conclusion of the theorem is known in the traditional forward form [cf.
Thorisson (1983), Corollary 1.1(a)]

0Z >,, Z* ast— oo,

where Z* = (Z})o, ) is the stationary version of Z.

ProoF. Let 7 denote the distribution of (Z3),c(; ) observe that 7 is a
distribution on &[%°), not on &[®*), We must prove that there exists a
distribution 7~ ® on &(~**) such that

(3-1) T,
where
(32) m ®(A) =7 (EC®OxA), A&t te (—ow,n).

We use the coupling results of Thorisson (1983): With s’ < s, 6,Z° and 6,Z° are
regenerative processes of the same type developing in the time interval [0, o),
the first one zero-delayed and the second with delay V" = S{.(,. ;) — 5. The
conditions in the theorem are the same as Condition 1.1 in Thorisson (1983) and
thus, by Lemma 2.6 of that paper, V¥ is stochastically dominated by a random
variable Y, say, with distribution independent of s and s’. Now Proposition 1.2
of Thorisson (1983), together with Theorem 1.2 and Lemma 1.1 of that paper,
yields the existence of a [0, «0)-valued random variable T, with distribution
independent of s and s’, such that

o.M * ass] — oo,

|lm2 —af|<2P(T>t—-s), s <s<t.

Taking supremum in s’ < s and sending s | — oo proves that #/ is Cauchy
convergent in total variation as s | — 0. Since probability measures on a given
measurable space form a complete metric space with respect to total variation,
the limit #,”® in (3.1) exists for each ¢ € (— o0, ) and is a probability measure
on &4, Define 7~ for sets of the form E(~*% x A by (3.2). Then, due to
Kolmogorov’s existence theorem and the fact that (E, &) is Polish, 7~ * extends
uniquely to a probability measure on &(~* > and the proof is complete. O
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4. The backward limit process. Due to the following proposition it is no
restriction to assume that the backward limit process Z~ is r.c.Ll. and that
(B, ), where B, * = b(Z, ®), is an age process.

PROPOSITION 4.1. Suppose Z admits a backward limit law in total variation.
Then the backward limit process Z~* has a version that is r.c.l.l. and such that
(B, ™) is an age process.

Proor. Let D be the set of all r.c.Ll. functions from [0,1] to E, let D be
equipped with the Skorokhod topology and 2 be the Borel subsets. Put Yj(u) =
Zp .y and Yg = (Y(u)), <po,1;- We are assuming that 6,Z° has a total variation
limit for each ¢ as s | — oo, and thus (Y$)y_, has a limit (Y{™)Z_, for each n.
Since (Y})5-, is a stochastic process with state space (D, 2), we may assume
that so is the limit (Y{™)y_,. Since (D, 2) is Polish, Kolmogorov’s existence
theorem yields a stochastic process (Y, ©)*,, such that (Y, *)? =, (Y{”)® for
all n. Defining Z~ = in the time interval [k, & + 1) by Z; %, = Y, ®(u), u € [0,1),
yields Z~ r.c.ll. Further, since (By);,, «) 18 an age process, for —o0 < s < n, we
have that for each n the event {(B, *)n ) 18 of age type} has probability 1.
Taking intersection over all n yields (B, ®),_, «) Of age type with probability 1
and deleting a null set from Q yields the desired result. O

We shall now show that Z~ > inherits the regenerative properties of Z. To this
end we must rephrase our definition of a regenerative process: Z is a (time-inho-
mogeneous) regenerative process with regeneration age process (B,) if

(4.1) P(6:Z<€ A|B,; u<T)=p(A|T) as.

for all finite random times T satisfying (i) B; = 0 and (ii) T is a stopping time
w.r.t. (B,). Further, Z is regenerative with respect to w if

(4.2) P(6:Z € A|(w(Z,), B,); u<T) =p(A|T) as.

In order to establish that this definition is equivalent to the one in Section 2, it
suffices to show that (4.2) and (2.4) are equivalent. Clearly 7' = S, satisfies (i)
and (ii) and thus (4.2) implies (2.4). Conversely if T satisfies (i), then T = S for
some random variable K and if further T satisfies (ii), then an application of
“Galmarino’s test” [cf. Dellacherie and Meyer (1978), page 149] yields that K is
a stopping time with respect to (S,)§. It is readily checked that in (2.4) n may
be replaced by a stopping time K and thus (2.4) implies (4.2).

The point of the preceding reformulation is that the notion of a time-inhomo-
geneous regenerative process now extends immediately to two-sided processes
developing in the whole time interval (— oo, 00), and we are ready to state our
theorem.

THEOREM 4.1. Suppose Z admits a backward limit law in total variation.
Then the backward limit process Z~ > is regenerative of the same type as Z with
regeneration age process (B, *). If, further, Z is regenerative with respect to w,
then so is Z~*.
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PROOF. For ¢ € (—o0,0), sE€[—o0,¢]and n > 0let S}, be the (n + 1)th
u € [¢t, o) such that B = 0. Then, with r € (— o0, t] and s € (— 0, r], (4.1)
yields

(4.3) P(0y Z°€ AIB5; r<u<38:,) =p(AlS:,).
By assumption §,Z° -, 6.Z~* which implies
(65 2°,(Bsr<u<$s,)) 0. (0502, (B; ™5 r < u < S7%))
ass| — oo.

Due to the final statement in Lemma 4.1 below, this means that (4.3) holds with
s = —o0.Send r| — oo to obtain

(4.4) P(0s2Z2"* € A|B;®; u < S, 2) = p(AIS; ).

Now let- T' be a stopping time with respect to (B, ®) such that B;z® = 0 and
put T, = max{T, S;°}. Then T, = S; ¥ where K is a stopping time with respect
to o{ B, ®; u < §;°}, n>0. In (4.4) we may replace n by a stopping time K
and thus

P(6r,Z2-® € A|B;®; u < T,) = p(A|T,).

This together with {T >t} =(T'=1T,} and {T >t} € o{B, % u <t} C
o B, *; u < T} yields

P(6;Z~° € A|B;*®; u<T,)
=17, yP(A|T) + 1 4P(0;Z2"° € A|B;*; u < T)).

Taking conditional expectations with respect to o{B, *; u < T'} and observing
o{B,*;u < T} Co{B,*®; u< T, yields

P(6;Z~ € AB;®; u<T)
= 1(1‘2:}P(A|T) + 1{T<t}lp(0TZ_°° €AB; % u<T)
> p(A|IT) ast| — . '

Since the left-hand side does not depend on ¢ this means that P(8,Z > €
A|B,;*®; u<T)=p(A|T),i.e., Z~* is regenerative of the same type as Z with
regeneration age process (B, *). In order to prove the final statement of the
theorem, replace B by (w(Z}), B;) in the preceding calculations. O

LEmMA 4.1. Let (X,,Y,) be random elements and let q(A|Y,) be a version of
P(X,€ AY). If (X,,Y,) —>,, (X,Y)ast— oo, then

(4.5) supE[|[P(X € A|Y) — ¢,(A|Y)]] >0 ast— .
A

In particular, if q(A| -) does not depend on t, q,(A| -) = q(A| - ) say, then
P(X € A|Y) = q(A]Y) a.s.
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PROOF. Let ¢q_(A|Y) be a version of P(X € A|Y) and put A*=
{u; 9 (Alu) = q(A|u)}. Then

E[I(YeA+}(qw(A|Y) - Qt(A|Y))]
=P(Xe€A YeA?)-P(X,€A,Y,€A")

+IP(X,eA,YteA+)—f a,(Alu)P(Y € du)
A+

(49) <iP((x.Y) € ) - (X, %) € )|

+ [ a(A)(P(Y, € du) - P(Y € du))’
A+
<IP(X,Y) € ) - P((X, %) € )|
With A™= {u; ¢ (A|u) < g,(A|u)}, we obtain in the same way
lE[]-(YeA‘}(qt(Aly) - qoo(AIY))]
<|p((X,Y) € ) - P((X,,Y,) € -)].
Add (4.6) and (4.7), take supremum in A and send ¢ — co to obtain (4.5). In

particular, if ¢,(A| - ) = q(A| - ) for ¢ < oo, then E[|P(X € A|Y) — q(A|Y)|] =
0 implying P(X € A|Y) = q(A|Y) as. O

(4.7)

5. Forward limits and asymptotic time-homogeneity. Say that Z ad-
mits a forward limit law in total variation if there exists a stochastic process
Z* = (Z})0, w) Such that

0Z—>,, Z* ast— .
Since for each t € [s, ®), §,Z is r.cll and 6,(B,) is an age process, it is no
restriction to assume that the same holds for Z* and (B}) where B} = b(Z}).
Let S;* be the (n + 1)th u € [0, 00) such that B} = 0.

In this case Z is asymptotically time-homogeneous in the sense that the limit
process Z* is time-homogeneous.

THEOREM 5.1. Suppose Z admits a forward limit law in total variation.
Then the forward limit process Z* is a stationary time-homogeneous regenera-
tive process with regeneration times S*. If, further, Z is regenerative with
respect to w, then so is Z*.

PROOF. Put, for t € [s,00) and n >0, S, , = Sy, 1+ — - By assumption
0,Z -, Z* which implies

(ost,natz,(st,o,...,st,,,)) =0 (0522%,(Ss*,..., S¥)) ast— co.
Now, by (4.1),
IF"(03,_,,0:tz € A|St,0’ ceey St,n) = p(A|t + St,n)
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and Lemma 4.1 yields
(51) E[|P(65:2* € AIS¢,...,S*) —p(Alt+ S¥)|| » 0 ast— co.

This implies that p(A|t + S}*) converges in probability for all n. Thus there is a
subsequence {t,;}%¥-, such that lim,_,  p(A|¢y, + S;*) exists a.s. and a subse-
quence {¢;;)%—o of {¢y1}%—o such that lim,_, p(A|t,, + S;*) exists as., etc. Put
t, = t,, and observe that {t,}%_, is a subsequence of {f,,}%_, and thus
lim, , p(Al¢t, + S) exists a.s. for all n. In other words, for each n there is a
Borel set A, such that P(S* € A,) =1 and lim, , p(A|t, + u) = p*(Alu),
say, exists for u € A,. Put (for example) p*(Alu) = P(05;Z* € A) for u &
U,>0A, to obtain p(Alt, + S¥) = p*(A|S}) as. as k — co. This and (5.1)
yield

P(0s+2* € A|Sy,...,8F) = p*(A|S?) as.forall n > 0.

Thus Z* is regenerative with regeneration times S*. Further, ,Z* =, Z* for all
u € [0, o0) since, as t = oo,

0uZ* t.o.(_ 0u0tZ = 0t+uZ _)t.v. Z*‘
Hence Z* is stationary and the time-homogeneity now follows from Proposition
2.1. The final statement follows by replacing (S, , ..., S; ,) by (w(Z,,,), B,..);
0<u<S,,) and (Sf,...,SF) by (w(Z}), B}); 0 < u < S}) and the proof is
complete. O

Finally we show that if Z admits a forward liinit law in total variation, then
“the mechanism governing the development of the process,” namely p(-| - ), is
asymptotically time-homogeneous in the following sense.

THEOREM 5.2. Suppose Z admits a forward limit law in total variation. Let
Z*, Sy be as in Theorem 5.1, let p*(-) be the distribution of the zero-delayed
process 0s5xZ* and let U be uniformly distributed on [0, h] where h € (0, ) is
arbitrary. Then

(5.2) p(Alt+U) >p p*(A) uniformlyinA € 1% ast - oo.
PrRooF. By Lemma 4.1 we have
(53) s jO°°|p(A|t +u) - p*(A)P(Sy € du) >0 ast— co.
Now S;* is the delay of a stationary renewal process and thus has a nonincreas-

ing density. This and (5.3) imply that (5.2) holds for some A > 0 from which it
easily follows that it holds for all A € (0, ). O

6. Remarks.
REMARK 6.1. Probably the set of regeneration times M = {u; B, = 0} is a

more basic concept than the age process. Based on the random set M the
definition would go as follows: Z is a (time-inhomogeneous) regenerative process
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with regeneration time set M if for all M stopping times T' € M,
P(0;Z€ AIM N (-0, T]) =p(AIT).

The advantage of this definition is that it extends immediately to the continuous
time case when the random set M does not consist of isolated points. The referee
has pointed out the following: It seems that a good deal of what is done in the
present paper could be carried out in the continuous time setting. A special case
of this is the theory of “regenerative sets”. Limit theorems (convergence in
distribution) in this context have been considered recently in a paper by
Fitzsimmons, Fristedt and Maisonneuve (1985). In particular, Theorem 3.4 of
their paper is something of an analog of Theorem 4.1 of the present one. Of
course, in the continuous case the counting process N must be replaced by some
sort of “local time” random measure. Such local times are familiar in the
time-homogeneous case; the time-inhomogeneous case would seem to be much
more difficult (and more interesting, perhaps). A more peripheral paper on
related matters is Kallenberg (1981).

REMARK 6.2. In Thorisson (1983) the state space (E, &) is general (not
necessarily Polish) and the only restriction on Z is that it be measurable [Z,(w)
jointly measurable in u and ; this is needed to secure that 6,7 is a stochastic
process]. Thus in the proof of Theorem 3.1 we never use the assumption that Z is
r.cll. and consequently the theorem holds with Z only measurable. Also we
obtained the probability measures =, without (E, &) being Polish. Thus even
if (E, &) is not Polish there still exists, for each t € (—o0, ), a one-sided
process Z® = (Z{P), c 4, «) Such that

0,2° > 02" ass| — .

We only need the Polishness in order to proceed from the collection Z9,
t € (— o0, o0), of one-sided backward limit processes to a single two-sided process
Z7%° =(Z,®)(= o, c0)

REMARK 6.3. If the conclusion of Theorem 4.1 is to make sense, Z~*° must
have the following properties:

(6.1) (B, ®) is an age process
and
(6.2) 07Z~ > is a stochastic process.

This is the reason for the assumption that Z is r.c.ll.: Then by Proposition 4.1
we may assume that (6.1) holds and that Z~* is r.c.L.l. which implies (6.2).

REMARK 6.4. If (E, &) is general and Z only measurable we may still assume
(6.1): For each t € (—o0,0) the event {u — b(Z,*) is of age type at the
rationals in [¢, c0)} has probability 1 and thus so has the limit event {u — b(Z, )
is of age type at the rationals}. Delete the complement from £ and let (B, *) be
the unique age process that coincides with (b(Z, ©)) at the rationals to obtain
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(6.1). We still have 6,(Z;, BY) —,,. 6(Z, >, B, *) as s| — oo since the @ subset
{B,® = b(Z;*) for u € [t, )} has outer measure 1 for each ¢ € (— o0, 0).

REMARK 6.5. The author has not been able to establish (6.2) when (E, &) is
general and Z only measurable. However, we can get around (6.2) by reformulat-
ing the definition of an inhomogeneous regenerative process in a way that allows
(E, &) and Z to be completely general [Z (w) need only be measurable in w for
each u]. Let B be a fixed element of E, define 8,Z by 8;Z, = Z,on {u > T} and
= B on {u < T} and observe that B,Z is always a stochastic process. Based on
BrZ rather than 0,Z the definition becomes: For each A € &~ ®) there is a
Borel measurable function g(A| - ) such that for all n > 0,

P(B;Z € AIB,; u<T) = q(AIT) as,

for all (B,) stopping times T such that B; = 0. Using this definition we do not
need (6.2) in order for Theorem 4.1 to make sense and thus the theorem holds
without any restrictions on (E, &) and Z [we still need (6.1) but the argument in
Remark 6.4 does not rely on Z being measurable]. In fact, all results from
Thorisson (1983) used in this paper can be established under this definition by an
obvious modification of the proofs. However, although the definition looks
natural in the inhomogeneous case, time-homogeneity and forward limits seem to
be more naturally discussed using 6,Z rather than B, Z.
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