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CONDITIONAL BOUNDARY CROSSING PROBABILITIES,
WITH APPLICATIONS TO CHANGE-POINT PROBLEMS

BY BARRY JAMES,! KANG LING JAMES! AND DAVID SIEGMUND?

Instituto de Matématica Pura e Aplicada, Instituto de Matématica
Pura e Aplicada and Stanford University

For normal random walks S,, S,,..., formed from independent identi-
cally distributed random variables X, X,,..., we determine the asymptotic
behavior under regularity conditions of

P(S, > mg(n/m) for some n < m|S,, = méy, U, = mAy), £ <g(1),

where U, = X2 + -+ +X2. The result is applied to a normal change-point
problem to approximate null distributions of test statistics and to obtain
approximate confidence sets for the change-point.

1. Introduction. A method of developing approximations for boundary
crossing probabilities which has received some attention of late is that of writing
the probability as an expectation of a conditional boundary crossing probability
given an appropriate random variable, and then developing an approximation for
the conditional probability. Such a method has been used with some degree of
success, as measured by the accuracy of the approximations, by Siegmund (1982,
1985, 1986), Hu (1985) and James, James and Siegmund (1987).

Let X,, X,,... be independent identically distributed N(p, 6%) random vari-
ables, with S, = X, + - -+ +X,, and U, = X + --- + X 2. Given a function g(¢),
0 <t<1and m > 1, let 7 be the possibly defective stopping time

T=T,= inf{n > 1: Sn > ’ng(n/m)}'

Siegmund (1982) studied the asymptotic behavior of the conditional probabili-
ties

P(‘T <m|S,, = mgo), go < g(l)’

and used the results to approximate the tail probability of the Smirnov statistic
and the power function of repeated significance tests for a normal mean when o?
is known. In this paper, we extend Siegmund’s method to study the asymptotic
order of the conditional probabilities

(1’1) P(T < mISm = méo, Um = m}\())’ g() < g(1)7

and apply the result to some change-point problems.
Our main result is stated and proved in the next section. The proof uses a
likelihood ratio argument, but we believe the result could also be obtained using
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826 B. JAMES, K. L. JAMES AND D. SIEGMUND

the method of Woodroofe [(1982), Chapter 8]. On the other hand, the method of
mixtures of likelihood ratios [cf. Lai and Siegmund (1977)] and the method of
Siegmund [(1985), Theorem 9.54; see also Hu (1985)], which seem particularly
simple in certain related problems, appear to be difficult to adapt to the present
situation.

Our motivation for studying the conditional probabilities (1.1) comes from our
investigation of the following change-point problem: Let X,..., X,, be indepen-
dent random variables with X, ~ N(u,, 62), and suppose we wish to test
the hypothesis of no change in mean Hy: p, = --- = p,, versus the alternative
of a single change H;: p, = -+ =p;#p;,, = --- =p, for some j € {1,...,
m — 1}. We can then use the theorem of the next section to obtain approxima-
tions for the significance levels of several tests of H,, as well as to obtain
likelihood-based confidence sets for the change-point j. These applications are
discussed in Section 3.

2. Asymptotic conditional boundary crossing probabilities. Throughout
this section, the following assumptions and definitions will hold. X,..., X,, are
independent identically distributed normal random variables, without loss of
generality assumed to be N(0,1), with S,=X, + --- +X, and U, = X2 +

-+~ +X2 n=1,2,..., m. The real-valued function g, defined on (0, 1], has two
continuous derivatives. For a fixed £, < g(1), there exists a unique point ¢* €
(0,1) which minimizes the function

_ 8(t) — &t
" )7

and further satisfies A(¢*) > 0, liminf, , jA(¢) > A(t*) and A”(t*) > 0. The
stopping time 7 = 7, is defined by

r=1inf{n <m: S, > mg(n/m)};

we let 7= +o0o if the defining set is empty. Let A, be such that A, >
g2(t*)(t*) ™' + {g(t*) — £)°(1 — t*)7", and define p and o® by p = g(t*)/t*
and 6% =X, — g2(¢*)(t*) ™' — {g(t*) — &)1 — ¢t*)" ' Let £ = mé, and A =
mA,. Finally, for any x € R and y > 0, we let

P™(A) = P(A|S,, = x,U, =)

for A belonging to the o-field generated by X|,..., X,,.

It can be seen that 62 = A, — £2 — A%(¢*), which in turn implies that A, > ¢2
and o%/(A\, — £Z) < 1. Note also that the condition A’(¢*) =0 implies p —
g'(t*) = (n — £,)/{2(1 — t*)}. Since A(t*) > 0, this implies p — g’(t*) > 0. It
can also be shown that the conditions on 4 imply that 1 + 2g”(¢*)¢t*(1 — ¢*)
{p — &’(¢*)} ! > 0. Thus, the terms that appear in (2.1) in the statement of the
theorem are all well defined, with the factor o2/(A, — £2) taking on a value
between 0 and 1.
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THEOREM. Let v be the function defined for t > 0 by

v(t) = 2t‘2exp{—2 f n_1®(—m1/2/2)},

n=1

where @ is the standard normal distribution function. Then, as m — oo,

2(p —g'(t*))}( o’ )(""3’/2
Ao — &5

o

P(1<m) ~ v{
(2.1)

2g"(t*)t*(1 —t*)) ~*
X{1+ —— .
p—g'(t*)
REMARK 1. The function » can be evaluated either directly by numerical

computation or approximately, at least in the range 0 < ¢ < 2, from the local
expansion

v(t) = exp(—pt) + o(¢%), t—0,
where p is a numerical constant which is approximately equal to 0.583. See
Siegmund [(1985), Chapter 10].

The following two lemmas are technical and will be used in the proof of the
theorem.

LEMMA 1. Assume a,, — o with a,, = o(m'/?), and let b, = m'/%log m and
I, = (mt* — a,m'?, mt* + a,,m"?). The following bounds all hold as m — co:

(2) max, _, ., 1 P{RAS, 2 mg(n/m)) = O(m~V2(a2/(\, — £2))(m=3/2),

(b) I, <1, P3RS, > mg(n/m)) = O{(c/(A, — £3))™~ 372},
(c) Fora >0,

P17 < m, |7 — mt*| = am"?} < 8(a){o2/(\, - gg)}w—s)/z’
where 8(a) - 0 as a - oo. In particular,
P(lr/m — t*| > a,,m~V2, r < m) = 0{(02/(}\0 _ é(z)))(m—3)/2}.
() P(jr/m — t¥| < a,,m™72,
S, — mg(7/m) 2 b,,) = o{(a%/(X, — gg))(m—f»/z}.

(e) For each fixed & > 0, uniformly for n and r such that |n — mt*| < a,,m'/?
and 0 <r<b,,

Ps(,";)(lU,,/m — (0% + p2)t*| > ¢S, = mg(n/m) + r) = o(1).

PROOF. Let ¢ and [, denote, respectively, the standard normal and
the x2 probability density functions. Then P(S, € dx, U, € dy} =
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n~Y%p(n"Y%x)f,_(y — x%/n)dxdy for |x| < (yn)"/? and O elsewhere. From
this one easily obtains the following conditional densities, which are used
repeatedly. For 1 < n <m — 1 and |{| < (mA)"%,

P™(S, € dx,U, € dy} /dxdy

o m 1/2
i (n(m - n>)
(2.2) y [I‘( m2— 1 )(y B f'li)(n_3)/2(>\ - (fn__x: )(m—n—3)/2:|

N

for 0 <y <A, |x| < (yn)? | — x| < [(m — n)(A — y)]*/? and 0 elsewhere; also
forn<m -1,

P(S, € d) /dx = ,,—1/2( m )”2 F((m = 1)/2)

23) n(m —n) I'((m-2)/2)
ol 5_2)—<m—3)/2(>\_ (£ - x)? . x_2)<m—4>/2
m m-—n n

for x2/n + (¢ — x)2/(m — n) < X and 0 elsewhere.
(a) After integrating (2.3) and changing variables, we obtain

n T((m - 1)/2) (m—4)/2
— || = 1 — y2
wl) = TG na h 0

where B, = {y: |y| <1, y = (A — £2)"*h(n/m)}. Now for 0 < a < 1 we can

show, by a change of variables (x = y?) and appropriate bounding of the
integrand, that

(24) B[S, > me

2\(m—2)/2
1 (m—4)/2 1l-a )
1—y? dy < ———M—.
j;( ¥?) < D)

Stirling’s formula for the gamma function implies
1/2

I((m - 1)/2)/T((m - 2)/2) ~ (m/2)"".
Thus, it follows from (2.4) that

o n Ao — £ — B*(n/m) (m=3/2
I O e

for some K > 0 and all m > 3 and n such that A%(n/m) < A, — £3 (the bound is
0 otherwise). Part (a) now follows from the relations 02 = A, — £2 — h2%(¢*) and
h(n/m) > h(t*).
(b) and (c) Note that
BM™(|r/m — t*| > a,m %, r<m) < Y, P{(S, = mg(n/m))

n&l,
n<m
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and that (2.5) implies

Ao — &

n 2 (m—3)/2
m

rex(s. = mf 2] =
(2.6)

Ao — & — B*(n/m) \ "
)\o_g(z)_h2(t*) )

Both (b) and (c) will follow by developing bounds for appropriate sums of the
last factor of (2.6). By the assumptions on 4, this factor will be of exponentially
small order in m if n/m lies outside any fixed neighborhood of ¢*; thus, for any
fixed 8 > 0, we may restrict attention to n such that |n/m — t*| < §. But
Taylor’s series expansions on log(1 + x), to one derivative, and h(¢) around ¢*,
to two derivatives, yield the existence of K, > 0 and & > 0 such that

No = £ = K(n/m) | "0 R
Ao — £2 — h%(t¥) ) <exp(—mK0(;—t‘) )

for n such that |n/m — t*| < 4. Part (b) and the second statement in (0
following by summing these bounds over n in I,, and IS and bounding the sums
appropriately by integrals. The first statement in (c) follows by essentially the

same argument.
(d) By a process similar to that used to obtain (2.6), we have that

P™(|r/m - t*| < a,m Y2, S, — mg(r/m) = b,,)
< Y P(S,= mg(n/m) + b,)

nel,
and for some K’ >0, all m > 3 and all n such that [h(n/m) + b,,/{n(m —
n)}l/2]2 <Ay — £(2)’

n
PR( 8= ma( ) + )

2\ (m—3)/2
< kmo1va| Yo~ 8 = [BG/m) + b/ (n(m — )} ]
M- &
2  \(m—3)/2
<K'm 2
s

Ao — $(2) - h2(n/m) — b]ﬁ/{n(m _ n)} (m-3)/2
g Ao — &8 — BP(t*)

2 (m—3)/2 2 \(m—3)/2
o 4b
sK'm—lﬂ( 2) (1— - ) ;

o2m?

where the last inequality uses the fact that A(n/m) > h(t*). Part (d) now
follows by using the relation 1 —a<e @ forO0<a < 1.
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(e) By Markov’s inequality
BR([Up/m = (02 + p?)t%| > €IS, = x)
< 1/¢2|Var(U,/m|S, = x, S, = £, U, = \)
+{E(U,/m|S,=x, S, =§,U,=7)
—(a%+ pz)t*}2].

Conditionally, U, is a linear function of a beta-distributed random variable. In
fact it can be shown that the random variable

U,— S2/n
Uy = 8/n=(8,~8,)"/(m~n)’
whose numerator is one of two independent chi-squares making up the de-
nominator, has a beta distribution with parameters (n — 1)/2and (m — n — 1) /2
and is independent of the vector (S,, S,,, U,,). Therefore,

2 _ 2 9 _
E(U,,IS,,=x,Sm=g,Um=;\)=%+(}\ ((-x) x*\(n-1)

(2.7)

and
Var(U,|S, = x, S,, = £, U, = \)
(£-2)°" ﬁ)z(n— 1)(m—n—1)
m(m — 2)° .

Part (e) now follows from (2.7) and the preceding by algebra. O

m—n n

LEMMA 2. For each € > 0,

@ PIRAIS,/m — pt*| > ¢, < m) = of(*/(\o = §5))" ¥/} and
(b) PER(U,/m = (o + p)e*| > &, 7 < m) = o{(”/(No = )™ 7/%}.

ProoF. Let a,, = log m. Applying first Lemma 1(c) and then the triangle

inequality, we have
o2 (m=3)/2
Ao — £

T
__t*
m

S,
LHS(a) = Pg,";)( ~ — e

> g, <amm‘1/2) +o{

< Pé";‘)(s —mg(i) > E.’ I _ t*l<a m—1/2)
’ T m 2°|m m
£, A m 9’ m m

g2 \(mm92
Ao~ &5 ’
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The second summand on the right-hand side is null for n sufficiently large, since
g is continuous and g(¢*) = pt*. The first summand can be handled by Lemma
1(d), thus completing the proof of (a).

Apply parts (c) and (d) of Lemma 1 to obtain

U,
T 2 2 4%
m (% + )t m

p o \(m-3/2
<a,m | +o .
) {( Ao~ 53) }

Now decompose the preceding event according to the value of , letting I,, be
the interval (mt* — a,,m"?, mt* + a,,m'/?):

LHS(b) = Pg,";)(

r
>£,S,—mg( )sbm,

n

U
= 2+2 *
— = (o +p%)t

LK) < T A -

nel,

02 (m-3)/2
“’{(Ao— é%) }

- 3 rsfsend )

nel, m

n
>£,0$Sn—mg( )sbm)

U,
< P[5 = (o7 4 e

g2 \(m9/2
+o .
Ao — £

Part (b) now follows by applying first Lemma 1(e) and then Lemma 1(b). O

n
>a|OsS,,—mg(Z) sbm)

REMARK 2. We will show in the course of the proof of the main theorem that
P{(r < m) > K{a®/(Ay — £3)}"~ 372 for some K > 0. Then Lemmas 1(c) and
2 will give us convergence of 7/m, S,/m and U,/m to t*, pt* and (o2 + p?)t*
in conditional P{Y-probability given {r < m}, i.e., for each ¢ > 0

P{(|t/m — t*| > elr < m) - 0,
PCY(IS,/m — pt*| > dr < m) = 0
and
PI([U,/m = (o2 + p*)t*| > elr < m) - 0.
REMARK 3. Formula (2.4) shows that the marginal probability P{%(S, >
mg(n/m)) is maximized by that r which minimizes h(n/m), i.e., by some n not
far from mt*. When m is large, then it would seem reasonable that if the partial

sum process were to cross the curve at all, it would do so for n near mt*. We see
from Remark 2 that this holds.
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PROOF OF THE THEOREM. Let P{™), denote the restriction of P{™ to the
o-field generated by X,,..., X,,. Let £, = mp and A\, = m(o2 + p2). The idea of
the proof is to use a likehhood ratio argument, based on the likelihood ratio of
P{%) with respect to P{™ . The values of £, and A, are chosen because of the
approx1mately equlvalent local behavior of the pre-r process under P(l"")l_ and,
conditionally, under P{y given {r < m}. In fact, given {7 < m}, Remark 2 tells
us that S,/ > p and U,/ — o® + p? in P{V-probability.

Let L, denote the llkehhood ratio of the absolutely continuous part of P{Y
relative to P("‘) - It follows from sufficiency and (2.2) that for n < m — 2,

p— Un _ (g _ Sn)2/(m _ n) )(M—n—3)/2(ﬂﬁ)(m—3)/2

, n

n=

M= U= (6 -8,)/(m—n) A= &/m

if A, —U,—(¢4,-S,)>/(m—n)>0and A — U, — (¢ — S,)%/(m — n) > 0,and

L,=0ifA\-U,-(¢£-8,)/(m—n)<0<X, —U, - (¢, — S,)*/(m — n).
Let I, and b, be asin Lemma 1, and put B = {r € I,,, S, — mg(r/m) < b,

|m™IS, — pt*| + |m™ U, — (6 + p?)t*| < ¢}. By Lemmas 1 and 2 it suffices to

show

P™(B) ~ RHS(2.1).

It is easily shown that A, — U, — (¢§, — S,)2/(m — 7) > 0 on B and hence by
Wald’s likelihood ratio identity [see, e.g., Siegmund (1985), page 13]

P(B) = fL dP{™.

o2 (m=3)/2
(2'8) - (Ao_ 5(2))

Xf(x—a—(g—s»“’/(m—v)
M=U-—(5-8,)/(m-1)

Law of large numbers arguments indicate that under Pg X, 88 m — oo,

(m—1—-3)/2
(m)
) dp’éu%l'

4 * S"’ * U‘" 2 2) 4%
m Pt o 7pat* and ;—’p(ﬂ +p?)tx,
so that
-S)?
m'l(}\ -U - u) ->p 02(1 —t*),
m-—r
(2.9)
-8S)?
m—l(}\l -U - (_gl—")) —p 02(1 — t*).
m-—r
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Since log(1 + x) = x + O(x?) as x — 0, we have
A-U, - (§-8)"/(m~1)
M-U = (&-8)/(m—r)
AN - {2 -8 -28(8-4))/(m—1)
M-U - (4 -8)/(m—1)

+Op{(A0_O2—M2_ (gg—ﬂzi(io/;u)& m)) }]

Letting R,, be the excess over the boundary, ie., R, =S, — mg(r/m), and
using a Taylor expansion on g at ¢*, we get

S, =R, + m{g(t*) + /()= - o)

e R R !

where ¢(t) —» 0 as ¢t = t*. To obtain the limiting joint distribution of R, and
m'/%*(1/m — t*), we must appeal to an appropriate nonlinear renewal theorem
for the conditional process governed by P{™}. For an intuitive discussion of
nonlinear renewal theory which leads one to the correct limiting joint distribu-
tion, see Siegmund [(1986), Appendix 2 and Lemma 2.16]. Hu [(1985), Chapter 4,
Theorem 10] has proved a general result which provides a rigorous justification.
The upshot is that R,, and m/*(t1/m — t*) converge in distribution and are
asymptotically independent under 1-’§1{")21; the limiting distributions will be seen
later. This, together with some algebra, means that the right-hand side of (2.10)
can be written as

o { 2(£o — p) (R, + mg”(¢*)(r/m — t*)?/2 + me(r/m)(r/m — t*)?)
1 -1/m)(A, - U, - (¢ - 8)*/(m—r))

(2.10) = exp[

(2.11)

+Op(m'2)}.

If we insert this in the integrand, (2.8) becomes

N %
Ao — &5

y fexp{ (m—7—-3)(& — n)(Rm + mg"(t*)(1/m — t*)/2 + 0,(1))
? (- r/m)(A = U, ~ (&~ 8)%/(m~ 1)

+op(m-1)} ars.
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Application of (2.9) then yields

o2 (m—3)/2
>\0 - £(2)

< [ o] o= )R + mg(t%)(e/m ~ £2)"/2)
f o%(1 —t*)

(2.8) = (
(2.12)

+ opm} aPm,

It also follows from the preceding arguments that P{™}(B) - 1, so if we may
interchange expectation and limit in (2.12), we will be able to evaluate the order
of (2.8) by using Hu’s result. This result states that as m — oo

o (r—=mt*)(p—g'(t*))
Pg(l,gl( (me*(1 — t*))1/20 <x,R,<y
- ®(x) lim P(R* <y),

(2.13)

where @ is the standard normal distribution function and R} is the-excess over
the constant boundary ¢ of a random walk, generated by independent identically
distributed N(p — g’(t*), 0%) random variables, which is stopped the first time
it exceeds c. If R is a random variable such that R* —», R as ¢ — oo, then
renewal theory [see Siegmund (1985), Chapter 8] allows us to calculate

Fex { (§ — u)R} _ V{ 2(#‘8'('?*))}’

(1 - ¢t*)o? o
where we use the fact, noted earlier in this section, that p — g’(t*) =

(r—%5)/{20 — t*)}. If X has a chi-squared distribution with 1 degree of
freedom, the remaining factor will have the form

’” * % — 1% 144 * * — 1%
g - LU )y 00
p—g'(t*) p—g'(t*)
Therefore, we will be able to conclude that the right-hand side of (2.1) is
asymptotically equivalent to (2.8) if we can make the exchange of expectation
and limit alluded to previously.
Fatou’s lemma for convergence in law implies that the right-hand side of (2.1)

is an asymptotic lower bound for (2.8). To obtain an upper bound let A =
{I7 — mt*| < am'/?} and write

—-1/2

(2.14) -/;BLT dP{m = f L,dP{m). + f L, d .

By Wald’s likelihood ratio identity and Lemma 1(c)

(2.15) f L, dpg(l',"ﬁl = 8(a){a2/(}\0 _ £(2))}(m—3)/2,
BAC

where 8(a) = 0 as a — oco. For the first integral on the right-hand side of
(2.14), note that for ¢ sufficiently small (A, — U, — (¢, — S,)%/(m — 7)) >
mo?(1 — t*)/2 on B. Then we may use the fact that log(l + x) <x for
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x > 0 to dominate the integrand in the region of integration:

( A=U, = (§-5)/(m=1) )(,,,_,_3)/2
M=U = (4-8)/(m~1)

(m—7- 3>(x—xl— (8- -25(¢-£))/(m—r) }

2 M-U - (4-8)/(m—r1) )

< 1V exp[2(m — 7= 3)(£, — p){R,, + mg”(t*)(r/m — t*)*/2

+me(r/m)(1/m — t*)*} /{o*(1 — t*)(m — r)}]
[by (2.11)]

SIVexp[

| m(r/m = t*)1E — pl{1g7(¢%)] + 2le(r/m)|)
<1lv max[ (1 = %) ] (m large)

< exp(Ka?)
for some K > 0 and m large enough; the last inequality uses the fact that
R, > 0and §, — p < 0. Letting m — oo and appealing to the weak convergence
indicated in (2.13), then letting a - oo and using (2.15), we can justify the
desired interchange of integral and limit, thus completeing the proof. O

As an aid in applying the theorem, we note that if g has two continuous
derivatives, then the other conditions on g and 4 will be satisfied if (i) £* is the
only point at which A’ = 0, (ii) A(¢*) > 0 and (iii) 2’(¢*) > 0. This will be the
case in the examples considered in the next section.

3. Application: Tests and confidence sets for a change-point. Let X,
i=1,..., m, be independent normal random variables with unknown means B
and constant unknown variance o2 > 0. We consider testing the hypothesis of a
constant mean against the alternative of a single change-point, i.e., testing H,:
py= -+ =p, versus H;: for some j€({l,....m—1}, p;= --- =u;#*
Bjr1= " = Py

In a comparative study of different tests James, James and Siegmund (1987)
gave without justification approximations for the significance levels of three
different tests. The approximations may all be obtained as applications of the
theorem in Section 2. We illustrate those results by deriving the suggested
approximation for the significance level of (a slight generalization of) the likeli-
hood ratio test. We also give the results of a Monte Carlo experiment to assess
the accuracy of the approximation and discuss briefly probability approxima-
tions to obtain likelihood ratio based confidence sets for the change-point.

The test is to reject the hypothesis of no change-point for large values of

|Sn - n‘le
max 1/2q°
mo<n<m, {n(l - n/m)} S

where S, = X, + --- +X,, X, =n"'S,, S2=m 'L(X, - X,)’and 1 < m, <
m; <m-—1.

T=
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Under H, the distribution of the process (S, — n)?m) /S, n=0,1,..., m, does
not depend on p, 0% and hence by Basu’s theorem [Lehmann (1959), Theorem
5.2] the process is independent of the complete sufficient statistic (S,,, U,,).

Therefore,

P(T > b) = P{™(T = b)

= F7)| max e 2 bl.
mo<n<m {n(1 - n/m)}

Conditioning with respect to the values of S, and U, and using the Markov
property, we have

P(T>b) = (m)(lst > b{m,(1 - ml/m)}l/z)

3.1
(8.1) + /f P,c(f”;)(f < ml)P({",',Z(Sm1 € dx,U, € dy),

where 7= inf[n > my: |S,| = b{n(l — n/m)}'/*] and A,, is the set of (x, y)
such that |x| < b{m,(1 — m,/m)}'/? and the P{7)-joint den51ty of S,  and U, ,
as a function of x and y, is positive.

The first summand in the right-hand side of (3.1) can be calculated exactly, as
in (2.4). The theorem can be used to approximate the integrand in the second
summand. For this, assume that b = em'/%, m, = mt,, m, = mt,, x = m,x, and
y=my,, where 0 <c<1,0<t,<t < 1 |xo] < et 21 — ¢,)V/% and m, y, is
a P{7)-possible value of U, , given S, = m,x,. For g(t) = c{tt; 1 — )}/,
§o = x5 and A, = y,, we obtain

2tl
21— ¢)" +x2t2

* —

The only hitch in applying the theorem is that r > m,; a direct application
requires m, = 1. However, this is no problem if ¢* > ¢,/t,, because in this case it
follows from (2.6) that the P{")-probability of the process crossing the boundary
before n = m, is of exponentially smaller order than that of crossing before
n = m,, so that we may replace m, by 1. On the other hand, if ¢t* < ¢,/¢,, which
corresponds to |x,| < ct; (1 — ¢){t,(1 — t,)~'}*/%, we can approximate the in-
tegrand by 0. This follows again from (2.6), which implies that the integrand will
be of exponentially smaller order than other values of the integrand correspond-
ing to t* > t,/t,. Therefore, we are led to the approximation

P(T > b) = 2I'((m - 1)/2)) /1(1 im0t g

/2T ((m — 2) /2

o 1— tl ff ( X, ) o2 (m,—3)/2
c
Bxy \t*(1 —t)o )| 3 — x5

S, U,
P(M) deo’_edyo ’
m m

1 1
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where 6% = 0%(x, o) = Yo — X7  + x2t(1 — ) ' a

c? xgt1 1 xlt, c(l -t t, \'?
B={(x0,y0):—_ (l—t)
0

t, 1—t1 t1 1-¢° ¢
1-t 1/2
<x,<c .
t

The factor 2 is due to restriction to positive values of x, by symmetry.

A further approximation can be made upon insertion of the conditional
density into the integral, with subsequent utlhzatlon of the fact that U, is
conditionally, given S, =0, U,=m and S, = mx,, a linear functlon of
random variable with a beta dlstrlbutlon Wlth parameters (m, — 1)/2 and
(m — m; — 1)/2, which as m — oo with m,/m — ¢, collapses to a point mass at
t,. Following this procedure, we can insert the P{’,)-density of (S,, /m,, U, /m,),
to wit

{t{nl/(l - tl)}l/zr((m - 1)/2) ( _ xz)(ml—.3)/2
720 ((m, = 1)/2)T((m — m, - 1)/2) °

v PP . UHR |
A CCREp—y ’

make the change of variable (in y,)
z=t(1- 02)_1{3'0 +agt(1 - )" — cztfl},

integrate with respect to z and use Stirling’s formula to approximate the
remaining gamma functions to show that the preceding integral reduces asymp-
totically to a single integral in x,. Thus we are led to the approximation

-1

2m \ /2 om \1/2
P(TZ b) = (—) fl(l - x2)(m_4)/2dx + c(_m) (1 _ 02)(m—4)/2
™ c T
(3.2)

N .

—1_ _ a2 1/21 C

% /C{(to L) e B —— 1 dx.
(=1 /A=A X (1-c?)x

REMARK 4. It is easy to see that for each i = 0,1, .
1 —i)/2
1 — x2)" 972 gy
[a=x%

=(em)7'(1 - 02)(m_i+2)/2{1 +m N (i—-1-c?)+0o(m™")}

as m — co. Use of this approximation simplifies slightly the computational
burden associated with application of (3.2). From this expansion it is evident
that the first term on the right-hand side of (3.2) is asymptotically of smaller
order than the second and mathematically could be neglected. In a number of
related problems, Siegmund (1985) shows numerically that including this term
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TABLE 1
IS, — nX,,|
P max Tag =@
mosns<m; {n(l—n/m)}’°S
a m m, m, Monte Carlo 3.2)
2.75 20 1 19 0.0458 0.0483
2.45 20 3 17 0.0936 0.0969
2.65 20 3 17 0.0526 0.0510
3.06 20 3 17 0.0104 0.0096
3.05 80 1 79 0.0448 0.0473
2.65 80 8 72 0.0940 0.0994
2.90 80 8 72 0.0478 0.0496
3.40 80 8 72 0.0112 0.0094

typically improves the approximation, and hence we have included it for numeri-
cal purposes.

REMARK 5. It is natural to ask what precise mathematical meaning
can be attached to (3.2). As noted in Remark 4, the first integral on the
right-hand side of (3.2) is asymptotically negligible. With some additional
work it can be shown that P(T > b) is asymptotically equivalent to the second
integral on the right-hand side of (3.2). It suffices to show that for each
%o € (et '(1 = t){to/(1 — t) Y/ {1 — ¢,)/t,}'/?) the asymptotic behavior of
the conditional probability indicated in the theorem holds uniformly for y, in a
neighborhood of 1+ ¢%¢;%(1 — ¢,) — x2t,(1 — ¢,)7! of width a,/m'/?, where
a,, — o, together with appropriate uniformity in Lemma 1. The details are
tedious and have been omitted.

Table 1 gives results of a 9999 repetition Monte Carlo experiment to assess the
accuracy of (3.2). These figures along with similar ones not reported here show
that (3.2), although usually giving answers which are slightly too large, is
sufficiently accurate for use in practice without fear of being misled.

In the approximation (3.2) the conditional probabilities of the theorem appear
indirectly, via the integral in (3.1). A problem in which they enter directly is that
of giving confidence sets for a change-point based on the likelihood ratio
statistic. The case of known o is discussed by Siegmund [(1986), Section 3.5]. If o
is unknown, essentially the same argument leads to the probabilities

Py = 1-'%(’”;\11){|Sk| > meo{km™Y(1 — km“)}l/2 for some & < ml}
and

Dy = Pg)’;‘\;”‘l){|8k| > mey{km (1 — km‘l)}l/2 for some k < m — ml},
where for some constant 0 < ¢ < 1,

co = {e(A; +Ay)/m+ (1 — )&/ [my(m — m,)]} .
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Assuming m; =mp, §=m§,, A\, =mA, and A, = (m — m;)A,y, where
0<p<l, &, A, and A,, are fixed and applying the theorem with g,(¢) =
co{t(1 — pt)/p}/* and gy(t) = c{t[1 — (1 — p)t]/(1 — p)}'/?, we obtain

by~ ”{ﬁo/[(l - P)t1*°1] } [012/(>‘10 - gg)](Ml_3)/2co§61[(1 - P)/P]1/2
and

P2 ~ #[£0/(pt1o;)][03/ (Mg — £3)] "™ eots p /(1 - p)]V7,

where t¥ = £3p/{cj(l — p)® + £p%), t3 = &1 — p)/{cip® + £(1 — p)*},
of =Ny — ¢§/p + £p/(1 —p) and o5 = Ay, — c3/(1 — p) + §3(1 — p)/p.

These approximations can be used directly or after integration with respect to
the conditional distribution of U,, given S,, =0, S,, =§ U, =A; +A; -+ as
in (3.17) and (3.18) of Siegmund (1986) (where incidentally the event A should be
A°) to obtain approximate confidence sets for the change-point.
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