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RANDOM NONLINEAR WAVE EQUATIONS: PROPAGATION
OF SINGULARITIES

BY RENE CARMONA! AND DAVID NUALART?

University of California at Irvine

We investigate the smoothness properties of the solutions of one-dimen-
sional wave equations with nonlinear random forcing. We define singularities
as anomalies in the local modulus of continuity of the solutions. We prove the
existence of such singularities and their propagation along the characteristic
curves. When the space variable is restricted to a bounded interval, we
impose the Dirichlet boundary condition at the endpoints and we show how
the singularities are reflected at the boundary.

1. Introduction. Let us consider the stochastic partial differential equation

(1.1) %(t,x) - %x—f(t,x) = a(X(t,x))&(t, x) + b(X(¢, x)),

where the “time variable” ¢ varies in [0, o) and the “space variable” x is one
dimensional and varies in an interval I. This interval I can be the whole real line
or a semibounded interval or a bounded interval. In the case I has a finite
endpoint, we will impose the Dirichlet boundary condition at such finite end-
points. The functions a and b are assumed to be continuously differentiable on
R with bounded derivatives, and ¢ is assumed to be a space—time white noise.
Equation (1.1) is formal. It is a wave equation (because of its left-hand side) with
a nonlinear random forcing term (because of its right-hand side).

In the companion paper [2] we gave a rigorous definition of a solution of (1.1)
by rewriting it in an integral form. We proved existence and uniqueness of such a
solution when the functions a and b are C' and we investigated the Markov
property. We also used the Malliavin calculus to exhibit sufficient conditions on
the coefficients a and b which insure the existence and the smoothness of a
density for the random variable X(¢, x) when ¢ > 0 and x € I are fixed.

The present paper is devoted to the investigation of the existence and the
propagation as ¢ varies of the singularities of X as a function of (¢, x). This
problem has been studied in [8] in the case a =1, b=0and I = R.

Parabolic equations are well known for smoothing out (as ¢ increases) the
possible singularities of the initial conditions. On the other hand, hyperbolic
equations are known to preserve the singularities of the initial conditions and to
propagate them along characteristic curves in the (¢, x) plane. We show that this
fact remains true in the random case.
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Solutions of (1.1) are nondifferentiable continuous functions of (¢, x). They
become semimartingales, in the usual sense of one-parameter stochastic processes,
when restricted to some one-dimensional curves of the (¢, x)-plane. One can then
use a law of the iterated logarithm, which we prove in Section 2 for general
continuous semimartingales, to find the local modulus of continuity of the
solution X(t, x) along these curves and to define a singularity as a failure to
have this modulus of continuity. A simple time-change argument and a result by
Orey and Taylor [7] tell us that there are many such failures. Using Meyer’s
selection theorem, we show that such singularities exist almost surely at nonan-
ticipative random points of the (¢, x)-plane and then we prove their propagation
in the orthogonal direction. We treat the case of the whole real line I = R in
Section 3 and the case of intervals with finite endpoints in Section 4. The latter
is more involved: We have to show that the singularities are reflected when they
hit the boundary of I. At this level the intuitive picture of a random string which
is tied down at its endpoints is very useful. The reflection of the singularities
relies as before on the investigation of the local modulus of continuity of the
solutions and the latter requires a law of the iterated logarithm for some
stochastic integrals in the plane (see Theorem 4.4). Its proof depends upon a
“simultaneous law of the iterated logarithm” for the sum of two independent
Brownian motions (see Theorem 4.1) which we prove in the same spirit as in [9].

2. Preliminary laws of the iterated logarithm. Throughout the paper we
will use the notation

(2.1) o(h) = y2hloglogl/h

for h € (0,e 1) and

(2.2) ¥(Rh) = /2hlog1/h

for h € (0,1). We will also talk very often about processes or semimartingales
without specifying where they are defined. We will implicitly assume that these
processes are defined on a complete probability space (2, %, P) equipped with a
right continuous filtration {%,, t > 0}, each o-field %, containing all the P-null
sets.

Our first result gives the local modulus of continuity of a large class of
semimartingales. Its proof relies on a simple reduction of the problem to the law
of the iterated logarithm for Brownian motion via a classical time-change
argument.

LEMMA 21. Let {X,; t > 0} be a semimartingale with canonical decomposi-
tion,
X(t) = X(0) + M(¢t) + V(2),
where V(t) = [5v(s) ds for some measurable and adapted process {y(t); t > 0}
with locally bounded sample paths and where the quadratic variation of the
martingale part is given by

)= [ ‘a(s)* ds
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for some adapted process {a(s); s = 0} with continuous sample paths. Then
(i) for each t > 0 we have
X(t+ h) — X(¢t)
2.3 lim sup
@3) hl0 o(h)
(ii) if {s = 0; a, = 0} has empty interior with probability 1, the random set

: X(t+ h)(w) - X(t)(w)
(2.4) E(w) = {tz 0; hr;lls(l)lp o(h) = +oo}

is uncountable and dense in [0, o) for P-almost all » € Q.

=|a(t)| P-a.s;

Proor. We first show that (i) holds. Our assumption on {y(s); s > 0}
reduces the proof of (2.3) to the particular case in which X(0) = V(¢) = 0. The
optional times,

(2.5) 7, = inf{s > 0; (M), > t},
can be used to time-change the martingale {M,; ¢t > 0} into a Brownian motion.
Indeed, the process {B(t); ¢t > 0} defined by
(2.6) B(t) = M(r,), t>0,
is an {#; ¢ > 0} Brownian motion. Let us assume for the moment that «, > ¢
for some & > 0. In this case, for P-almost every w € @, (M), and 7, are inverses
of each other and each of them is a strictly increasing one-to-one map from
[0, o0) onto [0, co) which vanishes at zero. Then the random variable (M), is, for
each fixed ¢ > 0, a stopping time for the filtration {# ; ¢ > 0} and consequently,
{B(M),+ h) — B(M),); h > 0} is also a Brownian motion. The classical law
of the iterated logarithm gives
B({(M), + k') — BUM),)
m - =
m10 o(h)

For « fixed in this full set we choose A’ = (M),,, — (M), where k0. This
gives

1 P-as.

M(t+ h) — M(t)
m 3
rio @((M),.p — (M),)
and the continuity of a, implies that ¢((M),,, — (M),) ~ |a(t)|p(h) when
h 1 0. This proves (2.3) when «, is bounded below away from zero. To treat the
general case we can take M"(¢) = M(t) + (1/n)B(t), where {B(¢); ¢t > 0} is a
Wiener process independent of {M(¢); ¢t > 0} and we let n — oco.

We now investigate the properties of the random set E(w). We know from [7]
that the random set

E(w) = {t>0; B(t + h,) — B(t) > y(h,) for some sequence 4, |0}
is uncountable and dense in [0, c0) for P-almost all w. Consequently the set
I;)':(w) = {n(w);te E(w)} N {t>0; a(¢, w) # 0}

is also uncountable and dense in [0, o) for P-almost all w because of our
assumption on a(s). Indeed, our assumptions imply that the change of time
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t - 7,(w) is continuous and strictly increasing. We conclude the proof by check-
ing that E(w) contains E(w). If s € E(w), s = 7(w) for some ¢t € E(w) and
M(S + h,n: (0) - M(S, w) > %‘P(hn)

for n large enough provided we set h), = 7(¢ + h,, w) — 7(t, ). Since Ak, | 0 this
implies that

i M(s+ h,w) — M(s,w)

1m sup = T oo,
hi0 ¢(h)

which gives s € E(w). O

Points of the set E(w) defined in (2.4) will be called singular points. So, for
us, a singularity simply means a failure of the law of the iterated logarithm. The
preceding result deals with “one-parameter” semimartingales. It justifies the
following definition of what we will call a singularity for a function of two
parameters. Our choice was influenced by Walsh’s work [8] and by the following
developments. )

DEFINITION 2.2. A function X: [0,00) X R — R is said to have a positive
singularity at z € [0, ) X R in the direction of z’ € [0, o0) X R if
X(z + hz') — X(z
(2.7) lim sup ( ) (@) =
hi0 o(h)

The singularity will be said to be negative in case the liminf is —oo.

We will denote by [,(2) the left-hand side of (2.7) and by ,(z) the correspond-
ing liminf.

Lemma 2.1 will be applied to two-parameter processes when the second
parameter is held fixed. We will need at times to have the law of the iterated
logarithm hold almost surely simultaneously for all the values of the second
parameter. We prove such a result in the following lemma for two-parameter
strong martingales.

Let us assume that {%,;z € R%)} is a nondecreasing family of o-fields
satisfying the usual properties (F1)-(F4) of Cairoli and Walsh [1] and let M =
{M(z); z € [0, 0) X [0,0)} be a square integrable continuous strong %,
martingale which vanishes on the axes. As usual z; = (s, x;) < Z, = (8, X5)
if and only if s, <s, and x; < x, and we use the notation M((z,,z,]) =
M(sy, x4) — M(8y, x,) — M(8,, x5) + M(s;, x,). Recall that the strong martin-
gale property means that

E{M((z,,2,] 17! v £?} = 0

whenever z, < z,, where #; ., =V . 0% , and £? . =V, 0%, .
We will also assume that the quadratic variation of M is of the form

M), = [ [Ca(t, y)* drdy
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for some adapted continuous process {a(t, ¥); (¢, ¥) € [0, 00) X [0, c0)}. Then we
have

PROPOSITION 2. 3 Under the previous conditions, for each fixed s, > 0,
x 1/2
(2.8) hmsup [M(so+ h,x) — M(sy,x)] = [f a(sy, ¥)° dy]
(h) 0
holds almost surely simultaneously for all x € [0, o).

Proor. For each x and w we set

M(sy+ h,x,0) — M(sy, x,w)
2.9 I(sy, x,w) = limsup
G9 e e o(h)
and we define the subset A of @ X [0, o0) by

_ {(w,x); I(s,, %, @) # [fo"a(so, ¥, 0) dy]l/z}.

If the result were not true we would have P{m(A)} > 0 with = being the
projection of € X [0, o) onto @. We show that this gives a contradiction. The
process I(sg, -) = {l(sqy, x); x = 0} is optional with respect to the filtration
(o, 2 0}. Asusual Z, =V, (F; ) Therefore, by Meyer’s section theo-
rem (see [4, page 219)), there exists a finite % ,-stopping time X such that

(2.10) P{l(so, X)# [L afs, y)* dy]l/z} > 0.

Since we care only about the strict positivity of the preceding probability, we
may assume without any loss of generality that X is actually bounded by some
finite constant, say x,,. We now claim that, for each fixed § > 0, {M(s, X + 8) —
M(s, X); s >0} is a martingale with respect to the filtration {#, , V %, ;
s > 0}. Similarly % , =V, (#; ) To check our claim we first approximate X
from above by countable-valued finite stopping times X ". For each integer n > 1
let X*"= 27" if (j—1)2"<X<j 27" for j=1,2,.... Then X% w) ap-
proaches X(w) monotonically from above for each w € Q and X"is an Z .-
stopping time for each n. If s < ¢ we have

E{M(t, X +8) — M(¢, X) — M(s, X + 8) + M(s, X%, . V%, x}
= lim E{M(¢, X"+ 8) — M(t, X") — M(s, X" + 5)

n— oo

+M(s, X")\Z, , V%, x} (by continuity)

lim ZE{(M(t J27"+8) — M(t, j27") — M(s, j27 "+ 8)

n—oo ;_y

+M(s, T2 (xn oyl 0 VZO,X}

lim ZE{ (Xm=j2~ ")E{M(((S 727"),(t, j27" + 8)])

n— oo j=1

|‘gi,oo V'gio,j?‘"}l‘%,oo V'g;oo,X}
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by the strong martingale property of M. We also claim that the quadratic
variation of the martingale {M(s, X + 8) — M(s, X); s > 0} is given by

(M(-, X +8) - M(-, X)), = f:/XX”a(t, y)? dtdy.

Consider a partition 7 = {0 =s,<s, < -+ <s, = s} of the interval [0, s] and
let us define the rectangles A; = ((s;_,, X),(s;, X + 8)], j=1,2,...,n. Our
second claim is equivalent to

(2.11) lim Y M(A,)" = fOSfXX”a(t, y)? dtdy

mesh(7)—>0 j=1

in probability (see, for example, [4]). To prove (2.11) we first rewrite M(A j)2 in
the form

M(A;)" = [M(s;, X +68) — M(s;_,, X +8)]" = [M(s;, X) - M(s;_,, X)]"
—2[M(s;, X) — M(s;_,, X )| M(4;).

Then we notice that {T*_,M(A)[M(s;, X)— M(s;,_;,X); 1<k<n}is a
martingale so that for each 1 < £ < n we have

!
|

by the Davis inequality (see, for example, [4]) for some constant ¢ > 0,

éM(Aj)[M(sj’ X) - M(s;_y, X)) ,}

< cE{

éM(AJ.)Z[M(sj, X) = M(s;_y, X)]’

n 12
< cE{ sup |M(sj, X) - M(s;_,, X)|[ glM(Aj) ] }

l1<j<n

ve, 12
< cE{ sup | M(z) - M(z) |2} ( Y E{M(A)‘j})
z,z' €[0, s]1X[0, x] Jj=1
|z—2z'| <mesh(7)™

(by the Schwarz inequality).

Approximating X from above by X" as we already did, we can show that the
last rightmost factor is equal to E{ [/ (¢, y)? dt dy}"/? because of the strong
martingale property of M. By continuity of the paths of M, the maximal
inequality and Lebesgue dominated convergence theorem one shows that the
other expectation converges to zero. This proves that

n

(2.12) dim E,IM(AJ-)[M(SJ., X) - M(s;_,, X)] =0,
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in probability. Moreover,

S

é[( , X) - M(s;_,, X ]—//a(ty)dtdy

< sup |Y, [M(sj,x) —M(sj_l,x)]2 —L/(;a(t, y) dtdy
O<x<x,|j=1

= . sup | Y [M(sj,x) - M(sj_l,:)c)]2 —(M(-, x)),
Sx<xp,|j=1

according to [5, Theorem 1.7], and this last quantity has been shown to converge
to zero in probability as mesh(7) — 0 in the proof of Theorem 3.3 of [6].
Similarly one has

lim
mesh(7)—0

Z [M(s;, X + ) —M(s,._l,X+a)]2—fosfo’”sa(t, y)dtdy| = 0

b

in probablllty and, together with (2.12), this completes the proof of (2.11).
) Applying the law of the iterated logarithm which we proved in Lemma 2.1 to
the martingale {M(s, X +8) — M(s, X); s > 0}, we obtain

limsup ——[M(sy + h, X + 8) — M(sy+ h, X)

R 10 (h)
X+8 I 4
—M(sq, X +8) + M((s9, X)] = [fx a(sg, ¥) dy]
P-almost surely. This implies that
Uso, X +8) < (s, X) + | [ als0, 3)" ]
X

[recall the definition (2.9) of I]. We can apply this result to the strong martingale
— M which has the same quadratic variation as M and obtain

1/2
sy, X) <U(sy, X +8) + [/X+8a(so, y)2 dy] ,
X

1/2

and this gives
X+8

l(so, X)_ [f a(SO’ y)zdy]
X

1/2
(2.13)
1/2

<Usp, X +8) <I(sy, X) + [/ 0‘(30, y) dy]

P-almost surely. Using Fubini’s theorem one learns that (2.13) holds P-almost
surely in w for almost every 8§ > 0. Now, if w is such that

U(sg, X) # [an(so, y)? dy]l/2
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by taking § small enough in (2.13), one sees that

x . 1/2
{x > 0; U(sg, x, w) # [/ a(sy, ¥, 0) dy] }
0

has strictly positive Lebesgue measure. Since this set of w has positive probabil-
ity [recall (2.10)], we can use Fubini’s theorem once more to conclude that, for at
least one x > 0, one has

1/2
P{l(so,x) * [fxa(so, y)? dy] } > 0;
0
but this contradicts Lemma 2.1. The proof is complete. O

3. Existence and propagation of singularities: The case of the whole
line. In this section we consider the wave equation
2 2

Y (¢, x) — Z—x);{(t,x) =a(X(¢, x))W(t, x) + b(X(tj X))

for £ > 0 and x € R. Here a and b are continuously differentiable functions on
R with bounded derivatives, and W = {W(A); A € B, (R?)} is a mean zero
Gaussian process on a probability space (2, %, P) such that E{W(A)W(B)} is
the Lebesgue measure of A N B. Here we use the notation B, (R?) for the Borel
sets with finite Lebesgue measure. As shown in [2] for each suitable choice of
Cauchy data X(0, x) = dX(0, x)/d¢, (3.1) possesses a unique strong solution in
the sense of distributions. For the sake of simplicity we will restrict ourselves to
the case of zero Cauchy data in this paper. In this case the solution of (3.1) is
obtained by solving the stochastic integral equation

(3.2) X(t,x)=1 / /D . x)a(X(z)) dW(z) + b(X(z)) dz,

where D(¢,x) = {(s,y) €[0,00) X R; 0 < s < ¢, x—(t-s)<y<x+t—s}.
We prove

(3.1)

THEOREM 3.1. Let Z be a weak bounded stopping point in [0, 00) X R such
that

(3:3) 1(Z(0)) = +0o
for P-almost all w € Q, where u = (27'/%,27'/%). Then, P-almost surely in
w € Q, we have

(3.4) [ (Z(0) + W) = + 0

for all A > 0, where v = (272, —271/2),

Before proceeding to the proof of this theorem we need to recall some
definitions and check some facts about two-parameter martingales and stochas-
tic integrals in the plane. In order to conform with the usual notation we rotate
the coordinate axes of the (¢, x) plane by —45°.
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For each z = (s, t) € R? we consider the o-fields,
Z,=e{(W(BND); Bc(—,s| x(—w,t} Vv,

where D = {(s’,t) € R% s’ + t' > 0} and 4" is the family of null sets of the
probability space on which the white noise measure W is defined. A function Z:
Q — D is called a weak stopping point if

(3.5) (Z <z} e foralze R?

where #' =Z#'VZ? and F;, =V, crF,, and F?. =V, g%
Walsh showed in [8] that W% = {W%(z); z € R% } defined by

W2(z) = W((Z,Z + 2])

s, x)*

is a Brownian sheet independent of #; = (A € #; AN {Z <z} %" forall
z € D}. Also, the family {¥,; z € R% } of sub-o-fields of % defined by

(36) Yoy = F5 V o[ WHz); 7 < (5,1),7 € R2)

is an increasing family of o-fields satisfying the properties (F1)—(F4) of Cairoli
and Walsh [1]. Moreover, we have the following:

LEMMA 32. Let X = {X(z);z € R?} be any continuous and %,adapted
stochastic process. Then, the process {X(Z + z);z € R%} is 9,-adapted. More-
over, if we assume that

(3.7) ffR( t)E{X(s’, t')’) ds'dt’ < +oo

for each (s,t) € R%, where R(s,t) = (—0,s] X (—o0,t], then the process
Y = {Y(z); z € R% )} defined by

(3.8) Y(z) = / /R (z)an(s', t') dW(s’, t')

satisfies

S

Y(Z,Z + z]) = f

[ fo X(Z + (s, t')) AWE(s', t').

In particular, the process {Y((Z,Z + z]); z € R% } is a strong martingale with
respect to the filtration {¢,; z € R% } and its quadratic variation is given by

fo ’ /O X(Z + (s, ') ds' dt'.

ProoF. We may assume that X is bounded without any loss of generality.
Set Z = (S, T), 8" =j27" whenever (j — 1)27" < S < j27" and similarly T" =
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J27" whenever (j —1)27"< T <2 " and Z" = (S", T"). We have
E{X(Z + (s, )%, 0} = ,}i_{I:OE{X(Z” + (s, )90 0}
where 43 ) is the o-field defined from Z" as ¢, ,, is defined from Z,
lim Y E{X(s+i2 ™" t+j2" 1)) P LY

n—o el

lim Y X(s+i2™ "¢+ 2 "N gz, 2y

N ez
because, on the set {Z" = (i27", j27")} the o-field 42 , coincides with
o{W(BND); BC (—0,i27"] X RUR X(—00, j277]
U(—o0,s+i27"] X(—oc0,t+j27"} VI
and X(s + 27" ¢ + j27") is measurable with respect to this o-field,
= hm X(Z" + (s, t))

=X(Z + (s,0))

by our continuity assumption on X. We thus have proved the first statement of
the lemma. We now assume (3.7) and we define the process Y by (3.8). We have

Y(Z,Z + (s,t)])
lim Y((2™, 2 + (s, )])

= lim ) Y(((&27" j27"), (27" +s, j2 "+ ¢)])1 @z =iz, jam)

now ey

n— oo l jEZ

n4 2 +t
= llm Z l{zn_(tz nojo- n)) sf;_ / t)dW(S t)
(3.9)

: St n s Mol 4
= lim ¥ 1{Zn_(,.24n,fn)}ffx(z + (s, 8)) dW(s’, t')
-0 i, jeZ 00
(by a simple approximation argument)
S

= lim | /‘X(zn+(s', t')) dWZ{(s’, t')

n—o0 Y0 Y0

fo ’ fo X(Z + (s, ') dWE(s', t'),

where the last limit is in the sense of L?-convergence. Indeed, if {X,; & > 1} is
any sequence of simple %,-adapted processes satisfying

(810)  lim fo ) fo B{|X(Z + (s, ¢)) - X,(Z + (s', 1) [} ds’ dt = 0,
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then we have

f[X(zn+z)dWZ"z fst(Z+z)dWZ(z)

S“fo [1x@"+2) - X(@+ )] aW* ()|

+ fo ’ jo 1X(Z + 2) - X,(2)] dW?(2) .

+ fosj(‘)‘Xk(Z +2') dW%(z) — j:_/:Xk(Z + 2) AW(2) .

+ fosfot[Xk(Z +2) — X(Z + 2)] dW*(z) p

< |[[E(1x@+ ) - X+ (00 P asae]

+ 2[/01‘}3{|X(z + (s, 1)) = Xy(Z + (s, 1)) [} dS'dt']l/Z

+

/0 ’ /0 'X(Z + 7)) dW¥(2) - fo ’ /0 "X,(Z + 2) dWE(2) .

and consequently, for k fixed, we have

S

+z)dWZ"z)—ffX(z+z)dWZ(z)

< 2[0 f()E{[X(z + (s, ) = Xu(Z + (s, 1)) [} ds" dt,

which tends to zero as £ — oo by (3.10). This completes the proof of (3.9) and of
Lemma 3.2. O

Proor orF THEOREM 3.1. We can assume b = 0 without any loss of gener-
ality because of (3.2). Now

1
o0 [X(@ + hu 4 3) = X(Z+ W)

[X(Z + hu) — X(Z)] — ——M(h, \),

(h) (h)
with M(h, A\) = —[X(Z + hu + Av) — X(Z + hu) — X(Z + ) + X(2)].
{M(h, N): (h,\) € R%) is a strong martingale which satisfies the assumptions
of Proposition 2.3 because of the remark following the statement of Lemma 3.2.
In particular we can identify

lim sup

hlO WM(h’ A)
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as a finite number, simultaneously for all A > 0 with probability 1. Conse-
quently, we have

limsup ——[X(Z + hu + Av) — X(Z + Av)]
hL0 (P( )
> limsup —— [ X(Z + hu) — X(Z)] - hmsup ——M(h, ).

R 10 (h) (h)

The first limsup equals + oo P-almost surely because of our assumption (3.3).
The conclusion (3.4) follows from the finiteness of the second lim sup, simulta-
neously in A > 0 with probability 1. O

The previous theorem says that if the solution X(t, x, w) has for P-almost all
w a positive singularity in the direction of u at a random stopping point Z(w),
then this singularity will propagate in the direction of v. We now check the
existence of such random singularities.

PropOSITION 3.3. If a(0) # 0, weak stopping points satisfying (3.3) almost
surely do exist.

Proor. Let us fix x € R. The process {X,; h >0} defined by X, =
X((0, x) + hu) is a semimartingale satisfying the assumptions of Lemma 2.1.
Indeed, its bounded variation part is given by [[pb(X,)dz with D, =
D((0, x) + hu) and its martingale part, i.e., [/ a(X(z)) dW(z), has a quadratic
variation given by

[] a(x@)*dz= ['{ [[a(X((0,%) + su - )" an | ds

and a(s) = [ [§a(X((0, x) + su — Av))2dA]'/? cannot vanish on an interval be-
cause of our assumption on a. Consequently, for each x € R we have an

uncountable number of positive singularities in the direction of u on the line
{(0, x) + hu; h > 0}. The set

A ={(h,0) €[0,00) X & I,(X((0,x) + hu)) = + o0}

is measurable and its projection on © has P-measure 1. Consequently, using
Theorem 4.4 of [3], one obtains a finite random variable H(w), the graph of
which is contained in A. Note that this random variable is measurable with
respect to o{W(B); BC {(t,y); t>0and y > x + t}}. If we define

Z(w) = (0,x) + H(w)u,
then Z is a weak stopping point satisfying the requirements of the proposition. O

4. Existence and propagation of singularities: The case of an interval.
This section is devoted to the study of the existence and the propagation of
singularities for solutions {X(t, x); ¢ > 0, x € I} of the random nonlinear wave
equation (3.1) when x is restricted to an interval I at the finite endpoints of
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4

¢

Fic. 1.

which we impose the Dirichlet boundary condition. For the sake of simplicity we
will assume that the Cauchy data X(0, x) and 9dX(0, x)/dt vanish identically.
We first consider the case of the half-line I = [0, ). As explained in [2], the
solution is obtained by solving the stochastic integral equation

(4.1) X(t,x) =1 fE . x)a(X(z)) dW(z) + b(X(z)) dz,

where E(t, x) is the shaded region drawn in Figure 1 when ¢ > x, and E(¢, x) =
D(t, x) when t < x. Mimicking the approach of the preceding section we try to
find the modulus of continuity of X(z + hv) as a function of 2 > 0. As before we
can assume that b= 0 without any loss of generality, but unfortunately,
{X(z + hv); h > 0} is not a martingale any more because of the reflection on the
t-axis. We will need some technical results in order to overcome this difficulty.

4.1. More laws of the iterated logarithm for Brownian motions. Throughout
this section {B(t); ¢t > 0} and {B’(¢); t > 0} will be two independent Brownian
motions defined on the same probability space (2, #, P). We prove

THEOREM 4.1.

B(ht) + B'(h
(4.2) P{V t > 0, limsup —(—)—L

=Vyl1+1¢)=1.
R0 ‘P(h) }

This theorem is an immediate consequence of the next two lemmas.
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LEMMA 4.2. For each T > 0 we have

P{l. B(ht) +B(h) 1} .
imsup sup =1)=1.
R10 0<t<T <P(h)Vt+

Proor. We first show that

P{li B(ht)+B(h) 1} )
msup sup <1)=1.
R10 0<t<T <P(h)V1 +1

Let us assume that this result is false, namely that there exists ¢ > 0 such that
P{l' B(ht)+B(h)
imsup sup
o ozizr @AW+

Let us fix an integer m > 1 to be chosen later, and let us set ¢, =nT/m for
n=0,1,..., m. Then (4.4) implies

(4.3)

(4.4) >1+ e’} > 0.

(45) p{r B(h) + B(h) } .
. imsup sup ——— > eh >

hLO t,  <t<t, p(h)V1 + ¢
for some ¢ > 0 and some n € {1,..., m}. Let us ﬁx g € (0,1) to be chosen later,

and for each integer k£ > 1 let us set

. { ap  sp o) HBR) 8}.
tehzg taastst, (AW + 6,

We show that

(46) Y. P(4,) < +o0.

k>1

This will conclude the proof of (4.3) because the first Borel-Cantelli lemma will
contradict (4.5). Now

P{A,} < P{ sup  sup [B(ht) + B'(h)] > (1 +¢)p(g*)/1 + tn—l}

0<hs<gh~! 0<ts<t,

< P{ sup sup [B(¢) + B'(h)] > (1 + &)p(g*)/1 + tn_l}

O<h<qg*k ' 0<t<t,g* !

<4P{B(t,g* ") + B (¢*") > (1 + O)op(g*)T + ¢, }

if one uses the facts that the supremum of the sum is actually the sum of the
suprema, the independence of B and B’ and twice the De André reflection
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principle,
4 g* V21 + ¢,)"?

=Ver (14 0e(a")(1+ )"

1 _
xexp| — =(1 + ¢)’p(q*)(1 + £,,,)g"* (1 +¢,) "
2 n n

= 0(k™),

with y = ¢(1 + ¢)2(1 + ¢,_,)/(1 + t,). Note that vy > g(1 + €)2/(1 + T/m) so
that one can choose m large enough and g close enough to 1 so that y > 1. This
completes the proof of (4.6).

On the other hand, for each fixed ¢, {B(ht) + B’(h); h = 0} is a Brownian
motion with variance 1 + ¢ so that the classical law of the iterated logarithm
gives

P¢ lim sup

{. B(ht)+B(h)_1}=1
no  e(R)VI+¢ ’

and this implies

(4.7) { i B(ke) + B(K) 1} -1

P limsup sup
R0 0<t<T q)(h)v1+

The conjunction of (4.3) and (4.7) completes the proof of Lemma 4.2. O

LEMMA 4.3. For each T > 0 we have

B(ht) + B'(h
P{V teo,T], limsup-—(——l———(—)— >Vl + t} =1.
hl0 ¢(h)

PROOF. As before we assume that the result is false, i.e., that

) B(ht) + B'(h)
P{ln?fgp ¢(h)

for some ¢ > 0 and we show that this leads to a contradiction. As before this
implies that for each integer m > 1 we have

) B(ht) + B'(h)
P imsup 21 L

< (1 - ¢)V1 + ¢ forsome ¢t € [O,T]} >0

(4.8)
<(1—eWV1+tforsomete[t,_,, tn]} >0
for some ¢ > 0 and for some n € {1,..., m}. Again we fix ¢ € (0,1) and we will

choose m and ¢ later. We will use the notation
(4.9) X(h,t) = B(ht) + B'(h).
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We will prove that

P{EI ko=1,Yk>k, sup [X(qk, t,) — X(q* t) — X(g**%, ¢,)

b, <t<t,

(4.10)
+ X(q*,0)] < 4(T/m)9(qM)} = 1.

Now we notice that, with probability 1, we have

(411) X(q*t,) - X(g*'t,) = (1 — /)1 +¢,(1 - q"*)o(q")

for infinitely many k. (4.11) is easily proven by using (4.9) and the proof of the

classical law of the iterated logarithm for Brownian motion processes. On the
other hand, Lemma 4.2 gives

(4.12) P{a R >1,Yk=k, sup X(g**,¢) <2¢(q*)/q(t + 1)} -1

0<t<T
Consequently we will have, with probability 1, for infinitely many k=FkyV Eky,

X(q*, t) = [X(q*, ¢,) — X(g**, ¢,)]
—[X(g* t,) - X(g*, t) - X(g**1, t,) + X(g**, 1)]
+X(g** 1 ¢t)

(413) [(1 _ E)m(l — qV2) — 4(T/m)"* - 2¢'/2 \/m]tp(qk)

= [(1 - 7Ja-a) -2 A(T/m)|p(g WIF E
> (1-e)p(g*)V1+1¢,

provided g is small enough and m is large enough. (4.13) contradicts (4.8) and
the proof of the lemma reduces to the proof of (4.10). Now

P{ sp [X(ah ) - X(ahe) - X(g**1, 1))

b1 <t<t,

+X(g*,t)] = 4(%)1/2rp(qk)}

T

< P{ sup [X(g*1,) - X(q* )] = 2(;)1/2¢(qk)}

t,_ <t<t,

T\1/2

+P{ sup [X(g"*%,t) — X(g**, t,,)] > 2(—) q)(qk)}
t,_1<t<t, m

= 2P(¢ > 2(q*)g 2} + 2P{¢ > 2¢(q*)q~**V/2}

[where £ is any N(0,1) random variable]

9 .

BT T A
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which is the generic term of a convergent series. So, the second Borel-Cantelli
lemma gives (4.10) and the proof of the Lemma 4.3 is complete. O

4.2. Applications to some new laws of the iterated logarithm for stochastic
integrals. Again we assume that W is a white noise L2-measure on RZ? and for
each z = (¢, x) € [0, 00) X R we denote now by %, the o-field generated by the
random variables W(B) with B C D(z), recall the definition (3.2), augmented
with the null sets of the complete probability space (2, %, P) on which the white
noise is defined. We prove the following.

THEOREM 4.4. Let us asume that a = {«(z);z € [0,0) X R} is a square
integrable %,-adapted process with locally log-Hélder continuous paths and let
us define

(4.14) M(z) = [ [ a(z') dW(z)).
E(z)
Then, if z = (t, x) is such that x < t, we have

) M(z + hv) — M(z) B NS
(4.15) s> o) [f } :

REMARK 1. Our assumption on the paths of the process a means that,
almost surely and for every compact set K in [0, c0) X R, there exists a constant
C(K) such that

|a(z) — a(z)| < C(K)[loglz — 2| '] "

for all z and z’ in K such that |z — z'| < 1/e.

REMARK 2. In the case ¢t < x, E(z) = D(z) and the law of the iterated
logarithm is contained in Proposition 2.3. Note that the actual meaning of the
right-hand side of (4.15) is

2 o 0 2 0 . 1/2
[leuLz"‘ } - [f_ ﬁxa(z +6u)” db + f_ mt_x)“(z —V2xu + 0v) d()] :

PROOF OF THEOREM 4.4.

M(z + hv) — M(z) = //A(h)uc(h)adW— //B(h)adW— ffc(h)adW,

where the regions A(h), B(h) and C(h) are defined in Figure 2.

The last stochastic integral is a martingale in A > 0 with a quadratic varia-
tion proportional to A2 Consequently, it does not contribute to the limsup in
(4.15). The process { X(h); h > 0} defined by

X(h) = fj;(h)UC(h)a w
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C(h)

FiaG. 2.

is a square integrable continuous J#,-martingale with ¢, = V%, , ;. ;.- Hence
the process { B(h); h > 0} defined by B(h) = X(7,) with

m, = inf{A’ > 0; (X)), > h}
is a 5, -Brownian motion. Similarly the process {Y(%); A > 0} defined by

Y(R) //B(h)a dw
is a square integrable continuous >#;-martingale, where
‘%pli = V ‘Z—ﬁ(t—x)u+h’v+hu'
h’'<0

Hence the process {B’(h); h > 0} defined by B'(h) = Y(o,) with

o, = inf{h’ > 0;(Y), > h}

is an J#’-Brownian motion. Note that these two Brownian motions are indepen-
dent because of the restriction 4’ < 0 in the definition of 5. Now

1 1 _
STy LX) + Y(R)] = W[B(<X>h) — B(ah)]
1 _
(4.16) + W[B ((Y)4) — B'(ah)]

1. — 1 =
+ W[B(alh) + B (azh)],
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where we set
c‘ul=fa2 and &2=fa2
L, L,

with the convention explained after the statement of Theorem 4.4. Theorem 4.1
gives

1
limsup —— [ B(&,k) + B'(&,h)] = [a, + a,]""*

h10 ¢(h)
almost surely so that the proof reduces to showing

. 1 —_
(4.17) }g%m[B«Xh) - B(ah)] =0

almost surely, since the second term on the right-hand side of (4.16) can be
treated analogously. Notice that

_ h 0 , , 0
(XY, — &h| = ‘fo f_ﬁxa(z +0u + hv)2dodn — hf_ﬁxa(z +‘0u)2d0‘

< h2Y%x  sup (|a(z +0u+ hv)[* —|a(z + 0u)|2)
—\/2_xs€so
O<h'<h

< Ch/log(1/h)
almost surely. Using Lévy’s uniform modulus of continuity for Brownian motion
we have that |B({(X),) — B(&,h)| is controlled for & small by 2¢/(ch/log(1/h))
and this implies (4.17) because
y(ch/log(1/h))
m =0
hi0 o(h)

The proof is complete. O

Note that our log-Hoélder continuity assumption is satisfied in the case of
interest to us. Indeed, using Kolmogorov’s critericn, one checks easily that the
paths z — X(z) of any solution of equation (3.2) are Hélder continuous of order
p for all p < } and so are the paths of a(z) = a(X(z)) because the function a is
Lipschitz.

4.3. Existence and reflection of the singularities. According to Theorem 4.4
and Lemma 2.1, for each fixed z, the quantities / (z) and I (z) exist and can be
computed. Moreover, if a(0) # 0 the proof of Proposition 3.3 shows that there
exist weak topping points, say Z, in [0, «0) X (0, ) such that

(4.18) I(Z) =+
P-almost surely. The proof of Theorem 3.1 shows that
(4.19) I(Z+MW)=+0, 0<A</2Y
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P-almost surely if Y denotes the second coordinate of Z. We want to show that
the singularity does not vanish when it hits the boundary. Actually we have

THEOREM 4.5. If a(0) # 0 and if Z is a weak stopping point in [0, o) X
[0, ) satisfying (4.18), almost surely we have (4.19) and

(4.20) I(Z+V2Yv+A)=—-00, A>0

P-almost surely.

PROOF. As before we assume b = 0 without any loss of generality. Now

_;(lh—)-[X(Z+\/§Yv+>\u+hv) - X(Z + \/Z'Yv+>\u)]
1 1
- m[x(z+ V2Yv + hu) — X(Z + V2 Yv)| - ;(—}JN(hJ\),

with .
N(A,AN)=XZ+V2Yv+ M+ hv)— X(Z+V2Yv + M)
-X(Z+V2Yv + hu) + X(Z + V2Yv + hu).
Using the same arguments as in Lemma 3.2 (modulo a rotation of —« /4 around
the origin), we can write

N(k, ) =ff a(X(Z + V2 Yv + su + tv) dW(s, t),
[A, A]1X[O0, A]

where W is the two-parameter Wiener process defined by
W(s,t) = W((Z +V2Yv,Z +V2Yv + su+ tv])
for (s, t) € R%. Note that
N(h’ >‘) = Nl(h’ )\) - N2(h)’

where N,(h, M) is the stochastic integral (of the same integrand and with respect
to the same Wiener process) over [0, A] X [0, 2] and Ny(h) is the stochastic
integral over [0, 2] X [0, A]. {Ny(h); A > 0} is a martingale with a quadratic
variation of the order of A2 so it does not contribute to (4.20). On the other

hand, {N,(A, A); (h, A) € R2} is a strong martingale which satisfies the assump-
tions of Proposition 2.3 and the desired result follows from the inequality

L
o(h)

> limsup;(lT)[X(Z +V2Yv + hu) — X(Z + V2 YV)]

lim sup — [X(Z +V2Yv + M+ hv) — X(Z + V2 YV + Mu)]

1
qD(h)N(h,A). O

—lim sup
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REMARK 3. Notice that the singularities change their types when reflected.
Similarly singularities of the liminf types in the direction of u are reflected into
singularities of the limsup types in the direction of v.

REMARK 4. One could also study the existence and the propagation of
singularities for the solutions of the wave equation on a bounded interval with
the Dirichlet boundary condition at the endpoints (see [2]). One would first
prove laws of the iterated logarithm for the solutions. In this case the lim sup
would be the square of the sum of the integrals of a(X)? over a finite number of
segments L,, L,,... . Then one would show similarly that random singularities
exist and that they propagate linearly until they reach an endpoint of the

(0,x) b4 a
Case I = [0.=@)

Fic. 3.
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interval in which case they are reflected while changing their types. Rather than
stating precisely the corresponding mathematical results, we summarize these
facts in Figure 3.
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