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MOMENT BOUNDS FOR ASSOCIATED SEQUENCES

By THOMAS BIRKEL
Universitdt Kéln

Let {X;: j € N} be a sequence of associated random variables with zero
mean and let r > 2. We give two conditions—on the moments and on the
covariance structure of the process—which guarantee that

m+n
sup E| Y, X[| =0(n"?)

meNU{0} Jj=m+1

holds. Examples show that neither condition can be weakened.

1. Introduction. Let {X;: j € N} be a sequence of random variables (r.v.’s)
with EX; = 0 and let r > 2. For n € N put S, =%7_, X,.

It is well known that for i.i.d. r.v.’s with E|X,|” < o0, E|S,|” = O(n"/%) holds,
and hence
(1.1) sup E|S,.,.— S, =0(n"?).

meNuU {0}

Bounds of this kind are potentially useful to obtain limit theorems, especially
strong laws of large numbers, central limit theorems and laws of the iterated
logarithm [see, for example, Serfling (1970) and Stout (1974), Chapter 3.7].
Conditions for relation (1.1) to hold have been investigated under various
dependence structures of the process {X: j € N}, especially for mixing se-
quences [see Ibragimov (1962) and Herrndorf (1983) for ¢-mixing sequences,
Ibragimov (1975) and Herrndorf (1984) for p-mixing sequences and Yokoyama
(1980) for strong mixing sequences and other dependence structures].

In this paper we consider sequences of associated r.v.s. A finite family
{X,,..., X,,} of r.v.’s is associated if for any two coordinatewise nondecreasing
functions f, g on R™

Cov( f(Xy,..., X,,),8(X4,..., X)) 20

holds whenever the covariance is defined. An infinite family is associated if every
finite subfamily is associated. In the last years there has been growing interest in
this kind of dependence. There exist central limit theorems [see Newman (1980)
and Cox and Grimmett (1984)] and laws of the iterated logarithm [see Dabrow-
ski (1985)], as well as invariance principles [see Newman and Wright (1981)], for
associated sequences. However, up to now, no general conditions are known
which imply moment inequalities of the form (1.1) for.associated processes. It is
the purpose of our paper to fill this gap.

The known results about association show that the independence structure of
an associated sequence is highly determined by its covariance structure, i.e., by
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the behaviour of the coefficient

u(n)=sup Y Cov(X,, X,), neNuU{0)
REN j:|j—Fk|=n
[note that u(n) = 227, , Cov(X,, X;) for stationary X]. It will turn out that
moment bounds for partial sums of associated sequences also depend on the rate
of decrease of u(n). In Section 2 of our paper we give two natural conditions on
the process {X;: j € N} which guarantee that (1.1) holds. In particular we
assume Sup;cpy EIXJ-I’” < oo for some 8 >0, and u(n) = O(n~") for some
y = y(r,8) > 0. No stationarity is required. Examples (cf. Section 4) show that
neither condition can be weakened.
The exact results are stated in Section 2. The proofs of our theorems as well as
some lemmas will be given in Section 3.

2. Results.

THEOREM 1. Let {X;: j € N} be a sequence of associated r.v.’s satisfying
EX;, =0 and

(2.1) sup E|X|"*? < oo for somer > 2 and § > 0.
JeN
Assume
(2.2) u(n) = O(n=(r=2(r+9)/28)
Then there is a constant B not depending on n such that for alln € N
(2.3) sup E|S,,,, — S.l" < Bn"/2
meNU {0}

If the X; are uniformly bounded we obtain

THEOREM 2. Let {X;: j € N} be a sequence of assoctated r.v.’s satisfying
EX; =0 and |X;| < C < oo forj € N. Assume

(2.4) u(n) = O(n=(r=2/2),
Then (2.3) holds.

Example 1 demonstrates that condition (2.2) cannot be improved: Condition
(2.1) together with a slightly weakened form of (2.2), namely

u(n) = O(a,n=~20+9/28)  for some a,, 1 oo,

does not imply (2.3). :

If (2.1) is valid only for § = 0, bounds for E|S,, . ,, — S,,|” do not depend on the
rate of decrease of u(n): Example 2 shows that even if u(n) is decreasing to 0 as
quickly as you want, the moment condition sup;cy E|X|” < co does not imply
(2.3). In particular Example 2 shows that under the assumption sup; .y E|X;|" <
oo only the trivial bound E|S,|” = O(r") can be obtained [if u(n) > 0 for all
n e N].
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From Theorem 1 we get

CoRrOLLARY. Let{X: j € N} be a sequence of associated r.v.’s with EX; = 0.
Assume

(2.5) sup E|X/|° < o0 for some s > 2
JjeN

and

(2.6) u(n) = 0(n=*) forsomep > 0.

Then there exists r > 2 such that (2.3) holds.

Proor. Put r=2s(1 + p)/(s+ 2p), 8 =s—r. Then we have r > 2, § > 0
and p = (r — 2)(r + 8)/24. Hence (2.5), (2.6) and Theorem 1 imply the assertion.
O

Example 3 shows that in our corollary even for uniformly bounded X s JEN
[whence (2.5) holds for all s], condition (2.6) cannot be weakened.

3. Proofs. We will begin the proof of our results with Lemma 1, concerning
truncated variables.

LemMmA 1. Let X, X, be associated r.v’s with finite variance and let
— < a<b<x< o Then the following inequalities hold for X* =
max{a, min{ X}, b}}, X;"'= max{X,,0}, X{ = max{—X,,0}:

(1) 0 < Cov( X*, X,) < Cov(X,, X,),

(ii) 0 < Cov( X7, X,) < Cov(X,, X,),

0 > Cov( Xy, X,) = —Cov(X,, X,).

ProoF. For ¢t € R put f(t) = max{a, min{¢, b}}, g(¢) = ¢t. Then fand g — f
are nondecreasing. Since X; and X, are associated, we obtain 0 <
Cov( f(X,), X,) < Cov(g(X,), X,). This proves (i).

Applying (i) with @ = 0, b = 00 and @ = — o0, b = 0, we obtain (ii). O

Lemma 2 is the main tool for our results. We assume all occurring moments to
be finite.

LEmMMA 2. Let X, > 0, X, be associated r.v.’s and let p > 0.

(i) If X, < R < oo, then

Cov( X!**, X,) < (1 + p)R*Cov(X,, X,).

(i) If | Xy) < R< oo andp > 1+ p, then
Cov(X}**, X,) < (1 + p + 2R)(E|X,I)” "™ "(Cov(X,, X,))" 7"/ *7P.
(i) If y> 0 andp,q > 1with1/p + 1/q = 1, then

Cov( X1, X,) < (3 + p)( E|X,[p+e+)P/PC*n
X (E|X2|q)p/q(p+Y)(COV(X1, X2))7/(p+7)'
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(iv) If 8 > 0, then
Cov(X}**, X,) < (3 + p)(E|X,|***)

X(E|X2|2+p+s)P/(3+P(2+P+3))(Cov(Xl’ Xz))s/(5+P(2+P+3)).

p(L+p+8)/(8+p(2+p+8))

Proor. (i) For t € R put
f(8) =t'"Plo oy
g(t) = (1 + p)RPtl{OStSR) + pR1+P1(t> R}‘

Then g —f is nondecreasing. As X, and X, are associated, we obtain
Cov( f(X,), X;) < Cov(g(X,), X,). This proves (i).
(ii) Let N > 0 be fixed. Then we have

(3.1) Cov(X}**, X,) = Cov( f(X,)'"", X,) + Cov( X} ** — f(X,))'"*, X,),
where for t € R,
f(8) =tlocrany + Ny

Since nondecreasing functions of associated r.v.’s are associated [see property
(P,) of Esary, Proschan and Walkup (1967)], it follows that f(X,) and X, are
associated. Using (i) and Lemma 1(i), we therefore obtain

(3.2) Cov( f(X,)'"*, X,) < (1 + p)N*Cov( X, X,).
The second term on the right-hand side of (3.1) is bounded by
Cov( X! ~ f(X))'"", X,)

3.3
(3.3) <2RE|X}"*1y . v)| < 2RN"PTIHPE|X [P,

Since uncorrelated associated r.v.’s are independent [see Corollary 3 of Newman
(1984)], we may assume w.lo.g. that Cov(X;, X,) > 0. Choosing N =
(E|X,|?/Cov(X,, X,))/P~D, (3.1), (3.2) and (3.3) imply (ii).

(iii) Let N > 0 be fixed. We proceed as in (ii). By Holder’s inequality the
second term on the right-hand side of (3.1) is bounded by

1/p
(3.4) Cov( X{*° — f(X,)'"", X,) < 2 BIXPU+P 15 . ) " (E|X,09)"*

< 2NV E|X,pa+e0) P (E|X,19)/7,

Again we assume Cov(X;, X,) > 0. Then, choosing ‘
N = [(Eix,peremn) P (B1X,09) % /Cov( X,, X,)] /77,
(3.1), (3.2) and (3.4) imply (iii).
(iv) follows from (iii), putting y = 8/(2 + p + 8)and p = (2 + p)/(1 + p + 7).
. ]
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PROOF OF THEOREM 1. Let r =1+ p, where [ € N, [ > 2 and p €(0,1]. We
proceed by induction on I For simplicity we introduce the following notation:

S,

m,n Sn+m - Sm’

a,= sup E|S, |

n
meNU {0}

We shall show that there exist C;, < oo and ¢ € (0,1), such that forall m € N U
{0}, neN,

(3.5) E|S, snl" < 2a, + Cial, Pn?/? + Cialn72.
From (3.5) we obtain
a,, < 2a, + Cial, Pn?/? + Cia,"n"’? forn e N,

and by induction there exists C < oo such that a, < Cn”/? for all n € {21y €
N U {0}}. Then (2.3) follows from the proof of Lemma 7.4 of Doob (1953).
To prove (3.5) we show the following inequalities for m € N U {0}, n € N:

(36)  EIS, 5" < 2a, + 2 EIS, o1Smsn.nl + EISp. al1Smsn. ol°);

1 - -1 4
EIS,u, alf1Snsn, ol < @*(EIS,, olISpsm, o' )",

(3.7)
EISu, al1Smsn, al® < @b (EIS,, o *1S s nl)s
69 EIS,, allSmin, ol 1% < [COV(ISyn, ul, 1S, ul =72 + Cyn72,
3.8
EIS,, ol " 1S al < ICOV(IS,, a2, Syl )| + Con'/2;
1CoV(1Sy, ul, 1Smsm, ul' ™ *#)| < Coal 772,
(3.9) ’ ‘

1COV(1S, a2, IS, nl )| < Caal~Tm?72,

where y = (r — 2+ 8)/s, s =8 + (r — 2)(r + 8).

Then (3.5) follows from (3.6)-(3.9), putting ¢ = py. Therefore it remains to
prove (3.6)—(3.9).

To prove (3.6): Elementary estimates yield

ElS ,2n|r = EISm,n + S

l+p
m m+n,n|

l
= 2an + Z (3)(E|Sm,n|l_j+plsm+n,n|j + Elsm,nljlsm+n,n|l_j+p)
j=1

l
<20, +2 Y () (EISn, 1S n sl + EISp, 1S nl®)

J=1
< 2an + 2l+1( Elsm, nlpISm+n, nll + Elsm, n|l|Sm+n, nlp)‘
This proves (3.6).
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To prove (3.7): We only prove the first inequality; the second follows simi-
larly. W.l.o.g. we assume p € (0,1). Then by Hélder’s inequality

l I—1+p)\? I-p(l-1 1-p)\1 7P
E1S,, 1S n,nl' < (E1Sp, allSpsn, nl 1*2) (ElSppsn, o 701400/ 0=0)
1- -1 P
=< an p(Elsm,n”Sm+n,n| +p) .

This proves (3.7).
To prove (3.8): Again we only prove the first inequality. We have

l_ -
E|Sp, allSmtn,al 71 *? < 1CoV(|S, al, s, ol 7147

m

(3.10)
+(ES2,,) "Bl 1.

Our assumptions imply that ©(0) < oo and by definition of u(0),
ES? , <u(O)n,

m,n

ES? < u(0)n.

m+n,n =

If [ =2, (3.8) follows from (3.10), (3.11) and Hélder’s inequality. If [ > 2, we
inductively assume

(3.11)

E|S

m+n,n

Then (3.10) and (3.11) yield (3.8).
To prove (3.9): We have

|Cov(]S,.. .l 1S

m+n,n

= |Cov(1Sy, s 1Smsn. )|
< ICOV(S,Z’ » (S,L,,,,,)r_l)‘ + |COV(S,:, n (Sr;+n,n)r_l)l

+|Cov( 85 s (Sitnn) ™) | +] CoV(Sm o (S, ) )|

Since S, » and (S, ») "' are nondecreasing and S, , and (S, ,)" "' are
nonincreasing functions of X, ,,..., X,,.,,, and since X, ,,,..., X,,,,, are

m
associated, we obtain

|l—l+p < C4n(l—l+p)/2.

|l—1+p)

(3.12)

Cov( Sy 1o (Snn) ) 20,
Cov( S5 1 (Smsnn) ') <0,
Cov(S7 o (San,n) ') <0,
Cov(Sr w (Smsn,n) ') 2 0.

Hence by (3.12), .
ICOV(|S,,,_’ nl ’ ISm+n, nll_l+p) |
IS o, (5500 ¢ T )

Jj=m+1 Jj=m+1
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Since nondecreasing (nonincreasing) functions of associated r.v.’s are associated,
X;and S, , ,, X;and S, , , and —X; and S_,, , are associated r.v.’s for
every j € {m + 1,...,m + n}. Applying Lemma 2(iv) (with r — 2 instead of p
and X, =S;,, , resp. X, =S,,,, X,=X; resp. X, = —X;), Lemma 1(ii)
and our assumptions (2.1) and (2.2), we obtain from (3.13) A

1CoV(1S,n. uls S, nl* 240

m+n

<2(r+ Dsup (BIXI ) a7 L (Cov(X;, Spinn))””
ieN J=m+1
< Csa}l—y i u(j)s/sj(r—Z)(r+8)/Zsj—(r—2)(r+6)/2s [by (21)]
Jj=1
n
< Cea};_y Zj—(r—Z)(r+8)/28 [by (2'2)]
J=1

This proves'the first inequality in (3.9).
The second inequality follows similarly and thus the proof of Theorem 1 is
complete. O

Proor orF THEOREM 2. Under the assumptions of Theorem 2, (3.9) holds
with y = 1/(r — 1). This can be proved, using Lemma 2(ii) [instead of Lemma
2(iv)] and (2.4). The proof of Theorem 2 then follows along the lines of the proof
of Theorem 1. O

4. Examples. All examples in this section have a common structure: Let P
be a probability measure concentrated on Z which fulfills P({k}) = P({ —k}) =
Pr» B € N. For j € N let the r.v. X; be defined by

0, |kl <Jj
(4.1) X(k) = @B kzj ) rez,
— ;B k< -j

where {a;: j € N} and {B,: £ € N} are sequences of positive numbers such that
{B: k € N} is nondecreasing and Xy, Bip, < oo. Since nondecreasing func-
tions of a single r.v. are associated [see properties (P;) and (P,) of Esary,
Proschan and Walkup (1967)], {X;: j € N} is a sequence of associated r.v.’s. By
construction we have EX; = 0 for j € N and

(4.2) : E|\X|"=2a!) Blp, for jEN,vy>0,
k=j
. [o o]
(4.3) Cov(X;, X;,;) = 2a;a;,; ), Bip, fori,jEN,
k=i+j
(4.4) S.(k) =B, Y a; fork>neN.

Jj=1
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ExXAMPLE 1. For every r> 2 and 8 > 0 and for every sequence of real
numbers 0 < a, 1 oo there exists a sequence {X;: j € N} of associated r.v.’s with
EX; = 0 such that (2.1) and

(4.5) u(n) = O(a,,n'(""’)(’”)/”)

are fulfilled, but

(4.6) limsup E|S,|"/n"/? = o holds.
neN

Proor. Let f:(0,00) — (0, 0) have the following properties:

(i) f is continuously differentiable;
(ii) f is nondecreasing and lim, _, , f(x) = oo;
(iii) x — f(x)/x" is nonincreasing and lim, _,  f(x)/xY = 0 for every y > 0;
(iv) f(n) < a/C=1+® for n € N;
v) f'(x) <1/x for x > 0.

For j, k € N put

aj=jp/f(j): Br=1,

pe=Ci(k+1)""/(k+ 1),
where p = r/28. Let {X;: j € N} be given by (4.1). Then by (4.2) we have for
JEN,
o0
@7 EX i =20(0r0/ () ) X f(R) TR D,
k=j+1
Using integration by parts, (i), (ii), (iii) and (v) imply
i f(k)r+8/kl+p(r+8) < foof(x)r+8/x1+"('+s)dx

(4.8) k=j+1 J

< Cf(J) 0 siertd.

Then (2.1) follows from (4.7) and (4.8). Applying (4.3), (4.8), (i) and (iii), we
obtain for i, j € N,

COV(X;" Xi+j) < (2ccl/f(1))f(l +j)r—1+8/(i +j)p(r—2+8)
S GG +1) TG+ )T,

Hence,

)
=146 . r=o(r
u(n) <G T (7)o

Jj=n+1
< Cf(n) "1 /nr-DUr+0)/28 [similar to (4.8)]
< Cya,n~ ("= D(r+d)/28 [according to (iv)].

This proves (4.5).
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Since by (4.4) and (ii), S, (k) = C;n***?/f(n) for k > n, we get

E|S,) > Y IS, (k) D, = Cof(n)’n72.
k=n

Then (4.6) follows from (ii). O

ExAMPLE 2. For every r > 2 and for every sequence of real numbers 0 <
a, | 0 there exists a sequence { X;: j € N} of associated r.v.’s with EX; = 0 such
that

(4.9) sup E|1X)|" < o0
JEN

and

(4.10) u(n) = 0(a,)

are satisfied, but (4.6) holds.

Proor. For j € N put b, = (j/a;)"/"~®. Then we have
(4.11) 0 < b100.
For j, k € N put

aj=j’ :Bk=bk’ pk=C/(bI';kr+1)
and let {X;: j € N} be given by (4.1). Then (4.9) follows from (4.2). Applying
(4.3) and (4.11), we obtain for i, j € N,
Cov(X;, X,.,) < C /(b)) = Cia; /i,
and hence
o0
u(n) <G Y a;/j7 ! < Cya,,.
Jj=n

This proves (4.10).

From (4.4) it follows that S,(k) > C,b,n® for £ > n. Hence we get

o0
E|S,|" = Cn?" Y 1/k™*! > Cyn”,
k=n

which implies (4.6). O

ExaMpPLE 3. For every sequence of real numbers 0 < a, |0, fulfilling
limsup, . nfa, = o for every p > 0, there exists a sequence {X;: j € N} of
uniformly bounded associated r.v.’s with EX; = 0 such that (4.10) is valid, but
(4.6) holds for every r > 2.

Proor. For j &N put b; = a,/log(j + 1)%. Then we have

(4.12) 0<b10

and

(4.13) limsupn®b, = oo for every p > 0.
neN

For j, k€ N put a;=b, B, =1, p, = C/k? and let {X;: j € N} be given by
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(4.1). According to (4.1) and (4. 12), the r.v.’s are uniformly bounded. Applying
(4.3) and (4.12), we obtain for i, jEN,

Cov(X;, Xz+1) < G/,

and hence
u(n) <Cy, ) b/j < Csa
Jj=n

This proves (4.10). A
From (4.4) and (4.12) it follows that S (k) > nb, for 2 > n. Hence we get

E|S,|” = C,;n™/?n(r=2/2p"
which together with (4.13) implies (4.6) for every r > 2. O
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