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TRAVELING WAVES IN INHOMOGENEOUS BRANCHING
BROWNIAN MOTIONS. I

BY S. LALLEY AND T. SELLKE
Purdue University

Consider a branching Brownian motion for which the instantaneous
branching rate of a particle at position xis given by B(x). We assume that 8
is an integrable continuous function converging to 0 as x — + c0. Let R(?) be
the position of the rightmost descendant at the time ¢ of a simple particle
starting from position 0 at time 0. We show that there exists a constant
Ao > 0 such that R(£) — /Ao/2¢ converges in distribution as ¢ —> o to a

location mixture of the extreme value distribution exp(e™ V2*o*),

1. Introduction. A (homogeneous) branching Brownian motion is defined as
follows. At time ¢ = 0 a single particle begins a standard Brownian motion X,(¢)
starting at X,(0) = 0. At a random time T', independent of the motion X;(¢) and
with P{T >t} = e t>0, the particle produces a replicate particle, also
located at X,(T'). The two particles continue along independent Brownian paths,
each subject to the same law of reproduction.

Let R(t) denote the position of the rightmost particle at time ¢, and let
u(t, x) = P{(R(t) < x}. It is by now well known ([1] and [6]) that, as ¢ — oo,
u(t, x) approaches a traveling wave with velocity v2, i.e., there exists a function
w(x) such that for every x € R,

(1.1) u(t,m, + x) » w(x),
where m, is the median of the distribution of R(?), and
m,/t > V2.

The purpose of this paper is to prove a similar result for a related process,
which we call the inhomogeneous branching Brownian motion (IBBM). This
process evolves in the same manner as the homogeneous branching Brownian
motion, except that the instantaneous rate of reproduction is no longer identi-
cally 1, but depends on the spatial position of the particle. The initial particle
follows a Brownian path X,(t), starting at X,(0) = 0, producing its first offspring
at time T, where

P(T > t|X,(s), s > 0) = exp{- /(:,B(Xl(s)) ds}

and B(x) > 0 is continuous and bounded. New particles:follow Brownian paths
independent of the old particles, and obey the same reproduction law.
Let R(t) be the position of the rightmost particle at time ¢.
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1052 S.LALLEY AND T. SELLKE

THEOREM 1. Assume that

(1.2) B(x) » 0, as|x] >
and
(1.3) f:oB(x) dx < .

There exist constants A, > 0, y > 0 and a random variable Z > 0 such that for
every x € R,

(1.4) lim P{R(t) < |No/2t+ x} = Eexp{ —Zye V?h*},
t— o0

The constant A, is the solution of an eigenvalue problem, and Z is the limit of
a positive martingale. See Section 2. An explicit formula for y is given in Sec-
tion 4.

This result complements the main result of [3], which states that, under (1.2),
R(t)/t > |Ay/2, as. It differs from the corresponding results (1.1) for homoge-
neous branching Brownian motion in that the behavior of the median m, of the
distribution of R(t) is different: For homogeneous branching Brownian motion
[1], as £ = oo,

m,=vV2t— (3/2\/§)log t + constant + o(1),
whereas, for IBBM satisfying (1.2) and (1.3),

m, = \o/2t + constant + o(1).

The proof of Theorem 1 is completely unlike that of (1.1). The proof of (1.1)
follows from the fact that u(¢, x) solves the K-P-P/Fisher equation u, = ju,, +
u? — u [6]. No such proof seems possible for IBBM, because there seems to be no
parabolic PDE for P{R(t) < x}. Our methods involve stochastic comparisons
rather than analytic comparisons.

The proof of Theorem 1 is carried out in Sections 4-5 under the additional
hypothesis that the branching rate function B(x) has compact support; the
general case is discussed in Sections 6-7. An auxiliary process, the Poisson tidal
wave, is introduced in Section 3. Section 2 gives some preliminary information
about the growth of the IBBM.

We have also established that the traveling wave phenomenon holds for the
IBBM whose branching rate function B(x) satisfies

B(x)>b>0, x€R,
and
B(x) — b has compact support.
This is discussed in [5].
2. Watanabe’s theorem. For J CR and ¢> 0, let N(¢ J) denote the

number of IBBM particles in J at time £ For bounded intervals J the
asymptotic growth of N(¢; J) was described by Watanabe [7].
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Consider the differential operator g — ;8" + Bg. Since 8 > 0 and B satisfies
(1.2) and (1.3), the differential operator has a largest positive eigenvalue A, and a
unique corresponding eigenfunction ¢, (x) satisfying (cf. [4], Chapter XI)

p(x) >0, x€ER,

90(0) =1, [o(x)?dx < o0
and
Po(x) ~ Cie‘\/ﬁ;"", asx — +0o0.
Define Z, = e ¥ (x)N(t; dx); then Z, > 0 and Z, is a martingale. Define
Z = lim Z,.

L~ 00
It is easily established that Z > 0 with probability 1. For Borel measurable
J C R, define

»(J) = fJ(po(x)dx.

WATANABE’S THEOREM. For every bounded interval J C R,
lim N(¢; J) /et = Zv(J), a.s.
t— o0

For every nonnegative, continuous function f(x) with compact support

tlirg) /f(x)N(t; dx) /et = fodv, a.s.

3. Poisson tidal waves. A Poisson tidal wave is a particle system defined
as follows. Particles are born at times ¢ € (— o0, c0) and locations x € (— o0, 0);
the collection of all birth points (#, x) constitutes a Poisson point process in R?
with intensity measure Ce**u(dx) dt, where C > 0, A > 0 and p is a probability
measure. Individual particles execute independent Brownian motions forward in
time, starting at their birth points. (A referee has asked whether this is a new
process. To our knowledge it is.)
Observe that at each time ¢ € (— 00, 00) the number of particles in existence
at time ¢ is finite, almost surely, since the expected number is

f_‘ /RCe'\sp(dx)ds < 0.

Moreover, at each time ¢ > — co the positions of the existing particles constitute
a Poisson point process on R! with intensity measure i,(x) dx, where

- [

(3'1) —oY -0 S)
Cer oo
O [ o sy,

. e—(x —9? /Ut-8)CpMs

p(dy) ds
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Assume now that the measure p has support entirely contained in (— oo, x ]
for some x, < 0. Then for x > x,,

)\t y/_x
(%) = e/ (d
62 if(x ¢— [ ou(dy)

C
= ﬁe—‘/ﬂx—‘/ﬁt)f@/ﬁyﬂ(dy)’
from which it is apparent that i,(x) is a traveling wave with velocity {/A/2 in
the region x > x,. Hence the name “Poisson tidal wave.”

Let R*(t) be the position of the rightmost particle in the tidal wave at time ¢
[if no particles have been born by time ¢, then R*(¢) = —o0]. Let v(¢, x) =
P{R*(t) < x}. Then for x > x,,

(33) o(t, x) = exp{-fx i(y) dy}
= exp( —Ke)‘"‘/ﬁx},

where

(3.4) K =(C/2)) j e (dy).

Thus o(¢, x) is a traveling wave with velocity {/A/2. Observe that (3.3) im-
mediately implies that R*(¢)/t —p /A/2. (In fact, it may be shown that the
convergence holds almost surely.)

The analysis of the two preceding paragraphs breaks down if p is not
supported by (— o0, x,] for some x, < co. However, (3.1) implies that

)\t y/_x
ii(x) = —=— [ e"u(dy)
(3.5)
At+f_x
+———— [Te " ou(ay),
so if f?we‘/{"—yp(dy) < o0, then as x — oo,
)\t y/_x
(3.6) i(x) ~ ¢— [~ o),

uniformly in ¢ Thus the intensity i,(x) approaches a traveling wave as ¢t — co.
If R*(t) is the position of the rightmost particle at time ¢ and o(¢, x) =
P{R*(t) < x}, then

o(t, 2) = exp( = [“il() ),

so
(38.7) log v(t, x) ~ —K exp{At — V2Ax}, asx — oo,



TRAVELING WAVES. I 10565

where K is defined by (3.4), uniformly in ¢ Consequently, v(¢, x) approaches a
traveling wave with velocity /A/2 for large ¢.

Recall that, with probability 1, only finitely many births occur before time
s < oo. Therefore, at time s there exist only finitely many particles, which are
located at various points of R. Regardless of their histories up to time s,
these particles move along independent Brownian trajectories after s. Since
R*(t)/t - p yA/2 > 0, the law of large numbers for zero-drift Brownian motion
implies that for each s < oo,

(3.8)  lim P{rightmost particle at time ¢ was born before time s} = 0.
t— o0

Thus the history of the Poisson tidal wave up to time s has little effect on the
traveling wave phenomenon for the distribution of R*(¢) for large ¢.

4. A heuristic argument. In this section we discuss the IBBM whose
branching rate function B(x) has compact support. We shall argue that, in the
vicinity of the “frontier,” the IBBM looks like a Poisson tidal wave, at least for
large times ¢.

For J C R let N(¢; J) denote the number of IBBM particles in oJ at time ¢.
Recall Watanabe’s theorem (Section 2): For some positive constant A, finite
positive measure »(dx) and positive random variable Z,

(4.1) N(t, J)/ert > Zy(J), as.,

as t = oo, for every bounded interval J. Now the births of IBBM particles in o/
constitute a point process whose intensity is

(4.2) | fJ B(x)N(t; dx);

if ¢/ is a very short interval, so that B8 is nearly constant on </, then this intensity
is approximately

(4.3) N(t; J) /J B(x) dx/|d|.

Thus for short intervals J and large times ¢ the intensity of the point process of
births in J is asymptotic to

(4.4) ZeMoty(J) fJ B(x) dx/|J]|.

Suppose we could condition on the value of Z, say Z = C. Suppose also that
instead of merely being asymptotic to (4.4) the intensities of the birth processes
in all short intervals J were equal to (4.4) for all ¢> —oco. Then the point
process of births in space-time would be a Poisson process with intensity
measure

(4.5) Ce™B(x)r(dx) dt,
just as for the Poisson tidal wave.

The only difference between the IBBM and a Poisson tidal wave is the birth
process: In both processes, particles move according to independent Brownian
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motions subsequent to their births. The argument just completed suggests that
for large time the birth process in the IBBM looks very much like the birth
process for a Poisson tidal wave (conditional on Z = C) with intensity (4.5).
Conditional on Z = C, how much is the distribution of the position of the
rightmost particle affected by the early part of the birth process? Not much,
because by (3.8) the chance that the rightmost particle was born early is
negligible.

The upshot of all this is that, for large time ¢, the distribution of the position
R(t) of the rightmost particle in an IBBM should be approximately a mixture of
the distributions of the positions R*(¢) in Poisson tidal waves with birth
intensity measures (4.5). The mixing is done by setting C = Z. Hence, by (3.3)

(4.6) tllm P{R(t) <x+A,/2 t} = Eexp{ —~ Zye oz},
where
(4‘7) Y= (2A0)—1 /emyﬁ(y)p(dy).

This argument not only establishes the traveling wave phenomenon for the
distribution of R(?), but also gives a fairly complete picture of the IBBM in the
vicinity of the frontier for large ¢. In particular, near the frontier (x = \A,/2¢)
the point process consisting of the positions of IBBM particles at time ¢ looks
like a doubly stochastic Poisson process ([2], Chapter II) with (random) intensity

i exp{ R (1 = Ko/ 1)) fexal 25,9820 )

(4.8) I(x) -

5. A coupling construction. We shall make rigorous the heuristic argu-
ment of the preceding section by a coupling construction. Once again we consider
the IBBM whose branching rate function B(x) has compact support.

ProPOSITION 1. Let 0 < C, < C, < oo be arbitrary constants, and let 36 =
C, — C,. On some probability space may be constructed a copy of the IBBM and
Poisson tidal waves W,, W, with birth intensity measures C;eB(x)v(dx)dt,
i = 0,1, in such a way that

() if R(t), R¥(t), R¥(t) are the positions of the rightmost particles in the
IBBM and the Poisson tidal waves W,, W,, respectively, then on {Cy + 8 < Z <
Cl - 8}’

(5.1) / RX(t) — 8 < R(t) < R}(t) + 8,
eventually with probability 1; and '

(ii) for all t, the histories of particles in W, and W, born after t are
independent of the histories of ull particles in the IBBM, W, and W, up to
time t.

Before giving the proof of Proposition 1, we shall indicate how it implies (1.4).
Recall that Z = lim, _,  Z,, where Z, is a function of the positions of the IBBM
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particles at time s (Section 2). It follows that, for large s, the symmetric
difference of the events {C, + 8§ < Z < C, — 8} and {C, + 8§ < Z, < C, — 8} has
vanishingly small probability. Hence, for each & > 0 there exists s, sufficiently
large that for all s > s,, >0, x € R and i = 0,1,

|P(Rx(t) < Ko/2t+ 25 Co+ 8 < Z,< C, - 8}
(52) —P{R;“(t) <A/2t+ %, C+8<Z<C— 6}’

< E.

According to statement (ii) of Proposition 1, the histories of particles in
W,, W, born after time s are independent of the positions of the IBBM particles
at time s, and consequently are independent of Z,. By (3.8) the distributions of
R¥(t) and Rj(¢) are not much affected by the histories of particles in W, and
W, born after time s, provided ¢ > s. Therefore, (3.3) implies

lim P{R}(t) < Xo/2t+ x; Co+ 8 < Z,< C, — 5}
t— o0

= exp{ —Cjye~ 2"OJ‘}P{CO +8<Z,<C, -8},
where vy = (2}\0)‘1/e‘myﬂ( y)v(dy), for i = 0,1. Letting s - oo and using (5.2),
we obtain
lim P{R}(t) < Ko/2t+x; Co+ 8 < Z < C, — 8}
(5.3) t=eo
= exp{ —Cyye V= P(Cy + 8 < Z < C, — 8}.
By statement (i) of Proposition 1 the distribution of R(%) is nearly bracketed

between the distributions of R¥(¢) — 8 and R}*(¢) + 8 for large ¢. Consequently,
(5.3) implies

exp{ —Cyye™ V2o (x+8) }

> limsupP{R(t) < Ao/2t+x|C+8<Z<C)— 8}
t— o0
> liminf P{R(t) < Xo/2¢t + x|C, + 8 < Z < C, — 5}

t— o0

> exp{ - Clye‘\/m(x‘sj}.

Letting 6 — 0, we obtain (1.4).

In proving Proposition 1, we will make use of a strong law of large numbers
for point processes. Let N(¢),¢ > 0, be the counting’process associated with a
point process on (0, 00); let &%, be a filtration to which N(¢) is adapted; and let
A(f) be an % measurable intensity for the point process. [A counting process
N(t) is an increasing, integer-valued right-continuous, adapted stochastic process
that satisfies N(0) = 0 and whose jumps are all of size + 1. Its intensity A(%) is
its dual predictable projection, so that N(¢) — A(¢) is a local martingale. See [2],
Chapter I1.]
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SLLN. If there is a continuous function f: [0, 0) — [0,00) such that
J°f(t) dt = oo and N(t)/f(t) = Z, a.s. for some positive r.v. Z, then

N(¢) 7
——— —Z, a.s.
fof(s) ds

This follows immediately from the representation of N(t) as a Poisson process
with a random time change ([2], Section II.6).

PROOF OF PROPOSITION 1. Start with a copy of the IBBM and independent
Poisson processes on R? with intensities C,e8(x)»(dx) dt, i = 0, 1. The Poisson
processes are to be the point processes of births for the Poisson tidal waves
Wy, W}, respectively. An individual particle in the tidal wave W, executes a
Brownian motion (starting at its birth point) independent of the IBBM, the
birth processes and the motions of all other particles in W, and W, until the
instant it is “ paired” with an IBBM particle. (The pairing scheme is explained in
the following discussion; the pairing times are stopping times.) Hereafter, the
W;-particle “shadows” the IBBM particle with which it is paired, i.e., it follows
the trajectory that keeps its distance from the IBBM particle constant over
time.

The pairing laws are such that each IBBM particle is paired with at most one
Wy-particle and one W;-particle. Since the pairing times are stopping times, the
movements of individual particles in W, and W, are Brownian motions. Since
IBBM particles follow independent trajectories, particles of W, follow indepen-
dent trajectories, i = 0, 1. Therefore, the processes W, and W, are Poisson tidal
waves. Moreover, it is evident from the construction that the histories of
particles in W, and W, born after time ¢ are independent of the histories of
W,, W, and the IBBM up to time ¢, for any ¢.

The pairing laws for W, -particles are as follows. Let J be an interval
containing the support of B: Note that no particles are born outside ¢J. Let
J =UL J, where J,, o,,..., J, are disjoint intervals such that for each i =
1,..., k, J; haslength < & (e > 0 will be specified later). Let « > 0. Any IBBM
particle born in oJ; during [na,(n + 1)a) is immediately paired with the oldest
unpaired W,-particle born in J; during [(n — 1), na), which has not traveled
farther than §/2 from its birthplace. If no such W,-particle exists, the IBBM
particle remains unpaired until it meets an unpaired W,-particle older than 2a,
at which time these two particles are paired.

The pairing laws for Wpy-particles are similar, but the roles are partially
reversed. Any W-particle born in J; during [na,(n + 1)a) is immediately paired
with the oldest unpaired IBBM particle born in J; during [(n — 1)e, na), which
has not traveled farther than &,/2 from its birthplace. If no such IBBM particle
exists, the Wj-particle remains ‘unpaired until it meets an unpaired IBBM
particle older than 2«, at which time these two particles are paired.

(Note: The two pairing schemes work separately. In particular, a Wj-particle
considers an IBBM particle unpaired if the IBBM particle is not yet paired with
another W-particle; whether the IBBM particle is paired with a W,-particle is
irrelevant.)
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It remains to show that ¢ > 0 and a > 0 may be chosen so that (5.1) holds on
{Cy+ 8 <Z < C,— 8} for all large t. Observe that if & < /2, then paired
particles are always within 8 of their partners. Consequently, to prove (5.1), it
suffices to show that on {C, + 8 < Z < C, — 8}, almost surely, (a) all IBBM
particles born after a certain time are immediately paired with W,-particles, and
all Wi-particles born after a certain time are immediately paired with IBBM
particles, and (b) the finite number of Wj-particles and IBBM particles not
paired immediately at birth are eventually paired with IBBM particles and
W,-particles, respectively.

For a > 0, let p(a) be the probability that a standard Wiener process in R*
started at 0 does not exit the interval [ -8 /2, § /2] before time 2a. Since Wiener
paths are continuous, p(a)11 as a — 0. Consequently, there exists a > 0 suffi-
ciently small that

(5.4) C,p(a)e ™™ >C, -8
and
(5.5) (Cy + 8)p(a)e 2 > C,.

Associated with each W;-particle is a standard Wiener process, independent of
the IBBM, the birth processes for W, and W, and the Wiener processes
associated with all other W and W;-particles. The motion of a W;-particle is
determined by its associated Wiener process up to the time the particle is paired,
after which the associated Wiener process ceases to play any role in the evolution
of the particle system W,. Label a W,-particle “good” if its associated Wiener
process does not exit the interval of radius §/2 centered at the initial point of
the process before 2a time units elapse. Otherwise, label the W;-particle “bad.”

The point process consisting of the birth locations (in space-time) of all good
W,-particles born in oJ is a Poisson point process with intensity measure

p(a)Cie™B(x)1,(x)r(dx) dt.

If N,*(J) is the total number of good W;-particles born in J; up to time ¢, then,
by the SLLN for point processes,

N ()
(5.6) —— = p(a)CAG? fJB(x)V(dx), as.,

e
as t — oo. v
Consider now the point process of births of IBBM particles in oJ;. This has
intensity [; B(x)N(¢; dx), where N(¢, A) is the number of IBBM particles in A
at time ¢ It follows from Watanabe’s theorem that

fJ,-B(x)I:ZEt; dx) R ZLIB(x),,(dx), a.s.,

as t — oo. Therefore, if N;**(J;) is the number of IBBM births in J; up to time
t, then

(5.7) -

N**(;
(5.8) —;é-—) - ZAg! /J B(x)»(dx), as.,

by the SLLN for point processes.
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Relations (5.4), (5.6) and (5.8) imply that, on {C,+ 6 < Z < C, — 8}, the
number of good Wi-births in oJ; during [(n — 1)a, na) exceeds the number of
IBBM births in J; during [na, (n + 2)a) for all large n, almost surely. Therefore,
on this event all IBBM particles born after a certain time are immediately
paired with W;-particles. Furthermore, there is an infinite “surplus” of W;-par-
ticles, so the finitely many IBBM particles that are not paired at birth eventu-
ally meet and pair with W,-particles.

A similar argument shows that, on {C, + 8 < Z < C, — 8}, all W-particles are
eventually paired with IBBM particles, and all but finitely many are paired at
birth. O

6. The general case. Consider now the IBBM with branching rate function
B(x) satisfying (1.2) and (1.3). If B(x) does not have compact support, then
particles may be born at arbitrarily large distances from 0.

PROPOSITION 2. For each ¢ > 0 there exists A = A(e) sufficiently large that
for all large t,

(6.1)  P{rightmost particle at time t was born outside [ A, A]} <.

Proposition 2 will be proved in Section 7.

Let R(t) denote the position of the rightmost particle at time ¢, and let R 4(¢)
denote the position of the rightmost particle at time ¢ born in [—A, A]. [Note
that the truncation here refers only to individual particles and not to their
parents. A particle born outside [ — A, A] is neglected in determining R 4(¢), but
its offspring born inside [ — A, A] are not.] By (6.1), for ¢ sufficiently large and all
x € R,

(6.2) P{R,(t) <x} —e< P{R(t) <x} < P{R,(t) < x}.
Consequently, to prove (1.4), it suffices to demonstrate that, for each A < oo, the
distribution of R ,(¢) approaches a traveling wave as ¢ — oo, and that these
waves coalesce as A — oo.

The distribution of R 4(¢) may be studied by the methods of Sections 4-5, as
only particles born in [ — A, A] affect the value of R 4(t). Let Z, ¢y, A, be as in
Watanabe’s theorem. Then for all x € R, 0 < A < o0, by the arguments of
Section 5,

(6.3) lim P{RA(t) <x+A,/2 t} = Eexp{—Zyse o),
t— 0
where

va= (@) [ B (3)mo( 3) dy.

Recall that gy(x) ~ C exp{— 2A,|x|} as x = + 0, and [B(y) dy < co. There-
fore,

64)  y= limy=@h) " [ e PB(3)g(2) dy < o0,

Now (6.2)—(6.4) imply (1.4).
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7. Proof of Proposition 2. We assume, as in the preceding section, that the
branching rate function B(x) satisfies (1.2) and (1.3). Let Z, A, ¢,, and N(¢; J)
be as in Watanabe’s theorem.

LEMMA. For each 8 > 0 there exists K = K(8) < oo such that for every
continuous f: R — [0, o0) with compact support contained in R\ [—6, 8], and
everyt >0,

(7.1) E( fR F(x)N(¢; dx)) < KeMot fR f(x)eV2hol gy

ProoF (adapted from [3], Section 3, step 1). Let E~* denote the expectation
operator for an IBBM that starts with a single particle located at position x at
time O (thus E° = E). Consider the semigroup T;: C,(R) » C,(R) defined by

—Aot

Ta(x) = — B [0 N6 )

@o(x)

This is the transition semigroup of a diffusion process on R with generator
1 d? N o(x)\ d
2 dx? @o(x) | dx

and invariant probability measure 7(dx) = @y(x)*dx/[p(y)>dy. A coupling

argument for this diffusion process shows that, for each § > 0, there exists

K’ = K’(8) < oo such that

(72) Tg(0) < K' [ Tig(x)n(dx),

for every nonnegative g € C;(R) vanishing on [ -4, 8], and every ¢ > 0. [The
invariance of #(dx) is not used in obtaining (7.2).] Since f > 0,

E(fnf(x)N(t; dx))
= e™p(0)T,( f/9,)(0)

< K'p(0)e™ [ T(1/90)(x)7(dk)
= K'go(0)e™* [ (1/90)(x)(dkx)
= KMt [f(x)po(x) dv.

The result (7.1) follows, since @y(x) ~ Cie_‘[”‘—‘)"" as x > +o0. O

Fix x € R, ¢t > 0. Any particle of the IBBM whose position at time ¢ is to the
right of x + A, /2 ¢ was born at some (s, y), where 0 < s < ¢t and y € R. Since
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the intensity of the birth process is B(y)N(s; dy) ds,
ENA(t; [x+ Ao/2t, oo))

(7.3) e~ (z=?%/2t-5)

t )
-E e
fsaofyen\[—A,A]—/z=x+ )\O/Ztﬁ(y) V27(t — s)

where N,(¢t; J) denotes the number of particles in o/ at time ¢ that were born
outside [ — A, A]. It follows from (7.1) that

EN,(t; [x + |X,/2t, 0))

dz N(s; dy) ds ),

sft f foo Kerose— V2ol
s=07]y]> A z=x+‘/)\0/2t \/2w(t— s)

Ke*

'{y|>A/ x+mt\/ﬁ_‘

(y)e_(z_y)2/2(t_s) dzdyds

e V2R lYI=V2Rolz=31B( ) dz dly.

Since [B(y) dy < oo, it is apparent that, for any x € R, ¢ > 0, there is an A so
large that

EN,(t; [x + Xo/2t,0)) < e/2,
for all ¢ > 0.

To prove Proposition 2, it now suffices to show that there exists x € R such
that

P(R(t) <x+ No/2t) <e/2,

for all ¢ > 0. This follows from the arguments of Section 6. If R ,(¢) denotes the
position of the rightmost particle at time ¢ born in [—A, A], then obviously
R ,(t) < R(t) (regardless of what A is). By (6.3)

{RA <x+ yAy/2 t} - Eexp{ —Zy,e” ”‘0"},
as t - oo; for x sufficiently small this limit is < e/4. 0
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