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LARGE DEVIATIONS FOR VECTOR-VALUED FUNCTIONALS
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We obtain lower bounds for large deviations of vector-valued functionals
of a Markov chain with general state space. The bounds are expressed in
terms of the convergence parameter of certain kernels. An application to
empirical measures of Markov chains is given.

1. Introduction. Let {X;, j > 0} be a Markov chain with state space S and
transition probability 7. Let E be a topological vector space and f: S — E.
Under certain assumptions on the space E, a certain boundedness assumption on
f and the sole assumption of irreducibility on =, we obtain lower bounds of the

type

1.1 li 'fll P lnil X G inf A
(1.1) im inf —log P, nof( ) € z—uuela(u),

n— oo
where G is an open subset of E, x € S, A is the convex conjugate of
o(¢) = —IOgR(Ke), (€ E¥,
and R(K,) is the convergence parameter of the kernel

K (x,A) = fe“"(y»w(x, dy).
A

As an application, we derive a basic result of Donsker and Varadhan [5] on
lower bounds for large deviations of occupation times of Markov chains taking
values in a Polish space, under somewhat weaker assumptions than those in [5].
Although we use at a certain point a technique from [5], in general terms our
methods are quite different from those of that paper.

Our point of view is close to that of the interesting very recent work of Ney
and Nummelin [11], in which for the first time the convergence parameter of an
irreducible kernel is used to construct lower bounds for large deviations of
Markov additive processes. In fact, one of our main results, Theorem 5.7, is an
infinite-dimensional generalization of the case of Theorem 1 of [11] when the
additive component is given by an R%valued functional of a Markov chain (see
more details in this regard in the remarks following Theorem 5.7). We share with
[11] the framework of recent ideas and results from the theory of Markov chains
with general state space, such as the convergence parameter of an irreducible
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kernel and its renewal-theoretic characterization and the existence of invariant
functions for R-recurrent irreducible kernels, as presented in the very useful
recent book of Nummelin [12]. However, these tools are used in a different way
in the present paper, in which we emphasize the continuity and approximation
properties of irreducible kernels. Moreover, the systematic use of results from
infinite-dimensional convex analysis occupies an important position in our work.

We shall describe next the content of each section.

In Section 2 we establish some notation and present some results on irreduci-
ble kernels that will be useful later on. In particular, we prove in Theorem 2.1 a
general continuity property of the convergence parameter which appears to be of
independent interest.

The purpose of Section 3 is to show that if K is an irreducible kernel
(satisfying some additional conditions), then a suitable copy K of K can be
approximated monotonically from below by a sequence of irreducible quasi-
nilpotent kernels (see Definition 2.2). When applied to the kernels = and K, this
approximation scheme will play a crucial role in Section 5.

Section 4 is devoted to the proof of certain analytical properties of the
convergence parameter of the kernels K, in terms of which the large deviation
bounds are defined.

Section 5 contains the main results of the paper, Theorems 5.4, 5.6 and 5.7. In
these results lower bounds of the type (1.1) are established; in Theorem 5.4, E is
assumed to be a separable Banach space, while in Theorems 5.6 and 5.7, E is
assumed to be a vector space with a weak topology satisfying certain additional
conditions.

In Section 6 we apply Theorem 5.6 to the case of occupation times of Markov
chains, mentioned earlier in this introduction.

Section 7 contains some remarks on the relationship between the lower
bounds obtained in this paper and upper bounds obtained previously, in particu-
lar in [4].

Appendix A is devoted to proving an ergodic theorem for Banach space-valued
functionals of a Markov chain. The proof is simple (given the result in the
real-valued case); since we know of no ready reference, we have included it here
for completeness.

In Appendix B we prove a continuity result for the Fenchel transform (convex
conjugation) which plays an important role in Section 5. This result, though
closely related to certain theorems in the literature, appears to be new and may
be of independent interest.

2. Irreducible kernels. In general, we adopt the framework and notation
of [12]. Throughout the paper, (S, %) denotes a measurable space; it is assumed
that the o-algebra & is countably generated. We write g €% if g is an
S measurable (extended) real-valued function defined on S.

The product of two kernels and the action of a kernel on measurable functions
and measures are defined and denoted in the usual way. For example, if K is a
kernel on (S, &), g € &, then Kg is the measurable function

Kg(x) = [K(x, dy)e(y), =x€S,
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and K(gI ) is the kernel
K(gl ,)(x,A) = K(gl,)(x), x€8,Ae¥.
If u is a measure on (S, &), then p(g) = [gdu; pK is the measure

BK(4) = [u(d)K(z, 4), Aes;

in particular, p(gI.,) is the measure

n(&l.,)(4) = [el,dp.

Finally, gK is the kernel (gK )(x, A) = g(x)K(x, A) and if » is a measure on
(S, &), then (g ® v)(x, A) = g(x)¥(A).

It will be assumed that K is a nonnegative kernel on (S, &) such that K" is
o-finite for all n > 1 (see [12], page 1). In most instances, this property of K will
obviously follow from other assumptions. K is bounded if sup, c ¢K(x, S) < oo;
K is Markov (resp., sub-Markov) if K(x,S) =1 [resp., K(x,S) < 1] for all
x €S

Given an irreducible kernel K ([12], Definition 2.2), the set of all irreducibility
measures will be denoted S(K).

The convergence parameter of an irreducible kernel K will be denoted R(K)
(see [12], Definition 3.2, Theorem 3.2 and Proposition 3.4).

Our first result gives an important continuity property of the convergence
parameter.

THEOREM 2.1. For eachj > 1let S; € & and assume S;1S. Let &, = {A €
&1 A C Sj}). Let K be an irreducible kernel on (S, &) and forj > 1, let K ; be an
irreducible kernel on (S;, &)).

Assume that forallx € S, A€ %, K(x, AN S))1 K(x, A). Then

(2.1) R(K;)| R(K).
Proor. By [12], Definition 2.3 and Theorem 2.1, there exist m > 1 and a
small function s, € %, and a measure v, # 0 on (S,, &) such that
(2.2) K'*>s ®v,.
We define the functions s; on S, s on S by

[ silx), x€8S,,
5(%) =1, xe€S§~8,
(x) = 5,(x), x €S,
S =1, xeS~8,

and the measures »; on (S;, &) [resp., » on (S, )] by v;(A) = v,(A N S,) [resp.,
v(A) = »,(A N §))]. Then it is easily verified that s; ® v, is an atom for K" (see
[12], Definition 4.4) and s ® » is an atom for K ™. It is possible to choose m = m,
and s,, », so that »,(s,) > 0 [see [12], Remark 2.1(ii), page 16]. Then it follows
that for each j > 1, the periods of K, j > 1, and K are not larger than m, (see
[12], pages 20 and 21).
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Next, choose m = m, to be a prime number larger than m, and such that
(2.2) holds for suitable choices of s, and »,. To show that this is possible, choose
m, s,, v, such that (2.2) holds; then for any p > 1,

K™*P > (5, ® v)KP =5, ® (v,KP).
By irreducibility, K(x,S) > 0 for all x € S; hence, K”(x,S) >0 forall x € S
and »,K? # 0. Now choose p so that m, = m + p is prime and larger than m,.

Thus we may assume that (2.2) holds for a number m that is relatively prime
with the period of each of the kernels K;, j > 1, and K. It follows from [12],
Proposition 2.9, that K®, j > 1, and K™ are irreducible. We shall prove

(2.3) R(K)IR(K™).

Since by the proof of Proposition 3.5 in [12], R(K™) = (R(K))" and R(K™) =
(R(K )™, (2.1) follows.
To prove (2.3), we define next the kernels

Kf(x,ANnS), =xes,

K!(x,A) =
Kj(x, 4) {0, x€S~S,
for x € S, A € &. Then it is easily verified that forx € S, A € %, n > 1,
KMx,ANS;) x€S;
.’" = j ) J’ J’
k(= 4) {o, xe8~8,

and
n Kr—s.0v)(x,ANS), € s,
(K/m—s®»)(x,A) = (K= s;@%)"(x ) TEY
0, xeS~S§,.
Therefore, for n > 1,
(2.4) v(Kj’”‘ -s®v)"s= vj(K;" -s;® vj)"sj.
Now the assumption implies K/(x, A)? K(x, A) for all x€ S, A €%, and
consequently (see, e.g., [15], page 231), for all n > 1,
(K/m—s®»)"1(K™—5® »)",
WK™ —s®»)sTv(K™— s ®»)"s.
By [12], Proposition 4.7,
R(K") = sup{r > 0: b(r) < 1},
R(K™) = sup{r > 0: b(r) < 1},

(2.5)

where

o0
bj(r) = %r"“vj(K}" -5 ® vj)"sj,

b(r)=Yr"w(Km™"-s®v)"s
0
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(observe that strict inequality appears in [12]; it is easily seen that the present
formulation is equivalent). By (2.4),

bi(r)=Yr"w(K/™~s®»)"s
0

Since b; < b;,, < bforall j > 1,itis clear that R(K")| [ (say) and I > R(K™).
In order to prove (2.3) we must show

(2.6) I<R(K™).

Given ¢ > 0 and setting
gi(n)=(R(K™) + e)n“v(Kj”" -s®)"s,
g(n) = (R(K™) +¢)" " 'w(K™-s®»)"s,

(2.5) and the monotone convergence theorem imply
1< 2g(n) = Llimg;(n) = lim Xg,(n),
0 0 0

and therefore there exists j, such that for j > j,,
1< b-(R(K"‘) +¢),

which implies R(K") < R(K™) + e. Therefore l < R(K™) + & since ¢ is arbi-
trary, (2.6) follows. O

Definition 2.2 and Lemma 2.3 isolate a condition that will be significant in our
work.

DEFINITION 2.2. Let K be an irreducible kernel on (S, &) with an atom
s ® v. K is quasinilpotent (relative to the atom s ® ») if for some m > 1,

(2.7) (K-se»)"'=0

LEMMA 2.3. Let K be an irreducible kernel on (S, &) with an atom s ® v.

Assume that K is quasinilpotent. Then: .

(i) R(K) > 0, K is R-recurrent ([12], Definition 3.2) and
h= )’f(R(K))"“(K —s®)"s

[where m is as in (2.7)] is an R(K )-invariant functzon for K ([12], Definition
5.1). Moreover, h > 0 everywhere.

(i) If K is bounded, then so is h.

(iii) Assume that K is bounded and define

Q(x, A) = R(K)(h(x)) 'K(hI,)(x), =x€S8,AeS.

Then @ is a Harris-recurrent Markov kernel (see Appendix A) with a unique
invariant probability measure.
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Proor. By [12], Proposition 4.7, R(K ) = sup{r = 0: b(r) < 1}, where
0 m
b(r)y=Yr"w(K-5®v)"'s=Yr""'w(K—-s®v)"s.
0 0

It follows from the form of b that R(K) > 0 and b(R(K)) = 1; hence K is
R-recurrent ([12], Proposition 4.7). The expression for 2 follows from Theorem
5.1 of [12] and (2.7). The positivity of & follows from [12], Proposition 5.1. This
proves (i).

Assertion (ii) is clear from the form of A.

(iii) By (ii), A is bounded. It follows from [12], Proposition 5.4, that @ is a
Harris-recurrent Markov kernel. Let R = R(K), s, = Rsh™' and », = v(hl.,).
Then s, ® », is an atom for @ and the formula

(Q — 5, ®»,)"(x,A) = R*(h(x)) (K -s®»)"(hl,)(x), x€8,Ae,

is easily proved by induction. Therefore (@ — s, ® »,)™*! = 0. It follows now
from [12], Corollary 5.2, that @ has a finite invariant measure, hence a unique
invariant probability measure. O

3. Approximation of certain irreducible kernels by quasinilpotent
kernels. The constructions in this section are inspired by the idea of split
chain (see [12], Sections 4.3 and 4.4 and the references on page 143) and by the
truncation-killing technique in [11]. However, our procedure is different and
more analytic in spirit; in particular, we do not use the notion of regeneration
time.

The first lemma shows that if a kernel K on (S, &) admits a certain
decomposition, then it is possible to construct a new kernel K on (S X T,
¥ ® T), where (T, ) is a measurabie space, which is in a certain sense a copy of
K. If the kernel K is irreducible and has an atom (satisfying certain conditions),
then a suitably chosen (T, ") will provide enough structure to make possible the
approximation of a suitably chosen K by well-behaved kernels on (S X T,
& ® T); this is the content of Lemmas 3.2 and 3.3.

LEmMma 3.1. LetK, K,, I§1 be kernels on (S, &). Assume that
K(x,A) = vy(x)Ko(x, A) + v,(x)K\(x,A), =x€8S,AeZ,

where v, € ¥,0<v,<1(i=0,1) and vy, + v, = 1.
Let (T, ) be a measurable space and {T,,, T,} a measurable partition of T.
Let M,; (i, j = 0,1) be Markov kernels defined on (T, 7°) such that

Mo(y, T)) = Moy(5,Tp) = Myo(y, T) = Myy(5,Tp) =0, yeT.
Define on (S X T, #® ) the kernel
If((x, ¥),) = ITo(y){Ko(UOI«))(';‘) ® My(y,*) + Ko(le(-))(x) ® My(y, )}
+In(¥) (K 0o ))(x) ® Myg(, -)
+ K (0, ,)(x) ® Myy(y, )}
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Then:
(i) For every measurable g: S"*' > R*, n > 1, and fori = 0,1,

JE((x0: %), d(zs 7)) [ -+ [B((%n-1270-1): Ar 2)) I (90)8(%or- - %)
= In(3) [ Kol dey) [K (3, dz)
xf fK(xn_l,dxn)vi(xn)g(xo,...,xn)
+ I (%) [Ko(xo, dx,) [K(x,, dx,)

X/ /K(xn—l’dxn)vi(xn)g(xo""’xn)'

(i) For any measure p on (S, %), if py, p, are probability measures on
(T, T) such that p(T) = p(T,) = 0 and

i =w(vol.)) ® po+ p(v ) ® py,
then

fﬁ(d(xo, yo))fK((xO’ yO)’ d(xl’ yl))
X f s /K((xn—1, Yn-1)> A(%,, 3,))8(%05- .-, %,)

= [u(dxo) [K(xo,dx) [ -+ [K(xy s, dx,)g(xo, -, 20)-

(iii) For everyn>1,i=0,1, ﬁIf”ITl =pK",

Proor. (i) is proved by a straightforward induction argument, which we
omit. To prove (2), we first observe that from (i) we obtain, for i = 0,1,

Ji(d(xo, 3)) [R((xo, 30), d(x1, 7))
X [ [R((%0m1s Yaer)s A5y 3))Ir(%)8 (0 %)
= [(dxo)oo(x,) [Kolo, dx,) [K(x,, d)
(3.1) X [ (K%, de,)oi(x,)8(%05 - %4)
+ [ (o) oi(xo) [Ky(%o, dx,) [K(xy, dxs)
X [ [R (s drn)oi(x,)8(%0s -, 20)

= fﬂ(dxo)fK(xo,dxl)f”' fK(xn—h dx,)v(x,)g(xg,...,%,).
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Adding the equalities (3.1) for i = 0,1, we get (ii).
To prove (iii), take g = 1 in (3.1); then

J(d(xo, %)) [R (20, %), d(x, y))I(3) = [w(dxo) [K (20, dx)oi(=),
which is the assertion. O '

In the next lemma (N, .#") will denote the set of nonnegative integers with the
o-algebra of all subsets.

LEMMA 3.2. Suppose that the kernel K on (S, &) satisfies (a) K > s ® v
with v(s) >0 and 0 <s <1 and (b) if v(A)> 0, then K(x, A) >0 for all
x € S; in particular, K is irreducible and v € #(K).

Define on (S X N, ¥ ® A") the kernel

K((x, J), ") = L(){#(3L.,) ® & + »(¢L.,) ® &,
+Ioe(j){H(5I,)(x) ® 8, + H(tI))(x) ® L(j, ")},

where §=s/2, t=1-135, H(x, A) = (¢(x))"'[K(x, A) — §(x)»(A)] and
L(J, (k) = 8j+1(k)~ Then:
(i) For all (x, j) € S X N,

K((x, j),") 2 I(){r(3L.,) ® 8 + »(tI.)) ® 8.}.
@) If (»(3I. )) ® 8,)(A) > 0, then K((x, j), A) >0 for all (x, j) €S X N;

in particular, K is irreducible and v(3I.)) ® §, €S (K).
(iii) R(K) = R(K).

PROOF (i) is obvious. To prove (ii), we observe that if A € ¥® 4" and

= {x € 8: (x,0) € A}, then v(sI W(Ag) = (¥(3L.)) ® 8,)(A). Assume now

that (»(3I.)) ® §,)(A) > 0. If j=0, then for all x €S, K((x, j), A) =
(31 .y) ® 80)(A) > 0. If j € {0} and §(x) = 0, then

(H(3I,.,)(x) ® 8,)(A) = H(5I,,)(x) = K(5I,, )(x) > 0
by assumption (b), since »(5I, ) > 0. If j € {0}° and 5(x) > 0, then
K(3l,, )(x) — 8(x)»(51,,) = 5(x)v(5L,,) > 0
by assumption (a) and, therefore,
(H(3I,)(x) ® 8,)(A) = H(3l,,)(x) > 0.
(iii) By [12], Proposition 3.4,

R(K) = sup{r >0: Y rwK"s < oo},
0

R(K) = sup{r >0: Y r K" < oo},
0
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where 7 = »(81.,) ® §, + »(¢.,) ® 8, and § = I,. Now Lemma 3.1(iii) yields the
conclusion. O

In the next result we shall use the notation N, = {0,1,...,m}, J, =N, ~
{0}; A,, isthe c-algebra of all subsets of N .

LEMMA 3.3. Under the assumptions of Lemma 3.2, define on (S XN,
&L ® N,,) the kernel

Km((x’ ])’) = Io(j){”(gI(~)) ® 80 + V(tI(~)) ® 81}
+IJ,,,(j){H(§I(-))(x) ® §, + H(tI(.))(x) ® L,(J, )},
where L,, = L|IN,, X A,,. Then:

(@) If (v(3I,.,) ® 8,)(A) > 0, then K, ((x, j), A) > 0 forall (x, j) € S X N ;
in particular, K, is irreducible and v(sl.) ® 8, F(K,).

(ii)) Define § on SX N,, and ¥ on ¥® A, as at the end of the proof of
Lemma 3.2. Then § ® # is an atom for K, and K,, is quasinilpotent relative to
§® 7
(3.2) (R,-50%)""" =0.

(iii) K,((x, /), AN (S8 XN, )1 K((x, j), A) for every (x, j)ESXN, A€
#® A and R(K,,)| R(K).

Proor. (i) is proved exactly as statement (b) of Lemma 3.2.
(ii) The first assertion is obvious. To prove (3.2), let

F((xs J), ') = IJm(J)H(s_I())(x) ® 80o
G((x,)),) = IJm(j)H(tI(,))(x) ®L,(Jj,").
Clearly G™ = (H(¢I.)))" ® (I; L,,)" for all n > 1. It is easy to check that for all

HLkReN,,1<n<m,

(L,L,)"(J, (k}) =1, . (5)8;. (k).

m

It follows that (I; L,,)™ = 0 and therefore G™ = 0. Next, since F(F + G) = 0,
we have for n > 1,

(F+G)"=G(F+G)" '=G¥F+G)" %= ... =G"Y(F+QG),
and therefore (F + G)™*! = G™(F + G) = 0. This proves (3.2).
(iii) For x € S, j €N, let m > j. Then I;«(j) = I,(j) and if k € N,,, then
L,(j,{k}) =L(j,{k}). Henceform>j, A€, keN,,
Km((x’ J), A X {k}) = K~((x’ J)s A X {k})

The second statement follows now from Theorem 2.1. O

4. Proberties of the kernels K,. Let E be a locally convex Hausdorff
topological vector space and let p be a norm on E stronger than the topology of
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E. Let p* be the dual norm on E*, the dual of E, defined by p*(£) = sup{|(§, x)|:
p(x) < 1}. Let f: S = E be a measurable p-bounded function

(4.1) sugp( f(x))=c< .
xe
Let 7 be a sub-Markov kernel on (S, &) and define, for £ € E*,
(4.2) K,(x,A) = fe“' IMg(x,dy), x€8S,AeZ.
A

LEMMA 4.1. Suppose that 7 is an irreducible sub-Markov kernel. Let f, K,
be as before. Then:
(i) For each ¢ € E*, K, is irreducible.
(ii) For £ € E*, define ¢(¢£) = —log R(K,). Then $(E*) C R, ¢(0) < 0 and
¢ is p*-Lipschitz.
(iii) ¢ is convex.
(iv) If > s ® v, then K > s ® v, where v; = v(e¢& DI ).

ProoF. (i) The irreducibility of K, is a consequence of the following state-
ment, which is easily proved by induction: If K is a kernel on (S, #) and g € &,
g > 0 everywhere, then forall n > 1, A €%,

{x: [K(gI(.))]"(x, A) > O} = {x: K™(x, A) > 0}.

(ii) The fact that 0 < R(K,) < oo for all £ € E*, so that ¢(E*) C R, follows
from (4.1), Theorem 3.2 of [12] and the fact that R(K) > 0 if K is bounded,
which is easily proved. Next, ¢(0) = —log R(K,) = —log R(7) < 0 since
R(7) > 1 because = is sub-Markov.

Let ¢, ne E*. Thenforx € S, A €%,

Ki(x, A) = Le(é-n,f(y)>e<n,i(y)>.ﬂ(x, dy) < e?"¢=VK (x, A)

and, therefore, for all n > 0,
(4.3) e WK < K < enP" TR R
It follows from (4.3) that if K, satisfies the minorization condition M(m,, B, s, v)

([12], Section 2.3), then K, satisfies M(m,, B’, s, ») for a certain B’ > 0.
For ¢ € E*, let a,(r) = Z§r"vK{s. Then (4.3) implies: For r > 0,

(4.4) a,(e”P"¢"r) < ay(r) < a, (e ¢ Vr).
Since R(K,) = sup{r = 0: ay(r) < oo} by Proposition (3.4) of [12], it follows
from (4.4) that '

e~ P"¢-"R(K,) < R(K,) < e®*"™R(K,),
which implies .
' l9(¢) — ¢(n)l < cp*(£§ — ).

(iii) We must prove: If a; + @y =1, a; >0, a; >0 and §= a,§; + @€,
£, &, € E*, then

(4.5) R(K,) > (R(K,))"(R(K,,))"™.
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We first prove: If g € &, g > 0, then for all n > 0,
(4.6) Kz < (Kig)"(Kpg)™

We proceed by induction. For n = 0 (4.6) is obvious. Assume that (4.6) is true for
n. Then by Hélder’s inequality,

Kptig(x) = [e® n(x, dy)K g(y)

< /e<a.e.+a2€2. l(y)>(Kgg(y))a‘(K€’;g(y))azﬂ(x, dy)

< (fe(él,f(y))Kgg(y)ﬂ(x’dy))“n(fe@z.f(y))KE';g(y).,r(x’dy))

= (Kr*'g(x)) (K g(x))™,

proving (4.6). Let 0 < 8 < 1. Then, setting R; = R(K.), i = 1,2, by (4.6) and
Holder’s inequality,

ai(BRYRY) < 5 (BRYRY)" [(d)(Kga()" (Kis()"

00

< Z[(B‘/“‘Rl)" / v(dy)Kzts(y)]“' [(BV%)” / v(dy)Kgs(y)]

0

< [ae(B72R,)] " [ac(B/=R,)]™ < o.

The last statement follows from Proposition 3.4 of [12]. Hence BR{"R$* < R(K;)
for any 0 < 8 < 1 and (4.5) follows.
(iv) is obvious. O

o

LEMMA 4.2. Suppose that © is a sub-Markov irreducible kernel with atom
s ® v. Assume that = is quasinilpotent. For some m > 1,

(m—s@® v)m+1 = 0.
Let f and K, be defined as in (4.1) and (4.2). Then:
(i) For each { € E*, K, is quasinilpotent: (K;— s ®p)™*! =0, where v,
is as in Lemma 4.1.
(ii) For each ¢ € E*, let

m

he= %(R(Ke))nH(Ke —5®)"s.

Then h; is an R(K;)-invariant. function for K, hy > 0 everywhere and h; is
bounded. Moreover, if

Qc(x, 4) = R(K)(he(2)) 'Ke(hL,)(x), x€8 A€,

then Q. is a Harris-recurrent Markov kernel with a unique invariant probability
measure ;.
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(iii) ¢ is Gdteaux differentiable (see, e.g., [6], page 23) on (E*, p*) and its
Gdteaux derivative at £ € E* is given by

(4.7) Do(¢)(n) = [(n, fYdy, meE*.

(iv) Assume that for every ¢ € E*, there exists z; € E such that (n,z;) =
JKn, f)dy; for all n € E*. Then ¢ is lower semicontinuous for the o(E* E)
topology. In particular, if E is a separable Banach and p is the norm on E, then
¢ is always w*-lower semicontinuous.

ProOF. (i) Since
(K- s®r)(x,A) = fe“’f(’»(vr - s ®v)(x, dy),
A

the assertion follows from the argument at the beginning of the proof of Lemma
4.1.

(ii) follows from Lemma 2.3.

(iii) We prove first: For all £, 7 € E*,

(4.8) sup |log h,(x) — log h,(x)| < (2m + 1)cp*(§ — n).

x€S

As in the proof of Lemma 4.1, we have

(4.9) e‘CP*(‘"")R(K,,) < R(K;) < eCP'(“")R(K,,),
e P (K —s®r) < (K;—s®w)"

(4.10) n n ncé*(e_ ) H i

<erPt-I(K —s®r)".

By (4.9) and (4.10),
e—(2m+1)cp*(€—n)h" < h£ < e(2M+1)0p*(€—n)hn

and (4.8) follows. We observe next that for any bounded g € &,
hi'Keg = p(£)Q(h'g),
where p(£) = (R(K,)) 'and for 0 <t <1,
Ke+tng = Ke(et(n,/)g).
Now, using the fact that p(§)h, = KA,
p(§+tn) —p(§) = hEI{P(f + tﬂ)(he - h€+tn) + Kg(he+tn - hé)
+K ([ = 1]he )}
= hg'p(6 + tn) (e — hyor) + p(g)Qe(hgl[hHm - hs])

+p(£)Qg(h£1[e‘<"”) - 1]h£+zn)'
Since v,Q; = ¥, taking into account (4.8) and integrating with respect to y; we
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get

p(¢+tn) — p(§) = p( + tn) [Rg (ke — hevsy) de
+p(§)/h{1(h£+m - he) d'Yg

+p(¢) [hg [ D ~ 1] kg, dy,

and, therefore,
-1
p(e+ ) = p(e) = [1 = 47 (he = hevsy) ]

xp(£) [(eX™ 1> = D)hithy,,y dy,.

By (4.8) and the dominated convergence theorem,

lim ¢~ [p(¢ + tn) = p(§)] = p(&) [¢n, 1) d¥.

Since |f(m, f) dv, < cp*(n), it follows that p is Ghteaux differentiable on
(E*, p*) and its Gateaux derivative is Dp(£)(n) = p(§)/(m, { ) dv,. Therefore ¢
is Gateaux differentiable on (E*, p*) and

Dg(¢)(n) = D(log p)(¢)(n) = (p(¢)) "0 (&) [<n, fydve= [(n, f)d¥

(iv) Since ¢ is Gateaux differentiable at £ and convex, it is subdifferentiable at
¢ ([6], page 23). If {£,},< 4 is a net converging to £ for the o(£*, E) topology, we
have

$(€.) 2 9(§) + (§.—§,2,),  liminfg(£,) 2 ¢(4).
a€A
This proves the o( E*, E) lower semicontinuity of ¢. If E is a separable Banach
space, then taking z; to be the Bochner integral [fdy, the assumption in
statement (iv) is satisfied. O

Corollary 4.3 complements Lemma 4.1 under an additional assumption. We
omit the proof, which is implicit in the proof of Theorem 5.1; one of the
ingredients is Lemma 4.2(iv).

COROLLARY 4.3. Suppose that w is a sub-Markov irreducible kernel with
atom s ® v, such that:

(i) m=>s®vwithv(s)>0,0<s<1.
(i) If v(A) > 0, then w(x, A) > 0 forallx € S.

Let E be a separable Banach space and let f be as in (4.1), where p is the norm
in E. Let ¢ be as in Lemma 4.1. Then ¢ is w*-lower semicontinuous.
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5. Lower bounds for large deviations. We consider first the case in which
the functional f takes values in a separable Banach space. In Lemma 5.1 the
lower bounds are obtained under certain assumptions which are later removed.
The proof rests on the results of Sections 2-4 and on some arguments from
convex analysis.

LEMMA 5.1. Suppose that © is a sub-Markov irreducible kernel with atom
s ® v, such that:

() 7m=>s®v,withv(s)>0and 0 <s < 1.
(i) If v(A) > 0, then w(x, A) >0 forallx € S.

Let E be a separable Banach space and let f and K, be as in (4.1) and (4.2),
where p is the norm in E. As in Lemma 4.1, let $(§) = —log R(K,), £ € E*.
Let A be the convex conjugate of ¢:

Mx) = sup [(¢,x) —¢(¢)], 2x€E.
§cE*
Then for any subprobability measure p on (S, &) and any open set G in B,

hmmf— log /p(dxo)fﬂ(xo, dx )f fvr(xn 2, dX,_ I)IG( nZ;Zlf(xj))

n— oo
—A(G),
where A(G) = inf, _ cA(u).

PRrROOF. Let 7 be the kernel on (S X N, & ® A7) constructed in Lemma 3.2
for K = 7 and the atom s ® ». By Lemmas 3.1 and 3.2,

(D) = [u(deo) fa(wo, @) [ -+ [l dxn—l)fa(%ngf ("f))

= [i(dz,) [#(z0,d2)) [ -+ fﬁ(zn_z,dzn-l)za(l"ilf"(zj)) = (1),

where i = p(3I.)) ® 8, + p(tl.)) ® 8, z; = (x;, ;) €S X N and f(z ) = f(x;).
Let K be the kernel on (S X N, ¥ ® ./V) constructed in Lemma 3.2 for K = Ké
and the atom s ® v;. Then it is easily checked that

K.z, A) = fe“"(w»v'f(z, dw), z€SXN,AeLRN.
A
By Lemma 3.2(iii),

(5.1) R(K,) = R(K,).

For m > 1, let #, (resp. K~$;m) be the kernel on (S XN, ¥® .4],) con-
structed in Lemma 3.3 for K = 7 (resp., K = K;). Then

K, .(z,A)= /e“’f(“’»ﬁm(z, dw), 2€SXN,,AcSRN,.
A
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By Lemmas 3.3 and 4.2, if we defineon S X N,
Bom= S (R(Re )" (Rem =50 5)'s
where 7 = ve(.§I(,)) ® 8, + ve(tI(,)) ®é,andon (S XN, ¥® A,,),

Qf m(z A) = (K~£ m)(hé m(z))_1K~€ m(h€ mIA)(z)

then @, ,, is a Harris-recurrent Markov kernel with a umque invariant probabil-
ity measure v; ,,. For fixed £ € E*, set p = (R(K; )", h="Ph; n, @ = Q; -
Then one may write

(5.2) 7n(2, A) = ph(z2) [ €1 (h(2)) "' Q(2, dw).
By (5.2), we have

(1) = [i(dz,) [Fnlz0,d2) [ - jﬁm(zn_z,dzn_ozc(% z )
= 0" [i(d2o)h(20) [Q(20,d21) [ -+ [Q(24 2, d2,-1)
XeXp( - <£,n§ f(zj)> )(h(zn—l))_lIG(% n%l f~(zj))

= (1I0).

Let a = inf,e<5 ), b = sup,h(2), f = (i(h))"E(hI,.,) and set C = ab™ Yi(h).
Then

(I0) > o [R(dz,) (@20, d2)) [ -+ [Qzn-s, dzn 1)

Xexp(_<§,n%1f~(zj)>)lc(%nglf.’(Zj)) -

= (IV).

For m>1 let ¢,¢) = —log R(Iff‘m), ¢ € E*, and let A, be its convex
conjugate, defined on E. Let u € G and assume A, (u) < co. Since A, is a
convex, proper, lower semicontinuous function, by a theorem of Brondsted and
Rockafellar [3] (see also [2], Theorem 3, page 262), given & > 0, there exists
v € G such that |\ (v) — A,(u)| < e and dA,,(v) is not empty, where JF is the
subdifferential of a function F (see [6], Chapter 1, Section 5). Let £ € dA ,(v);
since ¢, is w*-lower semicontinuous by Lemma 4.2(iv), the duality theorem for
conjugate functions ([6], Chapter 1, Propositions 4.1 and 3.1) implies that A%,
the convex conjugate of A, coincides with ¢,, and, therefore, by [6], Corollary
5.2, page 22, we have v € d¢,,(¢). By Lemma 4.2(iii), (iv) and [6], Proposmon 5.3,
page 23, it follows that

(5.3) v= ffd'yf‘m.
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Let @; be the Markovian probability measure on (S X N,,)V determined by the
initial distribution & and the Markov kernel @ = Q; ,,, where £ is chosen as
previously indicated. Let {Z,, j > 0} be the coordinate functions on (S X N ,)V.
Let V= {v' € E: [{§,v' — v)| <¢}. Then

(IV) = Cp"~* [(deo) [Q(z0,d21) [ -+ @24y, dz, 1)

Xexp( - < f:nilf"(zj)> )IGnV(":; nil f.(zj))
0 0

> Cp exp(n[logp — ((¢,v) + 8)])Qﬁ({71i "yo:: fz)eaGn V}

= (V).
Since G N V is an open set containing v, by Theorem A.3 and (5.3) we have

gl.

(5.4) ﬁp%({% T fz)ecn v}

j=0
By [6], Proposition 5.1, page 21,
(5.5) logp — (£&,0) = ¢,(§) — (§,0)
=A(0) 2 A, (1) — e
Now (5.4) and (5.5) imply

1 1
lim inf —log(I) > liminf zlog(V) > —A,(u) — 2¢

n— oo n—oo

and since ¢ is arbitrary, we may conclude: For each u € G and each m > 1,

(5.6) lim inf %log (M) = —A, ().
By (5.1) and Lemma 3.3, for every { € E*,
(5.7) on(¢) = —log B(K; )1 — log R(K;) = 6(£).

The assumptions of Theorem B.3 are satisfied: By Lemmas 4.1 and 4.2, ¢, is
convex, proper (in fact, real-valued) and w*-lower semicontinuous. From the
Lipschitz property of ¢, it follows that

¢:1(§) 2 ¢,(0) — cllfll, € E*,
and ¢(0) = —log R(7) < 0, so ¢ is proper. By Theorem B.3 and (5.7) there exists
a sequence {u,,} € E such that ©,, » © in E and
(5.8) limsupA ,(u,,) < AM(u).

m— oo
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It follows from (5.6) and (5.8) that for every u € G,

lim sup —log @M = —A(u).

n—o0

This concludes the proof. O

Lemma 5.2 is a slight modification of a technique in [5], page 412. It will make
it possible to drop some of the assumptions in Lemma 5.1.

LEMMA 5.2. Let 7w be a sub-Markov kernel on (S, &). For 0 < t < 1, let

=(1-¢t)n i‘ (tr)’.

J=0

Let {1;: j > 1} be a sequence of independent random variables, eack geometri-
cally distributed with parameter (1 — t),

P({r,=k})=Q-t)tF"Y, k=1,2,...

Assume that ¢ = sup, cg|| f(x)|| < co. For G open in E, ¢ > 0, let G, = {x € E:
d(x, G<) > €.
Then for every subprobability measure p on (S, &),

[u(dy) [7 30 @) [ -+ [1 300 dyn_l)la,(%'glf(yi)
< [ldso) [m(xg, dx) [ -+ jw(xn_z,dx,,_l)za(% e )

+P({ (rp+ - +n) 21+ 2%})

ProoF. Let F: S™ - R*, measurable. We have

Juayo) 730, ) [ -+ [ 3 B )F (o1 at)

it

) (ﬂ (1= 2)en” l)fu(dyo)fwf‘(yo,dyl

jlv"‘r.]n 1*1
(5.9) X [ oo [ (Yusgy ) F (05 es Y
= Z P({Tl=ji?""’rn—1 =jn—1})_/l"‘(dx0)
jlr'-'vjn—-l=1

var(xo,dxl)f f'”(xkn_,—l’dxk,,_,)F(xO’xhl’“"xkn_,)7
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where k,=X!_,j for I > 1.
Let I={0,1,...,n—1}, J = {0, ky,..., k,_,}. Then

(5.10) card(Iad) < 2(k,_, —n+1).

For, clearly J ~ I C[n,k,_;]NN and therefore card(J ~I)<k, ,—n+1 '
Since card(I ~ J) = card(J ~ I), (5.10) follows. Next, by (5.10), setting &, = 0,

”%'fgf(xk,)—%gf(xi) S i) - X ()

jeJ~1 jel~d
(5.11) < ;card(IAJ)
2c(k 1)
<— -n+1).
n n—1 n

Let A = {(Ji,---s Jo1): J; =1 and 2c/n)E!SY; — n + 1) > &}. Then for any
(xoy xl, cecy xk ), (]1’ L] Jn 1)’ by (5 11)’

610 1[5 T o) < Jo| 5 5 100+ LG o)
Let F(%,---» Y1) = Ig((1/n)Z5 " 'f(5))- By (6.9) and (5.12),
] 1 n—1
f#(dyo)fﬂt(ym dyl)f f"t(yn—fb dyn—l)IG,(; igo f(yi))
< [u(ds,) [n(xo, dxy) [ -+ [, s, dny)

1 n—1

x|~ ¥ f(xj))ff""“‘”“(xn_ps)
0

o0

+ Z P({"'l =j1"“’7n—1=jn—1})IA((j1""’ jn—l))

jln..rjn—l-_-l

< [u(dso) [n(xe, dx,) [ - [m(xa s, dx,,_ozc(%"glf(x,-))

1 €
—_ + ... —_— .
P({n('r1 +1,) =21+ 20}) ]

The next lemma is taken from [5], page 413. The proof is elementary.

LEMMA 5.3. Let {1, j = 1} be as in Lemma 5.2. Then for every § > 0,

1 (1
lim lim sup ;logP({;(q-l FoedT) =1+ 3}) = — .

20 pooo

We come now to one of the main results of the paper. In its statement, P, will
denote the Markovian probability measure on SN determined by the Markov
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kernel 7 and the initial distribution p, and {X}, j >0} will be the coordinate
functions on SN.

THEOREM 5.4. Suppose that = is an irreducible Markov kernel on (S, &).
Let E be a separable Banach space; f: S = E a bounded measurable map.
For each & € E*, let '

Ki(x, 4) = [e®/n(z,dy), (&) = ~log(R(K,)).

Let A\ be the convex conjugate of ¢:
AMx) = sup [(§,x) —#(¢§)], =x€E.
¢€sE*

Then:

(i) Mu) =0 forallu e E.

(ii) For every probability measure p on (S, &) and every open set G,
1 n—1

[+ Eix) <l
n 2o

1
lim inf ;logP” > —A(G),

n—oo

where A(G) = inf, . sA(u).

ProoF. The first assertion follows at once from the fact that ¢(0) < 0, which

is proved as in Lemma 4.1.
Let u € G and assume A(u) < co; otherwise there is nothing to prove. Choose
and fix € > 0 so that u € G.. For =, as in Lemma 5.2, let

A,(t) = [u(ds,) [n(x0, dx)) [ -+ [mx, s, dx)f(% "glf(x,.)),

B(t) = p({%(fl b)) 214 ;—c})

where ¢ = sup, cg|| f(x)|| and {7, j > 1} are as in Lemma 5.2. By Lemma 5.2, we
have for any 0 < t < 1,

li 'fll P Ly X G
imint ~10g 2| T 1(x) < 6]

n— oo

1
= liminf ;logfp(dxo)fvr(xo, dx,).

n— oo

(5.13) L n1
Xf fﬂ‘(xn—m(ixn—l)IG(; %: f(xj))

1
> liminf ;log[An(t) - B,(t)]".

n— oo
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By Theorem 2.1 and Remarks 2.1(i), (ii) of [12], the kernel =, satisfies assump-
tions (i) and (ii) of Lemma 5.1. Applying this lemma, for any 0 < ¢ < 1,

1
(5.14) lim inf ;log A (t) = —A,(u),

n—oo

where A, (u) is the convex conjugate of ¢,(¢§) = —log R(K, ,) and
K, (x,A) = fe“‘f(y»ﬂ,(x, dy).
A

Since 7, > (1 — t)=, it follows that K, ,> (1 — ¢)K; for all { € E*. Therefore,
R(K;,) < (1-¢)7'R(K,),
(5.15) ¢(€) = ¢(£) + log(1 — 1),
A(u) <A(u) —log(1 - ¢t).
Given 1>6 >0, by Lemma 53 we may choose 0 <¢<1 such that
—log(1 — t) < 8 and

1
lim sup ;l-loan(t) < —(A(u) +2).

n— oo

Let n, = ny(t) be such that n > n, implies B(t) < e-*®+bn By (5.14) and
(5.15), we may choose n, = n,(t) such that n > n, implies

A(t) 2 e+,

B,(t)
1—A4w”

Then for n > max{n, n,},

1 L1
~log[4,(£) - B,(8)] "= ;mg[An(t)

1 1
> —log A,(¢) + —log(1 — e~ ~%m)
n n
and therefore by (5.14)

1
lim inf ;log[An(t) - B,(t)] = —(A(u) + 8).

n— oo

By (5.13), it follows that

lim inf %IOgPI‘({%nilf(Xj) € G}) > —(AMu) +9).

n—oo

Since § is arbitrary, the proof is complete. O

In the next two results the space E is endowed with a weak topology.
Theorem 5.7 actually includes Theorem 5.6, but it seems clearer to state them
separately.
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DEFINITION 5.5. We shall say that the real vector space E and the func-
tional f: S — E satisfy condition (w) if:

(i) E is endowed with the o( E, F') topology, where F is another real vector
space in separating duality with E.
(i1) There is a norm p on E, stronger than o(E, F).
(iii) There exists a closed convex subset E, C E, such that the o(E F)
topology on E, is Polish and p|E, is measurable
@iv) f(S) c E1 and f is measurable.

Assumptions (iii) and (iv) provide one possible way of avoiding measurability
problems. Notice also that (E, o(E, F))* = F.

The following is an important example of the situation depicted by Definition
5.5. Let S be a Polish space; E = #(S), the space of finite signed measures on
S; F = Cy(S), the space of bounded continuous functions on S. Then the natural
bilinear form (g, p) = /g dp defines a separating duality for the pair (E, F). Let
E, = #7(8S), the space of probability measures on S; then it is well known that
the o(E, F) topology on E, is Polish. Let p =|| - ||,, the total variation norm.
Finally, let f: S — E, be defined by f(x) = §,. This example will allow us to
apply Theorem 5.6 to the case of occupation times in Section 6.

The proof of Theorem 5.6 is close to that of Lemma 5.1 and Theorem 5.4, but
somewhat more elementary, since the deeper convex analysis arguments are
carried out in a finite-dimensional space.

THEOREM 5.6. Suppose that « is an irreducible Markov kernel on (S, &).
Assume that the vector space E and the functional f: S — E satisfy condition
(w) and that f is p-bounded.

Define K, ¢, A as in Theorem 5.4. Then statements (i) and (ii) of Theorem 5.4
hold, where G is now a o(E, F')-open subset of E.

Proor. We will indicate the necessary modifications in the proofs of Lemma
5.1 and Theorem 5.4.
Statement (i) is proved as in Theorem 5.4.

1. We first retrace the proof of Lemma 5.1. Defining (I)-(IV) and arguing as
in Lemma 5.1, we have

(5.16) (1); ).

Now let T: E - R¢ be a continuous linear map. Let U be an open set in R¢
such that T-%U) c G. For m > 1 let ¢,, be as in Lemma 5.1 and define

on,r(@) = ¢(T()), @€ (RY)",

where T": (R¢)* — E* is the transpose of T, that is, T"(a) = aoT. Let A,
R - R be the convex conjugate of &p, - Let u € U and assume A, r(u) < co.
By [14], Theorem 23.4 (or by [2] Theorem 3, page 262), given & > 0 there exists
v € U such that |, r(v) = A, r(u)| <e and JA, 7 is not empty. Let a €
dA,, r; then by [14], Theorem 23.5 (or by [6], Corollary 5.2, page 22) we have
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v € 3¢, r(a). From Lemma 4.2(iii) it easily follows that ¢, r is Gateaux

differentiable everywhere (hence, by Theorem 25.2 of [14], even Fréchet differen-
tiable) and

D¢m,T(a) = f(To f~) dYT'(a),m‘

Now by Theorems 25.1 and 25.2 of [14] (or by [6], Proposition 5.3, page 23) we
have

(5.17) v= f(T° f~) A1 (a), m-
Let V= {v' € R% |{a, v' — v)| < &}. Then taking in (IV) § = T"(a), we have

(V) = Co** [[i(dzo) [Q(zo, d2)
Xf e fQ(zn—2’ dzn—l)exp(_ < a,"il T( f~(21))>)

(5.18) XIT"(UnV)( Z f(z ))

> Cp" 'exp(nflogp — ({a, v) + e)])Ql—‘({ : nZlT( (Z )) eUn V}

Jj=0
= (V).
By [14], Theorem 23.5 (or by [6], Proposition 5.1, page 21),
logp — {a,v) = ¢, r(a) — (a,0v)
=M, r(v) =X, r(u) —e
Now by (5.16)—(5.19) and applying Theorem A.3 as in (5.4), we have

(5.19)

1 1
liminf —log(I) > liminf —log(V) > —A,, (1) — 2e.
n— oo n—oo n
Since ¢ is arbitrary, we may conclude: For each T: E — R¢, for any open set U
in R? such that T-U) c G and any u € U, for any m > 1,

1
(5.20) lim inf ;log(I) > =N, r(u).

As in Lemma 5.1, if ¢,(a) = ¢(T"(a)) we have for each a € (R9)*,
(5.21) qu’T(a) T or(a).

The assumptlons of Theorem B.3 are easily seen to be satisfied. Observe that in
this case ¢, T is continuous on (R%¢)*. By Theorem B.3 (we could invoke at this
point the easier finite-dimensional case of this result; see references in [9] and
[1]) and (5.21), given u € U, there exists a sequence {u,} C R? such that
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u, — uand
(5.22) limsupA,, r(u,,) < Ap(u),

m— o0
where A is the convex conjugate of ¢,. It follows now from (5.20) and (5.22)
that .

1
(5.23) lim inf ;log(I) > —Ap(u).

n—oo

Finally, since G is o(E, F')-open, given x € G, one can find a continuous linear
map T: E — R¢ (for some d € N) and an open set U C R? such that x €
T-YU) c G. Then

Ar(T(x)) = sup [(B,T(x)) — ér(B)]

Be®?)*

S\;p KT'(B), x) — o(T"(B)]

sup [(n,x) — o(n)] = A(x).

(5.24)

IA

Putting now u = T(x), we have from (5.23) and (5.24),

1
lim inf ;log(I) > —A(x).

n— oo
2. We retrace now the proof of Theorem 5.4. Let G be a o( E, F)-open subset
of E. For D finite, D C E*, let

pp(u) = sup(§,u)l,  Gp={ucE: inf py(u—ro)>1}.
¢eD veG®

Then it is easily verified that G, is o(E, F)-open and UG, = G. Let ¢ =
sup, c sP(f(x)) and d = sup; c ,p*(£). Then

Sung( f(x)) < cd.

Let A,(t) [resp., B,(t)] be defined as in Theorem 5.4, but with G, instead of
G, (resp., with 1/2cd instead of ¢/2c). Then by an obvious modification of
Lemma 5.2, we have as in Theorem 5.4: For any 0 < ¢ < 1, any finite D C E*,

1 11 1
liminf —log P, {— Y (X)) e G} > liminf —log[A,(¢) — B,(¢)] .
Given u € U and choosing D so that u € G, we have, by part 1 of the present
proof,
1
liminf —log A,(¢) > —A,(u).
n-oo N

The rest of the proof is completed as in Theorem 5.4. O

The next result extends Theorem 5.6 to the case when f may be unbounded.
We need, however, an assumption ensuring that the kernel «, when truncated to
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suitably chosen sets of boundedness of f, remains irreducible.
In the context of Definition 5.5, we shall write B, = {x € E: p(x) < r).

THEOREM 5.7.  Suppose that = is an irreducible Markov kernel on (S, &).
Assume that the vector space E and the functional f: S — E satisfy condition
(w). Assume furthermore: There exists a positive sequence {r,}, r, 1o, such
that for each k > 1, m, is irreducible on (S,, &,), where S, = f “NB,), =
(A€ AcCS,} and mx, A) = n(x, A), x €S, A €,. Then the conclu-
sions of Theorem 5.6 hold.

ProoF. It is clear that the proof of Theorem 5.6 is still valid for a sub-Markov
kernel and an initial subprobability measure. Let G be o(E, F)-open and let T:
E — R? be a continuous linear map, U an open subset of RY such that
T-U) c G.

Setting p,(A) = p(A) for A € &, we have for any u € U:

1 1 n-1
liminf —log P,| { — ) f(X;) € G
n n 2

n— oo

> lim llog/u (dx )fw(x dx,)
_n—'oon k 0 R\ 0» 1

X/ /"Tk(xn—z’dan)lu(%n%lT( f(xj)))

= —Ap h(u),
where A7 ,: R? - R is the convex conjugate of or, (@) = o(T (@), a € (RY)*,
9x(§) = —log R(K, ;) and K, ,(x, A) = [,e* /g, (x, dy). By the irreducibil-
ity of m, and Lemma 4.1(i), K, , is irreducible on (S, &#,). By Theorem 2.1, for
all a € (R9)*,

or, (@)1 ¢p(a),
where ¢r(a) = ¢(T'(a)). It is easily verified using Lemma 4.1 that the assump-
tions of Theorem B.3 are satisfied for {¢ ,, 2> 1} and ¢,. Applying that
theorem, it follows that for u € U there exists a sequence {u,} C R¢ such that
u;, = u and
limsupAr ,(u,) < Ap(u).
k— o0 ’
Clearly we have now
2. _AT(u).

1 1 -1
liminf —log P, {— Y (X)) e G}
nooo I n 2

The proof is finished as in part 1-of the proof of Theorem 5.6. O

REMARKs. 1. It appears that a result along the lines of Theorem 5.7 in the
case when E is a separable Banach space should be true. There are, however,
some technical difficulties in the application of Theorem B.3.
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2. As mentioned in the Introduction, if we take E = R¢ in Theorem 5.7 we
obtain Theorem 1 of [11] in the case of a functional of a Markov chain. Note,
however, that we do not need the minorization condition required there. On the
other hand, it appears that the assumption on the truncations of = is needed and
should be added in [11].

6. Occupation times. In this section we show how a basic result of Donsker
and Varadhan ([5], Theorem 3.3) on lower bounds for large deviations of
occupation times of a Markov chain taking values in a Polish space may be
derived from Theorem 5.6. In fact, we relax to some extent the absolute
continuity assumption in [5] (see Remark 1 following Theorem 6.3).

We shall use the setup described in the example following Definition 5.5.

The first lemma gives a useful alternative expression for the I-functional of
[56]. We recall its definition: For p € #7(S),

I(w) = sup flog— ) d,

uex

where % = {u € &: u is bounded and inf, . qu(x) > 0}.
LEMMA 6.1. Define for p € #7(S),

I'(p) = sup{/log( )dp. u€,u> 0 everywhere,

— — . 1
p({u=}) =0, (log( wu)) el (u)}
Then for all p € #7(S),
I'(p) =I(p).
Proor. If u € %, then log(u/mu) is bounded. Hence for any u € #7(S),

I(p) < I'(p).
To prove the opposite inequality, let §, > 0, §, | 0, and define

t) = +§, teRT,
¢u(t) 1486, n

o (+0)=8;"'+39,.

Then it is easily seen that ¢, is increasing, concave, 8, < ¢,(¢) <8, + 8, ,
lim,¢,(t) = t for £ € R*. We claim now: If u € &, u > 0 everywhere, then on
{u < o}

6.1 log % [1 - ]_
(6.1) ng(¢nou) Og(ﬂu) )
First we observe that by Jensen’s inequality, for every x € S,

(6.2) (9,0 u)(%) < ¢, (7u(x)).
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Suppose 7u(x) < u(x) < . Then by (6.2),
ou(ux) _ o (u(x)
m(dpou)(x) — ¢(7ulx)) —

proving (6.1) in this case. If u(x) < 7u(x) = oo, then (6.1) is trivial. If u(x) <
7u(x) < oo, then by (6.2)

0u(u(x) _ ou(u(x)
m(pou)(x) — u(mu(x))
(1 + 8,u(x)) u(x) + 8,(1 + 8.u(x))]
(1 + 8,7u(x)) [ru(x) + 8,(1 + 8,7u(x))]
u(x)(1+82) + 8,
“ ru(x)(1+82)+3,
u(x)
> T(x)
To justify the last step, observe that if 0 < a < b < oo, then A(¢) = (a + t)/
(b + t) is increasing on R *. This completes the proof of (6.1).
Now let u € &, u > 0 everywhere, p({z = o0}) = 0 and [log(x/7u)]"€ LY(p).

Let u, = ¢,°u; then u, € %. Moreover, u, - u and it easily follows that
7u, — wu. By (6.1) and Fatou’s lemma,

n un u
I(p) > liminfflog( )d,uz jﬁminflog(w )dp=/log(~—u-)du.
T

u
n—»o00 U, n— o n

It follows that I(p) > I'(p). O

For the next lemma, we recall ([12], page 8) that a set F € & is n-closed if
7(x, F¢) = 0 for all x € F.

LEMMA 6.2. Let F be w-closed, and assume: There exists n > 1 such that for
all x € F¢, #™(x, F¢) = 0. Suppose p(F€) > 0. Then I(p) = oo.

ProOOF. Let a > 0, 8 > 0 and define u = aly + BIg. Then for & > 1,
(7*u)(x) = an®(x, F) + Br*(x, F°).
Let m = min{k: p({x: 7**(x, F¢) > 0}) = 0}. Observe that m exists, since
{x: 7#™(x, F°) > 0} is empty, m < n — 1, and p({x:. 7™(x, F°) > 0}) > 0. We
have, since (7*u)(x) =aforx € F, k > 1,
7"u ‘ ar™(x,F) + Bn™(x, F°)
1 =11
./ og( a(7™u) ) du -/;'c og[ a

Now clearly p(F°N {x: #™(x, F°) > 0}) > 0. Taking a =1 and B arbitrarily
large, it follows that I(p) = c0. O
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In the next result, B, and {X;, j > 0} will be as in Theorem 5.4. {L,} is the
sequence of occupation ‘times of the Markov chain {X;}: For w € SV,

Lo, 4) = = T 1,(X(w).

Jj=0

THEOREM 6.3. Suppose that (S, &) is a Polish space with its Borel o-alge-
bra and that = is an irreducible Markov kernel on (S, ). Suppose also that the
following condition is satisfied: For every w-closed set F, there exists k > 1 such
that 7%(x, F°) =0 for all x € F°. Then for every probability measure p. on
(S, &) and every weakly open set G € M7(8S),

liminf —logP({w L (w,*) €G}) = -I(G),

n-—oo

where I(G) = inf, . ;I(v).
Proor. We apply Theorem 5.6 to the setup described following Definition
5.5. Let f: S — A7 (S) be defined by
f(x) =8,.
Then f is a continuous map and for all w € SN,
-~ 2: (X)) = Ly(e, ).
j=0
By Theorem 5.6, for every ve G,
lim inf —logP({w L(w,:) € G}) = =A(»).

n—o
The result will follow if we can prove: For every » € #7(S),

(6.3) A(v) < I(v).
Let g € Cy(S), K (x, A) = [45Pn(x, dy) and ¢(g) = —log R(K ). Let p <
R(K,) and let s be a small function ([12], page 15). Then if
(o]
u= Y p"KJs,
0
u < oo on a 7-closed set F ([12], Definition 3.2). Moreover, u > 0 everywhere by
irreducibility. Let v = efu; then
m=Ku=p""(u-s).

It follows that o, 7o > 0 everywhere and v, 7v < o on F. Next, on the set F,

6.4 1 ° 1 efu ‘+l
. —_— = > .
( ) Og(wv) 'og '1(u ) =8 og p

Let » be such that I(v) < c0. Then by Lemma 6.2, »(F°¢) = 0. It follows from
(6.4) that [log(v/mv)]~€ LY(») and

flog( )dv > fgdv + logp.
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By Lemma 6.1,
I(v) = I'») 2 [gdv + logp,
and therefore
I(») > fgdv - ¢(8).

Since g was arbitrarily chosen in C,(S) and Cy(S) = (A(S), o(A(S), C(S)))*,
(6.3) follows. O

REMARKS. 1. The condition in Theorem 5.3 holds if there exists ¢ € #(7)
such that =(x,-) < ¢ for all x € S. For, if F is w-closed, then ¢(F°) = 0 ([12],
Proposition 2.5) and, therefore, #(x, F¢) = 0 for all x € S.

2. Another approach to large deviations for occupation times of Markov
chains, different from that of [5] and that of the present paper, is presented in
Stroock [17]. However, in this work a very strong assumption is imposed on the
kernel «; as a consequence, the lower bounds are uniform with respect to the
starting point.

7. Some remarks on the spectral radius of K; and upper bounds. Let 7
be a Markov kernel on (S, #). Let E be a locally convex Hausdorff topological
vector space, and let f: S — E be measurable. Let B(S) be the space of
real-valued bounded measurable functions on S, with the uniform norm. Assume
that for all £ € E*,

supK,(x,8) < co.
x€S
Then K, defines a bounded operator on B(S), which we will still denote K. The

spectral radius of K, will be denoted r(K,) and we define ¢(§) = log r(K;),
¢ € E*. It is easily seen that

(7.1) (r(KE))_1 = sup{r > 0: ir"”K{'n < oo}.
0

Suppose also that = is irreducible. Then by the definition of the convergence
parameter ([12], pages 27 and 28) and (7.1), it is clear that (r(K,))™' < R(K,)
and, therefore, for all £ € E*,

(12) 8(6) < ¥(0).

In general, there may be strict inequality in (7.2). In fact, this will be typically
the case if S is infinite. Roughly speaking, the convergence parameter of a kernel
K (when it exists, that is, for irreducible kernels) measures the pointwise growth
of the powers K ", while the inverse of the spectral radius measures the uniform
growth of {K"}. An example of an irreducible countable Markov matrix =, for
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which (r(m,))"' =1 < R(m,) may be found in [16], page 208. Then we have
$(0) < 0 =¢(0).

In [4], upper bounds for large deviations of vector-valued functionals of

Markov chains were obtained in terms of ¢*, the convex conjugate of { (defined
on E), without the assumption of irreducibility. For lower bounds and under the
assumption of irreducibility, it appears by the results of [11] and of the present
paper that the proper rate function is given by ¢*. One important reason for this
is the continuity property of the convergence parameter given by Theorem 2.1, a
property not possessed by the inverse of the spectral radius. It is natural to ask if
(7.3) P* = ¢*.
When # is irreducible, this equality means that the rate function for upper
bounds in [4] coincides with the rate function for lower bounds in the present
paper. Let us observe that (7.3) does not contradict possible strict inequality in
(7.2), since for a proper convex function A: E* — R the equality A** = h holds
if and only if & is o( E*, E)-lower semicontinuous ([6], Propositions 4.1 and 3.1).
It follows from (7.2) that for all x € E,

(7.4) P¥(x) < ¢*(x).

In general, (7.3) is false. In fact, let =, be as before (so S = N) and let
f: N - R9 be bounded. We know by Lemma 4.1 that ¢ is a continuous, proper
convex function on (R%)* and it is not difficult to show that y has the same
properties. If (7.3) were true, then the duality theorem for conjugate functions
would imply

. ¢ =o¢* =y =4
in particular, ¢(0) = ¢/(0), which is false.

One important situation in which (7.3) holds is the case of occupation times.
We use the setup described following Definition 5.5. In this case we have: If = is
a Markov kernel on a Polish space S and = is Feller, irreducible and satisfies the
assumption in Theorem 6.3, then for all » € .#Z(S),

(7.5) ¥*(v) = ¢*(»)
and if » € #7(S), then the common value is I(»). In fact, by [4], page 562, or
[17], page 134, we have I(») < ¢*(») for any » € #7(S). On the other hand, by
(6.3), o*(v) = A(») < I(»). Using (7.4), it follows that (7.5) holds for » € #7(S).
If » & #7(S), then by [17], pages 133 and 134, we have y*(») = o, so in this
case (7.5) again follows from (7.4).

In [11] upper bounds in terms of ¢* are obtained in the case f: S - R? (more
generally, for Markov additive processes) under restrictive conditions.

Taking into account these observations, we close by stating two problems:

1. Find conditions under which ¢* = ¢*.
2. Prove a general upper bound result for vector-valued f and irreducible 7 in
- terms of ¢*, relaxing the assumptions in [11].

A quantity introduced in [17], page 143, is relevant to these questions, or
variants thereof.
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APPENDIX A.

The ergodic theorem for vector-valued functionals of a Markov chain.
Given a Markov kernel 7 and a probability measure p on (S, #), let P,
{X,, n > 0} be as in Section 5.

DEFINITION A.l. 7 is Harris-recurrent if there exists a o-finite measure
¢ #0 on (S, %) such that B €%, ¢(B) > 0 implies P({X, € B infinitely
often}) =1 forall x € S.

It is well known (see Revuz [13], Chapter 3, Section 2, or Nummelin [12],
Sections 3.6 and 5.2—the notions of Harris recurrence in the two books are
superficially different but in fact equivalent) that if = is Harris-recurrent, then it
has a o-finite invariant measure, unique up to multiplication by a positive scalar.
Of course, if 7 is Harris-recurrent and has a finite invariant measure, then it has
a unique invariant probability measure.

The following result is a particular case of Theorem 3.6 of Revuz [13], page
123.

LEMMA A.2. Suppose w is Harris-recurrent and has an invariant probability
measure y. Then for every g € LS, &, v),

1 -1
lim — X;)= |gdy, P-a.s.,
nl.n:onjgog( ’) fg Y wa-s
for any probability measure p.

The next result generalizes Lemma A.2 to separable Banach spaces. The
method of proof is well known (see [7], page 131 and [8]).

THEOREM A.3. Let w be as in Lemma A.2 and let E be a separable Banach
space. Then the conclusion of Lemma A.2 holds for every g € LXS, &, v; E).

ProOF. First assume that g is an E-valued simple function, g = £} x,1,,
A, e, x;€E,i=1,...,k Then by Lemma A.2,

1 n-1 k 1 n-1
W Zg(Xj) = Yx|- X IA,(XJ')
(A1) j=0 i=1 | j=0
& .
- Y x;|I,dy= |gdy, Pras.
LxifLdv= »

Now let g € LY(S, <, v; E). By [10], pages 101-102, there exists a sequence {g,}
of E-valued simple functions such that for & > 1,

lg <llgl, &, —& pointwiseand [llg — gilldy < &\,
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By Lemma A.2, for each & > 1,
1 n-1
(A2) o Zle-8)(X)I~ fls-eddv,  Pas.
j=
By the triangle inequality,

n—1 n—1
LS|« e

1 r-1
;jgogk(Xj) - fgk dy

+“fgkd7—fgdv“.

Fixing k and letting n — o0, by (A.1) and (A.2) we have

n—1
limsup || — Y &(X;) — /gdy <2k7!', Pas.
n—oo n Jj=0

Since & is arbitrary, the result follows. O

APPENDIX B.

A property of the Fenchel transform. Given a dual system (V, W) of real
vector spaces, the Fenchel transform is the map which assigns to each g: V- R
its convex conjugate g*: W — R, defined by

(B.1) g*(w) = sgl‘),[<v,w> -g(v)], wew

Mosco [9] (see also Attouch [1], Chapter 3) has established a continuity property
of the Fenchel transform in the case when V is a reflexive Banach space and W is
its dual space; this result, however, is not suitable for our needs in Lemma 5.1.
We shall prove in the following text a continuity property which is well adapted
to our purposes; in this result, given a separable Banach space E, we take
V = E* endowed with the w*-topology and W = E. Our proof consists in
suitable variations of arguments in [1], Section 3.2.

LEMMA B.l. Let E be a Banach space. For given a € R, b>0, ¢ >0,
define g: E* - R by

g(¢) = a— blig| + (c/2)181°, &€ E*
Then
2
S5) = —a + (||x||2t b
| ProoF. Fix x € E. Then for £ € E*,
(& xy — g(&) <INzl — a + Bl&ll = (c/2)I1]17

= —a+ (lll + B)IEN - (c/2)N412.
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Hence
g*(x)
(B.2)

sup [(6 %) —&(&)] < sup [—a+ (el + )t = (e/2)¢°]

+b)?
+ (Il ) .
2¢c

On the other hand, by the Hahn-Banach theorem there exists £ € E* such
that ||| = 1 and (§,x) = ||x||. Let ¢ = (||x|| + b)/c. Then a simple calculation
shows that

(Il + b)°
+ —.

(B3) (thx) - g(t) = —a + =

The assertion follows from (B.2) and (B.3). O

LEMMA B.2. Let E be a Banach space. Let g be a convex, proper, w*-lower
semicontinuous function defined on E*. Define, for ¢ > 0,

£.6) = 8(&) + I,
Then

g2() = int (&) + oolw ot} e
Proor. Let
h(x) = 1nf { *(y) + %Hx - y||2}, x€E.
The function g* is convex, proper and lower semicontinuous (see [6], Chapter 1,

Sections 3 and 4). By [1], Proposition 3.3, page 266, for all £ € E*,
h*(§) = g**(£) + (c/2)1811°

The assumptions on g and the duality theorem for the Fenchel transform (see
[6], Proposition 4.1, page 18 and Proposition 3.1, page 14) imply that g** = g.
Hence h* = g, and therefore g* = h**. Now the conclusion will follow by
another application of the duality theorem if we can prove that A is convex,

proper, lower semicontinuous.
(i) A is convex. In fact, let x, y€ E, a > 0, 8 > 0 with a + 8 = 1. Then for
all v,w e E,

1
g*(av + pw) + —llax + By = (av + pw)|®
1
< ag*(v) + Bg*(w) + o[ allw — ol* + Blly - wii’]

g (w) + 1y — w]?
2¢

1
* + R _ 2
< alg*(v) 9ol — ] +8
and, therefore, h(ax + By) < ah(x) + Bh(y).
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(ii) A is proper. In fact, if g(£,) < oo, then for any x, y € E,

1
* _|_ —_— —_ 2
g*(y) galx =l

1\

1
(B.4) (§o, ) — 8(&) + 22l = yII?

\%

1
—8(&) + (&0, %) — lI€oll llx — ¥Il + 2al® ~ yI%

which implies A(x) > —o0. Also g*(y) < o for some y € E and, therefore,
h(x) < o forall x € E.

(iii) A is lower semicontinuous. In fact, assume x, - x in E. If
liminf, |, _h(x,) = o, there is nothing to prove. Otherwise, we may assume that
L = sup,h(x,) < . Choose {y,} C E so that

1
(B'5) g*( yn) + _2_c||xn - yn||2 < h(xn) + g,
where ¢, | 0.
Now (B.4) and (B.5) imply
a = sup|jx, — || < co.
n

Next, for any ¢ > 0,

1 1 \
h(x) < 8°(3) + oollx = 3l < 8*(3) + 5= (lx = 2,01+ 1%, = 3,)
1 &’ 1 1
<8 () + =%y — 22+ I, — 2ll> + — (1 + 5 |llx — x,]12
8°(0) + golltn = 2l + iy = 3l + 5[ 1+ 5 e =
2

1 1 1 .
—a+ —|[1+ = |llx — x,/12
2ca 2c &’ e =

Therefore h(x) < liminf, _, h(x,) + (¢2/2c)a. Since ¢ is arbitrary, the conclu-
sion follows. O

< h(x,) +e,+

THEOREM B.3. Let E be a separable Banach space. Let g,, n > 1, and g be
functions from E* into R, such that:

(i) For n > 1, g, is convex, proper, w*-lower semicontinuous (w*-1.s.c.).
(ii) g, 1 & pointwise and g is proper.
(iii) There exist constants a € R, b > 0 such that for all £ € E*,
& (%) = a - blié|l.
Then for every x € E, there exists a sequence {x,} C E such that x,, > x and
limsup, _, &7 (x,) < 8*(x).

ProOF.

CLAM 1. Assumptions (i) and (ii) imply: If £ = w*-lim ,£,,, then
&(§) < liminfg,(£,).

n—oo
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To prove this claim, let 4" be the w*-neighborhood system of £. Then
&(¢) = supg,(£)
n

sup [ sup 1nf gn(n)] (by the w*-ls.c. of g,,)
n LVewn

sup sup inf gn(n)
Ve# n 7€

sup liminf inf gn(n)
Vet n—oowo M€

If g(¢) < oo, then given ¢ > 0, there exists V, € 4" such that
(B.6) g(¢) < liminf in{/gn(n) + e

n—oo MEYVe

Choose n, such that £, € V, for n > n,. Then for n > n,,

inf g,(n) < &,(¢,)
nev,

and, therefore,
liminf inf gn(n) < liminfg,(£,),

n-ow M€ n— oo

which together with (B.6) yields
g(¢) < liminfg,(&,) + &.

n—oo

But ¢ is arbitrary. This proves the claim in the case g(£) < oo. The case
8(§) = o is similar.

CLAIM 2. For fixed ¢ > 0, define on E*

£on() = £(8) + SIS 88) = 8(6) + SIEI”

Then for all x € E,
limg? ,(x) = (x).
To prove this claim, we first observe that, since g, 1 g, we have g, ,1 g, and

{gX,) is a decreasing sequence of functions on E. From assumption (iii) and
Lemma B.1 it follows that for all x € E,

(ll=ll + &)°
—_— <
2c¢ |
Also, from the fact that g is proper it follows that for all x € E,
8kn(x) 2 gX(x) > -

Fix x € E and let [ =lim,g* (x). Then /€ R and !> g*(x). To prove the
opposite inequality, let {{,} € E* be such that

<§n’x> - gc,n(gn) 2g(.,":n(x) — &

g2a(x) <g2:(x) < —a+
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where ¢, | 0; then (§,,x) — g, ,(§,) = l. By assumption (iii), for n > 1,

(s ) = Born(£a) < (£ ) = @ = Bl + S

and, therefore, {£,} is bounded. By the Banach-Alaoglu theorem (and the
separability of E), there exist a subsequence {£,,} of {{,} and a point §{ € E*
such that w*-lim,§, = £ Then by Claim 1,

C
g4¢) < liminfg, (£, ) + - liminf|¢,,|*
k— o0

k— oo

< lim infgc, nk( g'lk )

k— oo

l= lim [<£n 9x> _gc nk(gnk)]

< liminf(¢,,, ) + hmsup[ 8o nlé0,)]

k—

< (& x) —8é)
< gX(x), proving Claim 2.

and, therefore,

Next
supg*(x) = sup sup [(£, x) — g(£)]
c>0 c>0 ¢(€E*
(B.7) = sup sup [(¢, x) — &(¢) - —usn
¢€E* ¢>0
= g*(x).

By Claim 2 and (B.7), we have
limsup limg: ,(x) < g"(x).
c—0
By a diagonalization lemma ([1], Corollary 1.16, page 33), there exists a decreas-
ing map A: N — R*, such that lim ,A(n) = 0 and
(B.8) limsup gy, .(x) < g*(x).
n— oo

Let {x,} € B be such that

* + —
where ¢, | 0. Then by Lemma B.2, (B.8) and (B.9),
(B.10) limsupg*(x,) < hmsup[gx(n) %) + ¢ ] < g*(x).

n—oo n—oo

1
— 2 1 * + _ 2
llx — x,]1* < ;relfB{gn(y) 2}\(n)llx Il } +e

Assume now that g*(x) < . We will show that ||x — x,|| = 0. In fact, let £, be
such that g(£,) < oo. Then

g:(xn) 2 g*(xn) 2 <‘£0’xn> - g(&o)
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and by (B.9) and (B.10),

1
li , - + ——|lx — x| *
imsup | (£, %,) &8(%o) O Ll B (x),
which implies ||x — x,|| = 0. On the other hand, if g*(x) = o, there is nothing
to prove. O '
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