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BOUNDS ON THE COARSENESS OF RANDOM SUMS!

By JAMES ALLEN FiLL
Stanford University

Let X?,..., X3 be integer-valued random variables and let ay,..., ay be
(fixed) nonzero vectors. We introduce the notion of coarseness of a discrete
distribution and obtain upper bounds on the coarseness of the distribution of
S = £XJa; by comparison with the case a; = a. The bounds derived are seen
to be tight and to apply for example when S is formed (a) from independent
summands or (b) by using any of a large family of sampling schemes. We
show how such bounds can easily and efficiently substitute for use of
Berry-Esseen theorems and other analytical methods in applications.

1. Introduction. Throughout this paper H is a Hilbert space over R with
inner product ( -,-) and norm |- |, and N > 0 and K > 1 are deterministic
integers. All random variables are defined on a common probability space. The
value y is said to be a possible value of the random variable Y if P{(Y = y} > 0.
The symbols | x| and [x] denote, respectively, the largest integer no larger than
x and the smallest integer no smaller than x.

The major results of this paper are of the following form.

GENERIC RESULT. Let X, XJ,..., X9 be random variables with values in
the integers Z. Let a,,..., ay be vectors in H, each with length at least unity.
Set S°=YN_ X0 and S=XN_X%,. If R,..., Ry are sets in H each of
diameter strictly less than unity, then, under suitable conditions,

(1.1) P{S € kL:lek} < P{8°e Lg(K)} = ng(K),

where Lgo(K) is a set of K most likely values of S°.

Toward understanding bounds of the form (1.1), which bound probabilities for
a random sum S in terms of the distribution of S in the “null” case a, = a, we
introduce some terminology. Given a discrete random variable Y with values in
an arbitrary measurable space, let Ly(K) be a set of K most likely values of Y.
We shall call any such set a top K set of values and its probability 7y (K ) the top
K probability. Due to ties there may be more than one top K set, but the top K
probability is uniquely determined. Note that #,(K) is invariant under one-to-
one transformation of the random variable Y.
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Let Y and Z be discrete random variables taking values in possibly different
spaces. If for each integer J no bigger than a fixed K < oo the top J probabili-
ties for Y and Z satisfy 7y(J) < m,(J), we shall say that (the distribution of) Z
is K-coarser than (that of) Y (though not necessarily strictly so). When K = o
we shall simply say that Z is coarser than Y and write Y <¢ Z. When, as in (1.1),
we have the stronger result that for any K < co and any sets R,,..., R in the
Hilbert space of values of Y with diam(R,) < 1 for every &,

p{ye U RK} < m(K),

k=1

we shall say that Z is strongly coarser than Y and write Y <*¢ Z.

We note in passing that the ideas of coarseness can be put into the language of
majorization. For example, Y <°Z means precisely that the probability mass
function of Y is majorized by that of Z in the sense of Marshall and Olkin
(1979), page 16.

When K =1 a top K set Ly(K) is any singleton with element a (primary)
mode for Y. Suppose next that Y has a distribution .Z(Y) that is unimodal over
Z, which for this paper we shall understand to mean that for some (not
necessarily unique) y, € Z the values P{Y = y} are nondecreasing for y < y, and
nonincreasing for y > y,. Then each top K set comprises K consecutive integers
including a mode. If #(Y) is unimodal over Z and symmetric about p with
2p € Z, then LY(-K) = {I.”’ - (K - 1)/2]’-”’[“ + (K - 1)/21}'

The first result of the form (1.1) for general Hilbert space H was stated in
combinatorial language and proved by Kleitman (1970), who generalized a result
of Littlewood and Offord (1943) and established a conJecture of Erdos (1945).
Kleitman’s specific condition was that X2, X2, ..., X5 beiid. with P(X? = 0} =
1/2 = P{X = 1}. Then, since S® has the binomial(N 1/2) distribution, Lgo(K)
is uniquely determined as

{(L(N=(K-1)/2],.... (N + (K - 1)) /2])
if N+ K is odd. If N + K is even, either the same recipe or

{[(N_ (K_ 1))/2]""’[(N+ (K_ 1))/2]}

can serve as Lg(K).

Kleitman (1970) also established (1.1) under the more general condition that
X2, XJ,..., X are independent random variables with X} uniformly distrib-
uted on the integers {m,,,..., M,}.

The results of Section 2 Wthh all follow from the powerful Theorem 2.1,
extend Kleitman’s result in several directions. Theorem 2.3 relaxes the assump-
tion of uniform distributions by requiring only that each of the independently
distributed summands X? have a (possibly unbounded) symmetric unimodal
distribution on Z. In Theorem 2.7 the assumption of independence of X2, ..., X9
is dropped altogether and replaced by a sampling setup explained following the
theorem’s proof. The class of sampling schemes covered by Theorem 2.7 is very
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large and includes sampling both with (Corollary 2.13) and without (Corollary
2.9) replacement.

When symmetry conditions are dropped, inequality (1.1) can fail. The prob-
lem, as illustrated by Example 3.1, lies with the possibly large probability of
cancellation in forming the sum S. When H = R this difficulty can be overcome
by requiring that a, > 1 for all n. In Section 3 we obtain theorems analogous to
those of Section 2 when H = R and, roughly speaking, symmetric unimodality of
£(X?) is traded for stochastic monotonicity of both L(XJLN. X = ¢) and

i=n 12
LEN 1 XYEN X0 = ¢)in ¢. In most applications of Theorem 3.8, the asym-
metric analogue of the symmetric sampling theorem (Theorem 2.7), the ap-
propriate stochastic monotonicity condition is easy to verify. The monotonicity
condition for Theorem 3.5, which like Theorem 2.3 deals with independent
summands X2, holds whenever each X? has a log-concave probability mass
function (see Lemma 3.6).

Section 4 consists of the proofs of the general theorems 2.1 and 3.2.

One possible use for our bounds on coarseness is explained in Example 2.6. A
similar, but more substantial, application of our new results inspired the present
work. In Fill (1987b) we use Corollary 2.9 and its analogue for odd population
size to complement a theorem of Freedman and Lane (1980) by showing that if a
subset C of size t is drawn at random from the integers 0,1,...,n — 1 and
min(¢,n — t) = oo, then the probability that no Fourier coefficient of the se-
quence (Io(n)) vanishes approaches unity. As shown by this application and by
Example 2.6, the inequality (1.1) can serve as a simple efficient alternative to
existing deep analytical results (such as Berry—Esseen theorems), and is even
easy to apply in certain settings where traditional analysis fails to provide
informative bounds. v

A more complete version of this paper is Fill (1987a), which also contains a
discussion of results of Kleitman (1976) related to those presented in this paper.

2. Results for general Hilbert spaces. When compared with the generic
result stated in Section 1, the results of this section exhibit two new features.
First, the class of random sums S = L_, X,, under investigation is broadened. In
the generic result of Section 1 the values ja, of each X, form a set of equally
spaced collinear points in H, the common distance between successive points
being at least unity. In Theorem 2.3 dealing with independent summands both
the equispacing and collinearity requirements are relaxed; it is merely assumed
[see (2.5)] that the distances measured in some direction a, between successive
values of X, are all at least unity. Except for a parity consideration discussed
momentarily, the foregoing remark about (2.5) serves also to explain condition
(2.1) in the abstract Theorem 2.1, which generates the two main theorems 2.3
(independent summands) and 2.7 (sampling) of this section.

The second new feature apparent in Theorem 2.1 is the auxiliary random
vector (Y, ...,Yy) introduced for the following purposes. In proving
Theorem 2.3, it is convenient that the points p, € 1Z of symmetry for the
summands X? [see (2.6)] all vanish. This can be arranged by the transformation
X% > 2(X? — p,), but of course parity is thereby fixed. In this setting the Y,’s
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deterministically indicate the parity of 2(X? — p,), i.e., of 2p,. In the proof of
Theorem 2.7 the Y,’s again play a role in keeping track of parity, but are
genuinely random and have another more important use; see the proof of
Theorem 2.7 for details.

All the results of the present section are derived from the following theorem.

THEOREM 2.1. Let (X2,..., X}) and (Y,,...,Yy) be ZN-valued random
vectors. Forn=1,...,N, j€Z and (y,,..., yy) such that P{(Y,,...,Yy) =
(Yps--»IN)} >0, let x,(J; Ypr---, Yv) € H Let X, be the random variable
x(X%Y,,...,Yy) and set

Y,.

1

N N
So= Y XxP, S= Y X, T=
n=1 n=1

M=

For integers k > 1 and t € Z, define
V(t, k)= (A, A+ 2,...,A+2(k-1)},

where A = —(k — 1) or A = —k according as t + k is odd or even.: If the three
conditions (2.1)-(2.3) hold, then the probability that S lies in the union of any K
sets in H each of diameter < 1 is no more than P{S° € V(T, K)}.

Here are the three conditions to which Theorem 2.1 refers. For (2.1) we
suppress the allowed dependence of a,, x,(J) and £,(j) on (¥,,..., ¥n)-

There exist unit vectors a, € H such that if £,(j)a, is the
(2.1)  projection of x,(/j) onto a, [i.e, if £,(/) is the inner product
(xa(J), @,)], then £,(j) — £,(j — 2) > 1 for all j.
(X2,..., X2 ;Y,...,Y,_)) and X? are conditionally inde-
pendent given (Y,,..., Yy).

If

(2.2)

I{(y;w"7yh)==(}%v~~:yN)} >'Q
(2.3)  then L(X(Y,,.--» Yn) = (Jps---» ¥n)) is symmetric about 0
and unimodal over the set of integers with the same parity
as y,.

For the proof of Theorem 2.1, see Section 4.1.

REMARK 2.2. (a) V(¢, k) consists of the % integers of smallest absolute value
that are of the same parity as ¢. If ¢ + & is even, we have for definiteness chosen
the set that is skewed to the left. But note that the theorem applies indifferently
to S and —S§, so that P{S° € V(T, K)} = P{(S° € —V(T, K))}.

(b) From condition (2.3) we see that the parities of S° and T agree. Therefore
the bound P{S° € V(T, K)} can also be written as

(2.4) P(S°e V(0,K) U V(1,K)} = Kil P(S°=k)}.
k=-K
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Note, however, that in applications for which (the parity of) T is nonrandom,
half of the 2K terms in (2.4) will automatically vanish. This is the situation
prevailing in Theorem 2.3 and in Theorem 2.7 when the sample size T is fixed.

2.1. Independent summands.

THEOREM 2.3. Let X),..., X}, be independent Z-valued random variables.
For n=1,...,Nand j€ Z, let x,(j)€ H. Let X, =x,(X?) and set S° =
N X%and S=XN_ X, If forn=1,...,N,

there exist unit vectors a,, € H such that (x,(j) — x,(j — 1),

(25) a,) =1 forallj

and
(2.6) L(X)) is symmetric about p., € 1Z and unimodal over Z,

then S <*8° and the top K sets Lgyo(K) are those consisting of K distinct
integers v,, ..., vy that minimize LX_ |v, — ZN_ p,|.

ProOF. Apply Theorem 2.1, replacing each instance of (X?,Y,, x,(/), X,)
in the statement of that theorem by the quantities (2(X? — p,), Y,
x,(p, + 37), X,) of the present theorem, where here

1, if2p, isodd,
Yn =1- Il(”’n) = {O

The conclusion is that when diam(R,) < 1 for every &, the probability P{S €
UX_,R,} to be bounded does not exceed

if 2, is even.

P{2(S° - ﬁ/: pn) e V(#{n:p, &2}, K)} =ad(K). a

n=1

REMARK 2.4. It follows from the theorem’s conclusion that S° has a uni-
modal distribution, symmetric about X2_,u,. This can also be shown directly
a la Wintner (1938), Theorem 11.4.

Theorem 2.3 is stronger than Kleitman’s (1970) Theorem II in two important
ways. First, the assumption that each X? has a uniform distribution is greatly
relaxed by (2.6); one need not even assume that the X?’s are bounded. The
second improvement, the extension beyond sums of the form S =X X%, is
highlighted in the following example.

ExaAMPLE 2.5. Suppose that X?,..., X are independent, with X? uni-
formly distributed on {1,..., M,}. Let X,,..., Xy be independent H-valued
random variables, and suppose that each X, has a uniform distribution on M,
distinct points in H; the M, points need not be as required by Kleitman’s
theorem, namely, equally spaced collinear points ja, with |a,||> 1 and jin a
set of M, consecutive integers. Put S® =X  X%and S =X X ; then S <°S°.
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To see this, one need only find a direction a, separating the given M, points
from each other and apply Theorem 2.3 to a scalar multiple of S.

When N is large it may be difficult to compute exactly the bounds 7ge( K )
resulting from Theorem 2.3. Nevertheless, Theorem 2.3 may still be useful in
asymptotic settings, even when the Hilbert space is R.

ExaMPLE 2.6. Consider the simple case of Theorem 2.3 with K = 1 when
XD, ..., X are ii.d. symmetric +1 random variables. The result is

P{S € R} < P{binomial(N,1/2) = | N/2]}

=2y | < N

the last inequality being also an asymptotic equivalence. Suppose one has at
hand real numbers a;;>1; i=1,...,N; j=1,...,J(N)=0o(NV?) with

ij =
J(N) — oo; and one is interested in showing

(2.7)

N

(2.8) P{ Y. X'a;; = 0 for some j} -0, as N - co.
i=1

Indeed, such a problem, in a somewhat more complicated setting, motivated the

present paper; see Fill (1987b). Without studying the joint distribution of the

J(N) sums of interest, one may resort to subadditivity to obtain the bound

J(N) N

(2.9) )y P{ Y Xla;; = 0}
j=1 \i=1

for (2.8). Use of (2.7) yields (2.8) immediately.

Alternatively, one might attempt to apply a central limit theorem directly to
each of the J(N) terms in (2.9). In general, Y , X%a; ; will not be of lattice type,
so no local limit theorem will be available. Nonetheless, with j fixed if
a,zvj/ N a ?j — 0, then the global central limit theorem [Feller (1971), Theorem
XV.6.1] implies P(EY,X%,; =0} — 0 as N — oo; but this estimate falls far
short of (2.8). On the other hand, application of the Berry-Esseen theorem

[Feller (1971), Theorem XVI.5.2] yields
N 1/3 N 1218
(N‘l Za?j) (N‘1 Zafj) .
i=1 i=1

This bound is always at least 12 N~1/2, which is itself bigger than the bound in
(2.7) by a factor of 12y/7/2. It is even possible to find a,;’s satisfying the central
limit theorem condition but for which the right side in (2.10) is not O(N~'/2).

If, for example, it is known that |a;;| < B for some B < co and all ¢ and j,
then the Lévy concentration function can also be used in the standard fashion to
show that P{(X}L,X’a;; = 0} = O(N~'/?) uniformly in j. However, the general
case a;; > 1 seems difficult to treat using concentration functions.

N
(2.10) P{ Y. Xla;,; = 0} <12N~1/2

i=1
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At any rate, we remind the reader that the bound 2~ ( l N’jzj) on
P(xN X'a, j = 0} is best possible assuming only a,; > 1 for all i and ;.

In summary, results like Theorem 2.3 can serve as simple efficient substitutes
for existing deep analytical methods, and can apply in certain more general
settings, such as in the setup just described when a%;;/ L a?; does not converge
to 0.

2.2. Sampling from a paired population. We turn our attention next to
theorems of the general form discussed in Section 1 when the summands
(X2, X2,..., X%) form a vector of counts for a sample from the indices 1,..., N.
Of course when the sample size S° = ©N_, X9 is fixed, bounds of the type S <¢S°
for S = TN _ X%, are useless, for then 74(1) = 1(!). However, when the vectors
a, can be paired, as in the next result, informative bounds on the coarseness of
the sample sum S can be derived. Theorem 2.7 can yield useful results (see
Remark 2.10) even when no “natural” pairing presents itself.

THEOREM 2.7. Leta,,...,ay and b,,..., by be vectors in H such that
(2.11) la,— b, =1, foralln=1,...,N.

Let (A,,..., Ay) and (B,,..., By) be ZN-valued random vectors. Set
N N

N N N
§°= Y (4,-B,), 8= Y (Aa,+Bb,), T= ¥ (4,+B,).

n=1 n=1 n=1
If forn=1,..., N,

(Ay,...,A,_;B,,...,B,_,) and A, are conditionally

(2.12) independent given (A,+B,,..., Ay + By)

and

P{(A,+ B,,...,Ay+ By) = (¢c,,...,cy)} > 0 implies
(2.13) L(ANA,+B,,..., Ay + By) = (c,,---, Cy)) is sym-
metric about c, /2 and unimodal over Z,

then the conclusion of Theorem 2.1 obtains.

PrROOF. Apply Theorem 2.1 to X?=A,- B, and Y,= A, + B,, with
X (J3 Ypsevor IN) = (3 + D@, + 3(¥, — )b, so that X, = A,a, + B,b,. O

From now on we interpret Theorem 2.7 as a theorem about sampling, as
follows. A sample of (possibly random) size T is drawn from the population
Qy, ..., ap; by, ..., by according to some sampling scheme possibly allowing
repetitions. Let A, > 0 and B, > 0 count, respectively, the number of times that
a, and b, are included in the sample. Let S be the sample sum. Subject to the
matching condition (2.11) on the population and the restrictions (2.12) and (2.13)
governing the choice of sampling scheme, the conclusion of Theorem 2.7 obtains;
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in particular, if the parity of T is nonrandom, then the coarsest distribution for
S arises from the choice a, = —b, = a with |ja|| > 1.
The conditions (2.12)—(2.13) can be understood with the aid of the following
easily verified lemma. Let
C,=A,+B,

count the number of times that vectors with index r (a, or b,) are included in
the sample. (We recall in passing that in proving Theorem 2.7 the auxiliary
variable Y, of Theorem 2.1 was taken to be precisely C,.)

LEMMA 2.8. The two conditions
(Al’ Bl; Tt An—l’ B —1; An+1’ Bn+1; Tty AN’ BN) and An

(214) 10 conditionally independent given C,
and
(2.15) P{C, = c} > 0 implies £(A,|C, = c) is symmetric about c/2

and unimodal over Z
are together sufficient for (2.12)-(2.13).

We interpret Lemma 2.8 as follows. Suppose that a particular sampling
scheme of interest can be performed in the following way. First, a sample is
drawn from the indices 1,..., N in a completely arbitrary manner. Let C,,...,Cy
be the respective counts and set T'= LN_,C,. The remaining steps are carried out
conditionally given (C,,...,C,) = (¢,...,c,). Let A, denote the number of
times the vector a, is to be included in the sample. A,,..., Ay are chosen
independently according to (conditional) distributions satisfying (2.15). After the
value of A, is determined, the remaining B, = C, — A, sampled instances of
index n are allocated to the vector b,. Then (2.14) holds, so if (2.11) also holds, S
satisfies the probability bounds of Theorem 2.7.

Suppose for example that, conditionally given C, =c, A, is obtained by
drawing a sample of size ¢ without replacement from a population consisting of
¥,(¢) copies each of a, and b,, where ¢/2 < y,(c) < . [If v,(¢) = o0, we mean
that A, is gotten by ordinary sampling with replacement from {a,, b,}.] Then
Z(A,|C, = c) is the hypergeometric(y,(c), ¥,(c); ¢) distribution [if y,(¢c) = oo,
Z(A,|C, = c) = binomial(c,1/2)], so Theorem 2.7 applies.

The setup of the preceding two paragraphs is in force with v,(¢) = v, when
the overall sampling scheme for Theorem 2.7 draws a random sample of fixed size
t without replacement from a population consisting of v, < oo copies each of a,
and b, n=1,...,N. Then S°=2YN_ A, — ¢t is a linear transformation of
rN_|A, ~ hypergeometric(CN_,v,,XN_,v,; ). We have proved the following re-
sult.

COROLLARY 2.9 (Sampling without replacement). Let a,,...,ay and
by, ..., by satisfy (2.11). Let S be the sum of a random sample of
fixed size t without replacement from a population consisting of ¥y, < o
copies each of a, and b,, n=1,..., N. Then S <* Z, where Z ~
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hypergeometric(LY_ v,, LN 1Y, t), and the top K sets L,(K) are those consist-
ing of K distinct integers v,, ..., vgx that minimize LX_||v, — t/2|.

REMARK 2.10. Suppose that a sample of size ¢ is drawn without replacement
from a population consisting of y < oo copies each of vectors w,...,w,y in H.
If no N + 1 of the 2N vectors agree, then Corollary 2.9 provides information
about the coarseness of the sample sum S. Indeed, it is then possible to divide
the vectors into two groups of size N each, say, a,,...,ay and b,,..., by, so
that a,# b, for all n. Let ¢ = min{|la, — b,|: n€ {1,..., N}} > 0. Then
¢~ 1S <*¢ Z with Z as in Corollary 2.9. In particular, S <°¢ Z.

Of course, the larger is the value of e, the stronger is the result ¢ 1S <% Z.
One can show by induction on N that when w;, < -+ < w,y in H = R, the
pairing giving the largest value of ¢ is achieved by taking a, = wy,, and
b,=w,forn=1,...,N.

Our next application of Theorem 2.7 includes sampling with replacement.
Suppose that ¢ independent draws are made from a population a,,..., ay;
by, ..., by satisfying (2.11). At the jth of the ¢ successive draws we suppose that
the probability of selecting either given one of the vectors a,, b, is 3p/(n), where
each p; is a probability mass function on {1,..., N}. Then Theorem 2.7 applies,
and S°=2YN_ A, — t is a linear transformation of XY_ A, ~ binomial(z,1,/2).

We have proved the following result.

COROLLARY 2.11. Leta,,...,ayandb,,..., by satisfy (2.11). Forj=1,...,t
let p; be a probability mass function on (1,..., N} and let W; be an H-valued
random variable satisfying

P{W,=a,} = ip(n) = P(W;=b,}, n=1,...,N.

Suppose Wy, W,, ..., W, are independent and set S =1L’ W, Then S <*° Z,
where Z ~ binomial(t,1/2).

A simple truncation argument extends Corollary 2.11 to the case N = .

ExaMPLE 2.12. Under certain circumstances Corollary 2.11 yields a bound on
the coarseness of the “null” sum S° itself in Theorem 2.3. For simplicity suppose
that each summand X? in Theorem 2.3 is uniformly distributed on a subset
{m,,...,M,} of Z having even cardinality. Corollary 2.11 then implies that
8% <¢ binomial(¢,1,/2).

When p;(n) = N~! in Corollary 2.11 we have the following result.

COROLLARY 2.13 (Sampling with replacement). Leta,,...,ay andb,,..., by
satisfy (2.11). Let S be the sum of a random sample of fixed size t with
replacement from the population a,,...,ay; by,..., by. Then S <°¢Z, where
Z ~ binomial(t,1/2).
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Corollary 2.14 in Fill (1987a) is a complementary result to Theorem 2.7 for
fixed size sampling from a population with an odd number of elements.

3. Additional results for the real line. Let X?,..., X be independent
Z-valued random variables and for vectors a,,..., ay in a Hilbert space H with
length at least unity, set S=XY_ X%, Let a € H have unit length, let
&,..., €y be any deterministic sequence of (+1)’s and (—1)’s and set S'=
YN_XD%,a. If for each n the distribution of X, is symmetric about p, € 1Z
and unimodal over Z, then Theorem 2.3 implies that S <*¢ S

That is, in the symmetric case, any choice of (a,) of the form (e,a) yields the
strongly coarsest distribution of S. What if the assumptions of symmetry are
dropped? The answer is that, in contrast with the symmetric case, there may
exist no choice of a,,..., ay yielding simultaneously the K-coarsest distribution
of S for every K.

ExaMPLE 3.1. Let H=R and N=2. Let X and X; be independent
Bernoulli(2/3) random variables. Choices for a,, a, of the form a, = a = —a,,
and only of this form, yield the largest modal probability for S, (namely, 5/9 at
the mode 0). On the other hand, only choices of the form a, = a = a, yield the
largest top 2 probability (namely, n5(2) = P(S, = a} + P{S, = 2a} = 4/9 +
4/9 = 8/9).

In this section we obtain for asymmetrically distributed summands results
bounding the coarseness of S = X_ X%, and other somewhat more general
sums in terms of the coarseness of S = YN_ X% We do this by narrowing our
focus to the Hilbert space H = R and requiring a, > 1 rather than just |a,| > 1.

The main theorems 3.5 (independent summands) and 3.8 (sampling) of this
section are the asymmetric analogues of Theorems 2.3 and 2.7, respectively. The
following all-purpose result is analogous to Theorem 2.1 and is proved in Section
4.2

THEOREM 3.2. Let (X2,..., X%) be a Z"-valued random vector. For n =
1,..., Nandj € Z, let x,(j) € R. Let X, be the random variable x,(X) and
set

X,.
1

N
§°- Y X! S-
n=1

Mz

If the four conditions (3.1)—(3.4) hold, then S <*¢S°.

To state the four conditions we need some notation. Let N, and N, be
nonnegative integers sch that N, + N, = N. We divide the summands X into
two groups as follows. For i = 1,..., N, set X2(1) = X% for i = 1,..., N,, set
X22) = X3 ;- For m = 1,2 define S)(m) = £}, X%(m) for n = 0,..., N,, and
let S%(m) = S{(m) be the sum of all X in the mth group, so that S°=
S°1) + S9%?2).
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Here are the four conditions to which Theorem 3.2 refers. Conditions (3.2)—(3.3)
are assumed to hold for m = 1,2 and n = 1,..., N,,. The transformation m —
(3 — m) is used to switch between indices 1 and 2.

3.1) The inequality x,(j)—x,(j—1)>1 holds for all n=
) 1,..., Nand all j.

(X2(m),..., X2_(m); X)3 —m),..., X% (3—m)) and

(3.2) X,)(m) are conditionally independent given S°(m) — S°_,(m).

Both 2(X2(m)|S%m) — S’_(m)=¢) and L(S%m) —

(3.3) SAm)|S%m) — S?_(m) = ¢) are stochastically nondecreas-

’ ing as ¢ increases through the possible values of S°(m) —
Sp-((m) = X(m) + (8%(m) — SAm)).

(3'. 5 If (¢4, 4,) and (¢, ¢4) are possible values of (S°(1), S°(2)) and

4 < ¢/,then ¢4, < £j.

REMARK 3.3. (a) The division of X/,..., X2 into two groups allows for the
establishment of sampling results. Condition (3.1) generalizes the definition
S = X}_,X?, and condition (3.2) generalizes the requirement that the X?’s be
independent. Condition (3.3) is the appropriate replacement for the symmetric
unimodality condition (2.3) used in Theorem 2.1. Condition (3.4) is technical and
is discussed at length in Remark 3.4.

(b) Neither the theorem nor its proof provides information as to which K
values for S® form the top K set Lg(K). This deficiency is addressed in
Example 3.7.

REMARK 3.4. (a) To understand condition (3.4), consider the following
equivalent version. Let V; = {¢;: P{S%(1) = ¢,} > 0} be the set of possible values
for S°(1). For ¢, € V, let Vy(£)) = {4 P(S°Q) = ¢,, S°2) = £,} > 0} #+ @ be
the set of possible values for S°2) when S%1) = ¢,. Then (3.4) is equivalent to
the assertion that V(¢) is nondecreasing elementwise in /€ V,, in the precise
sense that if /, € V, and ¢/ € V| with ¢, < ¢/ and ¢, € V(¢,) and £/ € V(¢!),
then ¢, < 4;.

(b) Suppose in particular that S%2) = g(S°1)) for some nondecreasing func-
tion g on V). Then for /€ V, we have Vy(¢) = {g(¢)}, and so condition (3.4)
holds. This observation will be used in the proofs of Theorems 3.5 and 3.8.

(c) The: following consequence of (3.4) is used twice in the proof of Theorem
3.2: If (4, £;) # (¢/, £;) are possible values of (S°(1), S%2)) and ¢, + ¢, < ¢/ +
¢, then £, < ¢/ and ¢, < /] and at least one of these two inequalities is strict.
Indeed, ¢, > £/ is easily ruled out, ¢, = ¢/ leads immediately to the desired
conclusion, and ¢, < ¢/ implies ¢, < ¢;.

3.1. Independent summands.

THEOREM 3.5. Let X,..., X} be independent Z-valued random variables.
For n=1,...,Nand je€ Z, let x,(j) €R. Let X, =x,(X?), S°=3TN_ X°

n=1<*n>
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S =XYN_ X, If (3.1) holds and for n = 1,..., N,

n=1

N N N
bOth y(X’? Z Xio = {) and o?( Z Xio Z Xio = {) are
(3.5) i=n i=n+1 i=n

stochastically nondecreasing as ¢ increases through the possi-
ble values of ¥,_,RNX?,

then S <= S°.

Proor. Apply Theorem 3.2 with N, = 0 and note that one can take g = 0 in
Remark 3.4(b). O

The following simple sufficient condition for (3.5) follows from the main
theorem of and Remark 3.1 in Efron (1965).

LEMMA 3.8. In the setting of Theorem 3.5 it is sufficient for condition (3.5)
that the logarithm of the probability mass function of every summand X be a
concave function on Z. In that case the probability mass function of S° is also
log concave and hence unimodal over Z.

Exact calculation of the bound 7g(K ) in Theorem 3.5 is typically difficult.
However, if, for example by use of Lemma 3.6, one knows that £(S°) is
unimodal over Z, then a top K set Lgo(K) consists of K consecutive integers
and includes a mode p € Z for S°.

ExaMpLE 3.7. Suppose in Theorem 3.5 that X? ~ Bernoulli( p). Then the
conditions of Lemma 3.6 are trivially met, and S° ~ binomial( N, p) with mode
p=|Np]. So we have an asymmetric extension of Theorem I in Kleitman
(1970). Practically speaking, however, there remains the problem of determining
7go(K) when K > 2.

Typical values K of interest will be small (cf. Example 2.6). Then one can turn
to uniform local limit theorems, such as Theorem XV.5.3 in Feller (1971) or its
analogue for nonidentical components, to estimate mgo(K) when N is large. In
the present example we arrive at

K
ngo(K ) ~ —— N2,

27p(1 — p)

as N —» oo with K fixed.

3.2. Sampling. The following general theorem deals with the coarseness of
the sum of a sample of fixed size from a (mixed) population of real numbers
al,...,aNlZlandbl,...,szs_1.

THEOREM 3.8. Let N, and N, be nonnegative integers and set N = N, + N,.
Let a,,...,ay and by,..., by, be real numbers such that a, > 1 for all n =
1,...,Nyand b, < -1 foralln=1,...,N,. LetA,,..., Ay and B,,..., By, be
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Z-valued random variables. Set

N, N,
ZA —ZB S= Y A,a,+ Y B,b,.
n=1 n=1 n=1

If for some t € Z,

{ZA + ZB-t}—l

n=1

and the conditions (3.6)-(3.7) hold, then S <*¢S°.

Here are the conditions to which Theorem 3.8 refers. For n = 1,..., N, we

require:

(Ay,...,A,_; By,..., By)and A, are conditionally indepen-
(3.6a) 2

dent given *NM A,

N .

Both #(A,|ZN,A;=¢) and y(z,,,m A, Y A, =¢| are

(373) i=n

stochastically nondecreasing as ¢ increases through the possi-
ble values of V. A

1= n i

For n=1,..., N, we require conditions (3.6b) and (3.7b) which are obtained
from (3.6a) and (3.7a) by interchanging the symbols A and B and the symbols
N, and N,

PROOF OF THEOREM 3.8. Apply Theorem 3.2 to X2(1) = A, and X%2) =
—B,, with x,(j) defined as ja, for n = 1, , N, and as —jb,_p forn=N, +
.» N. Observe that one can take g(¢) = ¢— ¢ in Remark 3.4(b). O

The interpretation of Theorem 3.8 as a theorem about fixed size sampling is
straightforward; compare the discussion following Theorem 2.7. The result here
says that the coarsest distribution for S results from the choice a, = +1 and
b, = -1

For brevity, it is left to the reader to apply Theorem 3.8 to formulate an
appropriate analogue of Corollary 2.11 in the present setting and to prove the
following analogues of Corollaries 2.9 and 2.13. See Fill (1987a), Section 3, for
details and further discussion.

CoROLLARY 3.9 (Sampling without replacement). Let a,,...,a ~, and
by, ..., by, be as in Theorem 3.8. Let S be the sum of a random sample of fixed
size t wzthout replacement from a population conswtmg of a, < oo copies of a,
n=1,...,N, and B, < o coplesofb n=1,...,N,. ThenSs“Z where
Z~ h}pergeonwmc(zn=lam En—lﬁm t)

CoRrOLLARY 3.10 (Sampling with replacement). Let a,,..., a n, and
by, ..., by, be as in Theorem 3.8. Let S be the sum of a random sample of fixed
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size t with replacement from the population a,, ..., ay; by, ..., by,. Then S <*°Z,
where Z ~ binomial(t, N,/N).

4. Proofs. In this section we present proofs of the general Theorems 2.1 and
3.2.

4.1. Proof of Theorem 2.1. Theorem 2.1 follows immediately upon setting
n = N in the next lemma.

LEMMA 4.1. Adopt the notation and hypotheses of Theorem 2.1—in particu-
lar conditions (2.1)-(2.3). For n = 0,..., N, define

n n n
Si=YX) S=YXX, T,=XY Yt= .. W),
i=1 i=1 i=1
and, for giveny,. ,---, Yno
Y1 = (Dparr--o5 In)-
Let R,,..., Ry be sets in H each of diameter < 1. Then for eachn =0,..., N,

K
(4‘1) P{Sn € U Rlentl = yn*+1} < P{Sr? € V(Tn7 K)lyntl = yn*+l}9
k=1

provided Y%, , = y,,} > 0.

~ The proof of Lemma 4.1 is reminiscent of the region rearrangement proofs in

Kleitman (1970). Although the following treatment is self-contained, the reader
is advised to consult those proofs first in order to gain a basic understanding of
the ideas involved.

Proor. We use induction on n € {0,..., N}. Since Sy =0=T, and 0 €
V(0, K), the basis is trivial.

Induction step n € {1,..., N}. We may suppose with no loss of generality
that R,,..., Ry are disjoint. Using (2.2), we find

K
LHS(4.1) = Y EP{S,,_l e UR,-=x,J; 3,

Y J k=1

X0=',Y;L= nYn* = n*
(4.2) n J yl +1 y+l}

K
- ZZP{s,,_l e U Ry - 5,0js 32 % =y,,*}
yn .’ k=1

XP{XI(L) =j|Yn* = yn*}P{Yn = ynly;sz-l = yn*+1}’
In (4.2) the sums are over y, such that P{(Y,* = y,*} > 0. We shall show that for
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each possible value y* of Y *,

K
XP{Sn-l € URy—x,(J; 3H)Y> = y,.*}P{X,? =% =5}
(4.3) k=1
< P{S,? e V(T,,K)|Y* = yn*}.
We can then conclude
LHS(4’1) =< ZP{SI(!) € V(Tn’ K)I n* = yn*}P{Y;z = anYn*-:l-l = yn*+l}
In
= P(S; € V(T,, K|V, = 3%} = RHS(41),
~ as desired.
We suppose until further notice that M, the essential supremum of |X7|

conditionally given Y,* = y*, is finite and proceed by induction on M. By (2.3),
¥, has the same parity as M. If M = 0, then by the induction hypothesis for n,

K
LHS(4.3) = P{sn_l € U (Ry - 2.(0; 32))| X" = y,,*}
k=1

< P{S,?_1 € V(T,_,, K)|Y* = y*} = RHS(4.3).
The case M =1 is left to the reader; use an appropriate simplification of the
argument to follow for M > 2.

For the remainder of the proof of Lemma 4.1 the following conventions shall
be in force. All probabilities are to be computed conditionally given Y=y
We write x(j) for x,(; ) and p(j) for P{X? = j|Y,* = y*}. In keeping with
the parity condition of (2.3), all sums over j [including the one in LHS(4.3)] are
restricted to j having the same parity as the given value y,.

Let 2 < M < oo be given. The cases K = 1 and K > 2 are treated in Lemmas
4.2 and 4.3. Our proof of (4.3) is complete when M < . A simple truncation
argument handles the general case: For any p < 0 we can immediately state

K
L 25, U R -()|pixi=))
lJ1=<p k=1
< X P{S),+je€ (T, K)}P(X?=j}.
ll<p
Now simply let p 1 00.0

LEMMA 4.2. Suppose 2 < M < 0. Then (4.3) holds when K = 1.
ProOF. We observe, writing R for R, and noting by the symmetry condition
of (2.3) the equality p(—M) = p(M),
LHS(43) = £p(/)P(S,-, € R - x(J))
J

(4.4) =p(M)I ]ZMP{SH € R - x(j)}

+ | .IZM[p(j) —p(M)]P(S,_, € R - x(,)}.
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As j varies over the M + 1 integers having the same parity as M and satisfying
|/l £ M, the sets R — x(j) are by (2.1) and the inequality diam(R) < 1 disjoint.
The induction hypothesis for n thus yields

ws ,|EMP{S,,_1 € R-x(j)} < P(S°_, € V(T,_,, M + 1)}
4.5 Jl=
=P(S? ,e V(T,- M, M + 1)}.

According to the unimodality condition of (2.3), the numbers p°j) = p(j) —
pP(M), |jl <M with j of the same parity as M, either vanish identically [in
which case (4.6) follows immediately] or can be rescaled to form a unimodal
probability mass function p. By the symmetry part of (2.3), p is also symmetric;
moreover, the essential supremum of a random variable X? having probability
mass function p (conditionally given Y* = y*) is strictly smaller than M.
Substituting p for p and using induction on M—with due regard to (2.2), this
can be justified by making the induction hypothesis suitably broad—we con-
clude

”ZM[P(J') - p(M)]P(S,_, € R - x(J)}

< X [p(j) -p(M)]P(S}_, +j € V(T,,1)}.

(Ve

(4.6)

This is the p version of (4.3) when K = 1; note in general
RHS(4.3) = Y p(j)P{S?_, +j€ V(T,,K)}.
J

Combining (4.4)-(4.6), we find
LHS(4.3) < p(M)P{S?_, € V(T, — M, M + 1)}
(*.7) + % [p() - p(M)) P(SL, +j & V(T,,1)).
ljl=M
Decomposition according to the parity of T, establishes the identity
P(S} ,eV(T,-M,M+1)} = Y, P(S),+je V(T,1)},

ljl=M
which upon substitution in (4.7) yields

LHS(4.3) < Y p(j)P(S?_, +j <€ V(T,,1)} = RHS(4.3). i
ljl=M

LEMMA 4.3. Suppose 2 < M < 0. Then (4.3) holds when K > 2.

ProoF. To prove (4.3) when K > 2, we will rearrange the probabilities of the
K(M + 1) regions R, — x(j) appearing in LHS(4.3) to get the greatest mileage
out of our induction hypothesis. To begin, for i = 1,2 let H; be the hyperplane
normal to a, = a,(y¥) at n,a,, where 0, and 75, are the inf and sup, respec-
tively, of the set {(z, @,): 2 € UX_|R,}. Note that H, and H, are “supporting”
hyperplanes for the set UX_,R,, which is sandwiched between the two. We may



1660 J. A. FILL

suppose that the R,’s are ordered in such a way that H, intersects the closure of
R, and H, intersects that of Ry.
The rearrangement analogous to (4.4) is in this case

P{Sn_1 € 6 R, - x(M)}

k=1

LHS(4.3) = p(M)

+ X P{Sn—leRK_x(j)}]

-M<j<M

+p(M) | '|EMP{Sn_1 € R, - x(Jj)}
+p{sn_1 c Ur,- x(—M)}}
k=1

wp(M) T p5, 1€ KL_Jle—x(j)}

|JI<M k=2

v ¥ [p(j)—p(MnP{s,,_le URk—x(j)}.

<M k=1

If —-M <j < M,theset Ry + x(M) — x(J) lies strictly to the (+a,) side of H,
since diam(Ry) <1 and (x(M) — x(Jj), @,) = 1 by condition (2.1). One sees
that the (K + M) sets R, —x(M),1 <k <K, and Ry —x(j), - M<j<M,
are mutually disjoint. Using this and similar observations, one follows along the
lines of the proof of (4.7) to arrive in the present case at

LHS(4.3) Sp(M)[P{S,?_l e V(T,- M,K + M)}

+P(S) e V(T,-M,K+M-2)}
+ Y P(S’,+je V(T, K-2)}
lil<M
+ | .IZM[p(j) — P(M)] P{S;_, +j € V(T,, K)}.

In particular, in applying the induction hypothesis to get the third of the four
terms in this bound one replaces p by a uniform pmf.
Let v, be the kth smallest member of V(0, K), k£ = 1,..., K. By analysis of

P(S? € V(T,,K), T,even} = Y. p(j)P{S?_, € V(0,K) — j, T, even}
J

K
= Zp(j)P{S,?_l € kL_Jl {vp} =7, T, even}
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and likewise of P{S? € W(T,, K), T, odd} parallel to the foregoing bounding of

K
LHS(4.3) = Z};;(;‘)P{s,,_1 € kL_J R, - x(j)},

one discovers that our bound on LHS(4.3) in fact equals
P{S? e V(T,,K), T,even} + P{S? € V(T,,K), T,0dd} = RHS(4.3). O

4.2. Proof of Theorem 3.2. Theorem 3.2 is derived from the following lemma,
proved later. Throughout this section we write R, > R, to mean that every
member of the set R, is strictly larger than every member of the set R,.

LEMMA 44. Adopt the notation and hypotheses of Theorem 3.2 and the
conditions (3.1)-(3.4) given previously. Define notation for the summands X and
the sums S completely analogous to those for X° and S° [so that, for example,
S = S(1) + S©2)]. For each k=1,...,K let Ri(¢,,6;), {,EZ, £,EZ, be a
collection of intervals, each of length < 1, such that
(4'8) Rk(fl - 1’ /2) > Rk(fly {2) and Rk(fl’ /2 - 1) > Rk(fv /2)1

for £, € Z and ¢, € Z. Then for eachn, = 0,..., N, and n, = 0,..., N,,

K
D> P{s,,l(n 15,2 e UR4,4),
tel el k=1

(4.9) ,
S°(1) - S;?l(l) =¢,8°(2) - 31?2(2) = /2} < 77(s°(1),s°(2))(K )

ProoF oF THEOREM 3.2. Let R,,..., Ry be any K intervals each of length
< 1. Foreach k€ (l1,...,K} and ¢, € Z and ¢, € Z, define Ry (¢}, £,) = R, —
(¢, + £;) to satisfy the assumptions of Lemma 4.4. Now apply the lemma with
n, = N, and n, = N, to deduce

K
P{S e U Rk} < Mgoq), o) K )-
k=1

But we show
(410) MSO1), S°(2))(K) < WSO(K )

Indeed, given distinct ¢, = (£(1), £x2)),..., tx = (tx(1), tx(2)) in Z2, arrange
them so that the values s, = £,(1) + ¢,(2) are in nondecreasing order. Assume
that P{(S°(1), S°%2)) = ,} > 0 for every k; it should be clear how to proceed
otherwise. Then by (3.4) [see Remark 3.4(c)], the values s, are in strictly
ascending order. Therefore

K

K
IEIP{(SO(I), 8%2)) =t} < kglp{s" =8} < m0(K),

which establishes (4.10) and completes the proof of the theorem. O
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Proor oF LEMMA 4.4. We use induction on n = n, + n, € {0,..., N}. For
¢, € Z and ¢, € Z, we define R(¢,, £,) = UK_ R, (¢), £,).

Basis n = 0. If n = 0, then

LHS(4.9) = ;;Im (O P{S°(1) = £, 8°(2) = 4,},
1 %2

so we need only show that 0 belongs to at most K of the sets R(¢,, £,) for which
P(S°(1) = 1,, S°%2) = £,} > 0. Indeed, if 0 were to belong to more than K of the
sets, then for some integer %k satisfying 1 <k < K we would have 0 €
R, (41, 4) N R (¢, ¢3) for two possible values (¢, £,) # (¢/, £5) of (S°%(1), S°2))
such that ¢, + 7, < ¢/ + ¢;. Using (3.4) [see Remark 3.4(c)], we find that ¢, < ¢/
and 4, < ¢/, with at least one of these inequalities strict. But then we have by
(4.8) the contradiction that R,(¢,, £;) and R, (¢{, £4) are disjoint.

Induction step n € {1,..., N}. Suppose without loss of generality that n, > 1.
We have

LHS(4.9) = L X X P(S, _,(1) + 5,(2) € R(4,, ) — %, (j), X3 =,
H 4h J

S°(1) - 82_,(1) = &, +J, S°(2) - S2(2) = 4,

= LY X P(S, (1) +5,(2) € R(¢, - j, &) — x,(J), X3, =,
& b J

(4.11)

s°(1) - 572—1(1) =1, 50(2) - 532(2) = /2}-

We shall show how to write (4.11) as an average of expressions of the same form
as LHS(4.9) with n, changed to n, — 1. The induction hypothesis then yields

LHS(49) < M50, S°(2))(K ),
as desired.
For the remainder of the proof, let # denote the set of possible values of
S°(1) — Sp _,(1). Let the stochastic process A be as described in Lemma 4.5.
Given ¢, € 2, define the random variable J(¢,) via the inequality

(4.12) Agay-1 =6 < Ayey

the property (4.13) for A insures that J(¢,) is well defined. For given ¢, € £ and
each ¢, € Z, consider the (random) intervals Ry(¢,, 4,) = Ry(¢, — J(£), ;) —
x,(J(£,)). Observe that for £, < ¢/ bothin @, Ry(¢,, 4,) > Ry(¢{, ;). In light
of (4.8) and (3.1) and the strictly subunit length of each interval, this requires
checking only that ¢, — J(¢)) < ¢/ — J(¢)), ie., that A, ,,_, > ¢/. But this
follows from (4.12) and (4.15).

Now extend the definition of R,(¢,, 4,) to all £, € Z in any fashion such that
(4.8) holds for the resulting family. If we write

K

(et = £ T P{s,.l_l(1>+s,.2<2)e U r 4,

€L HEL k=1

S9(1) - (1) = 4,, S92) — S(2) = zz}
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for any family of intervals (r,(4,, £,)) satisfying (4.8), then

f((Rk(/vfz)))= X X EI(Aj—15’1<Af)

HLeP HeEL JEL
X P(S, (1) + 8,(2) € R(4, — j, &) — %,(J)s

S°(1) — 82 _,(1) = 4, 8°%(2) — 5%(2) = 4}

is a nonnegative @-random variable, and
[H((Bu(4, 4))) dQ
Y LI P(x2=is°01) - 83_,(1) = 4}

6LeP b J
X P(S, 1(1) + 5,(2) € R(&,— j, &) = %, (J),
S°(1) — 82 _,(1) = 4,,5°2) - 8%(2) = 4}

= expression (4.11).

In the first equality here we have used (4.14); in the second, condition (3.2). Thus
(4.11) is expressed as the appropriate average, and the proof of Lemma 4.4 is
complete. O

LEMMA 4.5. Let I be the set of all nondecreasing sequences a = (a;);c z With
values in the set Z U { — 0, + 0} of extended integers that satisfy

(4.13) lim o;=inf(#) and lim a;

Jj—= —®© Jj— +oo a

There exists a stochastic process A = (A));cz defined on a probability space
(Q &, Q) with A taking values in I and havzng foreveryj € Z and £< ¢’, both
in P, the following two properties:

(4.14) Q(4; < ¢} = P{X2 > j18°(1) - 82_,(1) = ¢};
(4.15) ifA;> ¢, thenA;, ,_,> ¢

= +00.

Proor. Denote RHS(4.14) by Fy(¢) and observe from (3.3) that Fi(¢) is
nondecreasing in /€ #. Define an inverse probability transform F;~ (O 1) -
PU {— 0, + 00} by the recipe

(4.16) F~(t)=inf{¢eP: F(¢) 2t}, 0<t<l

Let U be a uniform (0, 1) random variable on a probability space (2, «, @), and
set

(4.17) A;=F~(U), JELZ.

It is a routine exercise to use (4.16), (4.17) and (3.3) to verify that A has the
required properties. O
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