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LARGE DEVIATIONS ANALYSIS OF SOME RECURSIVE
ALGORITHMS WITH STATE DEPENDENT NOISE!

By PauL Dupuis

Brown University

Consider the recursive, stochastic algorithm X7, , = X + eb(X}, §,),
where (£,} is a random process and X: lives in R%. Algorithms of this type
arise frequently in applications in control and communications, as well as
elsewhere. In the study of the important long term behavior of such recursive
algorithms the “large deviations” behavior of the system, which describes the
asymptotics of the order 1 deviations of the system from its “mean” trajec-
tory as ¢ tends to 0, plays a central role. Typical systems arising in communi-
cation theory and control often use complicated forcing terms involving
correlated and state dependent noises and forcing terms with discontinuities.
This paper presents a general approach for proving large deviations type
theorems for such systems. The problem of proving such a theorem is
considered first for the general case of a stochastic process with Lipschitz
continuous sample paths. The assumptions are stated in terms of the condi-
tional distribution of time increments of the process. After giving the proof in
this general framework, we give several examples (in both continuous and
discrete time) of driving terms that satisfy the hypotheses. The results are
subsequently extended to a “projected” version of the discrete time model.
The paper concludes with an application of the results to an automatic
routing mechanism.

1. Introduction. We shall concern ourselves in this paper with proving
useful extensions of the large deviations results given by Freidlin [5] and
Azencott and Ruget [2]. In [5], the author considered the problem of proving a
large deviations principle for the continuous time version of the discrete time
dynamical system (living in R¢)

(11) foa= X+ eb(X:¢,), X¢==x.

Given any system of the same general form as (1.1), we define x%-) to be the
piecewise linear version of X? with interpolation interva! e. Let C [0, T'] denote
the set of continuous paths with the values in R? that start at x. We then say
that (1.1) obeys a large deviations principle (L.D.P.) if there exists a functional
ST, ¢) defined for ¢ € C,[0, T'] and a real valued function f(¢) tending to 0 as
e — 0, such that

(i) S(T, -) is lower semicontinuous (ls.c.) on C,[0, T'],
(ii)) @(s) = {¢ € C,[0, T]: S(T, ¢) < s} is compact for s € (0, o),
and if for any Borel set A C C,[0, T],

Received January 1987; revised March 1988.

'Work supported in part by National Science Foundation Grant DMS-85-11470 and Office of
Naval Research Contract N00014-83-K-0542. Part of the research for this paper was carried out while
the author was visiting the IMA at the University of Minnesota, Minneapolis.

AMS 1980 subject classifications. Primary 60F10; secondary 621.20.

Key words and phrases. Large deviations, recursive algorithms, asymptotic analysis, state
dependent noises.

1509

IS8 (¢
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% )2

The Annals of Probability. RINOIN

www.jstor.org



1510 P. DUPUIS

(iif) limsup, f(¢)log P{x* € A} < —inf, ¢ 78(T, ¢),
(iv) liminf, f(e)log P{x* € A} > —inf, 40 S(T, ¢)-

Here A and A° denote the closure and interior of A, respectively, and P, (E,, P,
etc.) denotes probability (or expectation) given X§ = x (X§ = x, §, = §, etc.). We
note that in all our cases as well as in [5, 2], it turns out that f(e) = . We note
also that a L.D.P. typically implies more than (i)-(iv). Besides the asymptotic
relations (iii) and (iv), a L.D.P. can oftentimes be used to obtain asymptotic
expressions for many interesting and complicated quantities, such as mean exit
times and the locations of exit from a stable region, transition probabilities
between neighborhoods of stable points, and invariant measures (all of which are
discussed in [6]). In the absence of exact results, these asymptotic formulas may
provide the only objective measure of system performance. However, in this
paper we shall concern ourselves simply with formulating conditions under
which (i)-(iv) hold.

NOTATION. If the metric space involved is obvious, for a given set S and
y > 0 we denote
S*={y:inf{d(y,x),x € S} <v}
and
S7v = {y:inf{d(y,x),x & S} > v}.
Hence {x}" = {y: d(y,x) <7}
REMARK. We point out here the equivalence under (ii) of conditions (iii) and
(iv) with the following:
(iii’) for any A > 0 and s > 0, there is ¢, > 0 such that for ¢ < ¢,
slogl-}{x” & @x(s)h} < —-s+h;
(iv") for any A > 0 and ¢ € C,[0, T'], there is &, > 0 such that for £ < &,
elog P{x* € {¢}"} = —S(T,¢) — h.

See [6, page 85]. We will in fact prove (i), (ii), (iii") and (iv’), which then imply
(iii) and (iv).

Important assumptions used in [5] were that each component of b(x, £) was
bounded and possessed bounded first derivatives, and that the driving noise £,
was “state independent” in the sense that for any n and set A € o(§;, i > n) we
have

P{AJ¢,, i < n} = P{A|§;, X{, i <n}.

We shall refer to such a process £, as exogenous. If the process §, is not
exogenous, then it will be referred to as state dependent.
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From the point of view of applications to typical problems in communications,
etc., it would be nice to extend these results in the following directions:

(1) Allow for state dependent noise processes. In many problems, the statistics
of the future evolution of what we consider to be the driving noise §;, i > n,
depends on X, the state of the system.

(2) Allow b(x, ¢) to be discontinuous. This extension is of particular importance
when dealing with problems arising in communications and control. For
example, the “state” may represent some variable used to control a system
(such as a gain) and small (e-sized) adjustments are made depending on
whether or not some combination of the state and noise satisfy a given
criteria (an event of the correct nature has occurred). In such an application,
b might be given by some combination of indicator functions. Often this case
can be reduced to the preceding case (1) or the subsequent case (3). For a
simple example, suppose the £, are ii.d. and have a density with respect to
Lebesgue measure, and b(x, £) = b(x — £) with b(-) discontinuous. Then we
can consider this to be of the class of state dependent noise processes.

(8) Allow b(x, §) itself to be random. In many cases b needs to be replaced by a
sequence {b,(x, £)} of iid. random vector fields defined on R" X §-space.
The system used in [2] may be thought of as being in this form with
b(x, §) = b,(x). See in particular Section 4.4 and the example in Section 6.

Our principle assumptions A2 and A3 allow problems with all of these features
by being defined solely in terms of the conditional statistics of the time incre-
ments of the process.

The model. Our system will take the form of a collection {x%(-), ¢ > 0} of
stochastic processes living in C,[0,7T] and defined on a probability space
(Q,, %, P).

AssuMmPTION Al. For every ¢ > 0, x%(-) has Lipschitz (with constant K)
sample paths (a.s.).

We point out that as far as the distribution of {x*(-)} is concerned, it does not
matter if we assume |£%(-)| < K as. or |£%(-)| < K for all w, and we choose the
latter to avoid writing w.p.1 statements.

The paper is organized as follows:

In Section 2 sufficient hypotheses for (i), (ii) and (iii) in the definition of a
L.D.P. are stated and the upper bound is proved. In Section 3 additional
assumptions are made and the lower bound (iv) is proved. These hypotheses are
in no way trivial to verify for a given class of noise models and, therefore, Section
4 is devoted to proving they hold for certain models of interest. In Section 5 we
comment on an extension and then follow with an application in Section 6. We
conclude with a few remarks on the ls.c. of the functionals we use in the
Appendix.
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To simplify the notation, we take T = 1. The results carry over to an
arbitrary interval [0, T'] in the obvious way.

NoraTIoN. For a convex function f(x) mapping R? to R, we say that z is a
subgradient of f at y if
f(x) 2 f(y) +{x -, 2)
for all x € R% We then define
df(x) = {subgradients of f at x}.
For ¢ € C,[0,1]and 0 < t < 1 — A, we define D*¢(¢) = ¢(t + A) — ¢(2).

2. Upper bounds. In this section and the next we will consider our system
x%(+) and assume that the starting value x of the system lies in F, some fixed
compact subset of R% The resulting upper and lower bounds will be shown to be
uniform for such initial conditions. By this we mean that given any s, > 0 and
h > 0, there is ¢, > 0 such that for any x € F, any s < s, any ¢ € C[O 1] such
that S(¢) < s, and any ¢ < ¢,

elog B{x* & @,(s)"} < —s +h,

elog P{x* € {¢}"} = —S(¢) — A
Let F = FX. By Assumption Al, x¥(t) € F forall 0 <t < 1.

AsSUMPTION A2. There exist a real valued H(x, a), convex in a € R?, and
upper semicontinuous in x, and a family of ¢-algebras % %(t) D o(x%(s), 0 <
s < t), with the following property. Given y > 0 there exists A, > 0 such that for
all Ay > A >0, t€[0,1— A] (uniformly in x € F and « as.),

- limsup (e/A) log E, [exp(a, D*x%(¢))/e|F ()]

< H(x(t), &) + y(1 + |a]).

REMARKS. By the Lipschitz assumption on x%-), we may always assume
H(x, a) < K|a|. We will denote H(x, a) + y(1 + |a|) by H(x, ). Although it is
not indicated by the notation, the family % %(t) may of course depend on x.

For a function H(a), a € R%, we define its Legendre (or Cramér) transform as

L(B) = sup[(a, B) — H(a)].

We will denote this relationship by L = H*. For convenience we collect several
properties of the Legendre transform.

LEMMA 2.1. Let H be a convex function that is finite on R®. Let L = H*.
Then:

(i) L(P) is convex and l.s.c.
(i) L(B) = —H(0).
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(iii) L(B) achieves its minimum of — H(0) at B if and only if B € dH(0) and,
furthermore, such a B exists.

(iv) If L(PB) is finite in a neighborhood of B’, then dL(B’) is nonempty and
L(B’) = {a, B’y — H(a) if and only if a € IL(B’).

(v) There is uniqueness in the sense that there is only one convex and l.s.c.

function H such that L = H*.

(vi) If L achieves its min at 8 = 0, then H(a) > H(0).

(vii) L(B) = o0 as |B| = oo.

ProoF. (i) [11, Theorem 12.2].

(i) Obvious.

(iii) Existence follows from [11, Theorem 23.4]; the rest follows from the fact
that by the definition of the subgradient H(a) > (a, B8) + H(0) if and only if
B € dH(0).

(iv) [11, Theorem 23.5, Corollary 23.5.1, Theorem 23.4].

(v) [11, Theorem 12.2].

(vi) By [11, Theorem 23.5], 0 € dH(0) implies 0 € dL(0), so by (iii) the min of
Hisat a = 0.

(vii) This follows from the fact that H is finite in a neighborhood of the
origin. O

THEOREM 2.1. Assume Al and A2 and let L(x, 8) = (H(x, a))*. Define
8.9) = ['L(9,) ds
0

if $(0) = x and ¢ is absolutely continuous and set S($) = co otherwise. Then a
large deviations upper bound holds in the form of:

@) S,(-) is lLs.c.
(ii) ®,(s) is compact for every s € (0, o).
(iii) For any Borel set A c C,[0,1],

limsupelog P{x* € A} < — inf S, (o).
€ $€A

The proofs of (i) and (ii) are given in the Appendix.

We first present several lemmas and then tie them together to ‘obtain an
upper bound on P{x® € {¢)°} in terms of S(¢) for an appropriately chosen 8.
We then show that the theorem follows from this.

The lemma which follows is an obvious generalization of a theorem of Gartner
[6, 7]. In conjunction with A2 it gives a large deviations upper bound in terms of

LEMMA 2.2. Let uV be a sequence of probability measures on R® and let
H(a) be a finite valued convex function such that

lim sup —logf exp N{a, x)u™(dx) < H(a).

N- o
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Let L = H* and ®(s) = {B: L(B) < s}. Then, given h > 0 and s > 0, there is
N, < oo such that for N > N,

(2.2) —lﬁlogpN(Rd\ ®(s)") < —s+ h.

REMARKS. As mentioned previously, the usual form of the upper bound
1
li —logpM(A) < — inf L
m sup -log u"(4) < Jnf (B)

follows from (2.2) and the compactness of the level sets ®(s) [Lemma 2.1(i) and
(vii)]. If we consider a collection of sequences {u"} that is parametrized in some
way, then the estimate (2.2) may be taken as uniform for all values of the
parameter for which the convergence in the limsup is uniform.

Since our goal is upper bounds in terms of S (¢), we must be able to rewrite,
in terms of L(x, 8) = (H(x, a))*, the upper bounds given directly by Assump-
tion A2 and Lemma 2.2, which are in terms of L (x, 8) = (H/(x,@))*. H > H
implies L, < L, which does not give a useful bound. It will later be seen that it is
sufficient to prove that we can perturb 8 by a small amount (say 8*) and achieve
L(x,B + B*) < L(x,B) + y. We prove this first for the one dimensional case
and then generalize. At the same time, we prove an analogous result for the
lower bound, for use in Section 3.

LEmMMA 23. Let H(a) and Hy(a) be convex functions on R. Assume
Hya) < H(a) + y|a|. Let L, = H}, i =1,2. Then, given B there are B* and
B** such that |B*| V |B**| <v, L(B + B*) < Ly(B) and Ly(B) < LB + B**).

PrOOF. Let L,(B) achieve its min at 8. Assume for now that 8 = 0. Since
H,(0) < H\(0),
Ly(B) = —H,(0) > —Hy(0) = L,(0)

[Lemma 2.1(ii) and (iii)]. Hence for 8 € [ -y, Y] we take 8* = — . Now suppose
B > y. Then

Ly(B) = sup[ap — Hy(a)] = sup[af — Hy(a) — vla|]

> sup [aB — Hy(a) — v]a|].

a=0

By Lemma 2.1(vi), H(a) > H,(0), and since a(8 — y) < 0if a <0,
Ly(B) = sup[a(B —v) — H(a)] = L,(B - 7).
Thus we may take 8* = —y. An analogous argument shows 8* = y works when

B < —v. _ — —
Now consider the case 8 # 0. We define Hy(a) = H/(a) + aB, i = 1,2. Then

L(B) = sup[ap — H(a)] = sup[af — Hy(a) — aB] = L,(B - B)
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and we can now apply the preceding argument since L(B) achieves its min at
B = 0. It is also clear that for 8 > B we can take B** = y and for 8 < B we can
use B** = —y.O

LEMMA 2.4. Let H(a) and Hy(a) be convex functions defined on R%. Assume
Hy(a) < H(a) + Y1 + |a|). Let L, = H}, i = 1,2. Then given B there is B* such
that |B*| < yand L(B + B*) < Ly(B) + v, and there is B** such that |B**| <y
and L(B) < Ly(B + B**) + v.

ProOF. The first assertion will obviously be true if we show that by taking
Hy(a) < H(a) + y|a| we can obtain B* such that |8*| <y and L (B + B*) <
L,(B). Let v € R? have norm 1. Define h%(a) = H,(av) and note that h%(a) <
hi(a) + y|al. Let I7(b) = (h{(a))*. We first show that

2.3 inf L.(B) =1(b).
( ) {B: (v, B)="b} (B) ( )
We consider i = 1 and note that the same proof works for i = 2. First observe
sup [ab - inf L,(B)| = sup sup ab— LB
b {B: (v, B)=b}) (B) b {B: (o,B>=b)[ W )]

= s%p[a(v,m — Ly(B)]

(av).
It is easily checked that the left-hand side of (2.3) is convex and ls.c., so that by
uniqueness [Lemma 2.1(iv)] (2.3) is true, since both sides have Legendre trans-
form hj(a) = H(av).
The first claim of Lemma 2.4 is the same as showing that Hy(a) < H,(a) + v|«|
implies that for any I € [ — H(0), o],
(24) {B: Ly(B) < T} c {B: Ly(B) < T}
Assume this is not true. Then there are I, 8 such that g {B: Ly(B) < I}, but
B & (B Ll(,B) <I). Let I'={B: L(B)<I}) and let B’ be that point in T
closest to 8. Since T is convex and closed, there is an outward normal & (with
respect to I') pointing from B’ to B (see Figure 1). From (2.3) we see
(8, B) € {b: I3(b) < I},
but that
(5,6 & (b: 13(b) <1V,
contradicting Lemma 2.3. To prove the second assertion, we note that in this
case the claim is equivalent to showing Hy(a) < H\(«) + y|a| implies that for
any I € [—H\(0), ],
{(B: L(B) = I} c {B: Ly(B) = I},
or that

{B: Ly(B) < I} " c {B: Ly(B) <I}.
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s,={B:L,(s1},5,={BL,(MsI}

S\I' =<S§; 1V>

Fic. 1.

But this inclusion is implied by (2.4) and the fact that {8: L,(B) < I} is closed
and convex. O

We now derive our first upper estimate for P{x® < {¢}°’}). Let vy >
0 be given. By Assumption Al, Dx%iA) < KA for all 0 < ¢t < A. Let Q; =
(d(x%(iD), $(iA)) < YA} and II, = P{N,_Q,}. We have the bound
P{x® € {¢}™} < II, . We will use

II; = 'Px{ﬂil N Qk}ni—l'
k<i-1

An upper bound for P{Q;N, .;_,2,) is given by

(+) = B{d(D*(ia - 8), D9(is - 8)) < 2l ) ).

k<i—1
Choose A > 0 small enough so that by A2 [with x; = x(iA — A)],
limsup (¢/A)log E, [exp(a, DAx*(iA — A)Y/el N Slk] < H/(x;,a).
e k<i-1

From Lemma 2.2 we obtain [with N =1/¢ H(a)=AH(x;a), L(B)=
AL (x;, B/A) and pV the measure induced on R¢ by D®x%(iA — A), conditioned
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on nksi_lﬂk]
limsupelog(*) < — inf AL (x;,¢2/4).
: p g( ) o (o(id)— $(iA— Ay v( ¢/ )
By Lemma 2.4,
limsupelog(*) < — inf AL(x;, ¢2/A) + A,
e # € {(id) —p(iA—B) P

which implies
(2.5) limsupelog IT, ,, < —inffolL@, ¢4)ds + v,

where the infimum is over
¢* € AY(¢) = {¢ € C,[0,1] such that ¢ is linear on [iA — A, iA) and
d((o(id) - 8(iA — A))/A, ¥(s)) < By
fors e (iA — A,iA), iA < 1},
¢ € B'(¢) = {¢: ¢ is constant on [iA — A, iA) and |y (iA — A) — ¢(iA — A)|
<vy,iA <1}.

Since an upper bound for H(x, a) is K|«|, |8| > K implies L(x, 8) = oo. It
follows that S,(¢) < oo implies ¢ is Lipschitz with constant K. Hence for small
enough A > 0, S,(¢) < oo implies

(26)  sup{ sw [3(1) - ¢(D): B B9)} v, AYs) < (o)

Before tying these estimates together to obtain the proof of Theorem 2.1, we
will need the following lemma, which simply formalizes a discussion in Freidlin
[5, page 142].

LEMMA 25. Fix s > 0 and 8 > 0. Then there exists 7 > 0 such that if

(i) S(¢) = s,
(ii) supy ., <1d(Y(t), $(t)) < m (here { need not be continuous),

then [JL(Y, ¢)ds > s — 8.

PrROOF OF THEOREM 2.1. As mentioned in the remark in the Introduction,
given that the level sets @, (s) are compact, the upper bound will follow if we
show that given s > 0 and & > 0 there is ¢, > 0 such that for & < ¢,

elog Px{x‘ & @x(s)h} < -s+h.

Now fix h > 0. Choose 1 according to Lemma 2.5 with § = h. Take y = A A
(n/8) and pick A small enough so that (2.6) holds. Define R’ to be the compact
subset of C,[0,1] containing all paths with Lipschitz constant less than or equal
to K and let R = R"\ ®,(s)". Pick a finite yA-net for R: {¢;, 1 <i < N}. We
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then use the estimate
(2) Pixe 0(s)") < DRt < ()").
1
As shown previously, for each 1 <i < N,
limesupslog Pfxe {¢i}VA} < —inffOlL(J), ¢)ds + v,

where the inf is over ¢ € A%(¢,), ¢ € B¥(¢,). Our choice of y, A implies:

(i) For any ¢ € A(4,), & € BY($,), sup, ., ., d(3(8), (2)) < 1.
(i) ¢ € AY(¢;) implies ¢ & @,(s), s0 S(¢) > .
(iii) y < k.

It follows that
limsupelog Px{xe & d)x(s)h} < —-s+2h

and the theorem is proved. The upper bound is in fact uniform in x-and s < s,
since we can choose a finite yA-net for the compact set {¢: |¢| < K as,
¢(0) € F}, which contains all possible sample paths starting in F. O

3. Lower bounds. In obtaining the upper bound we were able to assume
that each sample path of x°(-) of interest was close to some element ¢; of our
vA-net of the set R. This fact, together with A2, allowed estimates on a
“sampled” system {x*(A), i < 1/A} to be used in lieu of x(-) in order to obtain
the bound. Consider (1.1) and, for (deterministic) ¢, define x®¥(-) as x%(-) was
but with {(ne) replacing X3 in the b term. In [5], Freidlin used the exogenous
nature of the driving noise and a Lipschitz condition on b(x, ¢£) in x to obtain a
lower bound for P{x® € {¢)°}, where § > 0, in terms of P{x®¥ € {¢}*/?}, for a
suitably chosen y near ¢. He essentially used the fact that if X2V is near to
¢(ne) and hence Y (ne), then we must have

Xoh = Xo¥ + eb(X2¥, £,) + small error.

This fact and Gronwall’s inequality complete the argument, and the particular
nature of the noise process never enters into the estimating procedure.

This is not possible in our case. Following Azencott and Ruget [2], the
technique we use is to show that it is sufficient to obtain the lower bound

(3.1) liminfelog P{x® € {¢}°} > —S,(¢)

for a restricted class of “nice” paths for which (3.1) can be proved.

We start by proving an analog of Lemma 2.2 for lower bounds (Theorem 3.1).
Since the proof is not such an obvious adaptation of Girtner’s proof [7] as was
the case for that lemma, we provide the details. Before stating and proving
Theorem 3.1, we develop a few needed results in Lemmas 3.1 and 3.2. It will be
seen that in order to make the “errors” 8§, and §, in the lower bound (3.3) as
small as desired, it is necessary that we be able to control the jumps in the
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derivatives of all convex functions H(«) that are sufficiently close in a certain
sense to a given smooth convex function H(a). The sizes of the jumps at « are
given by diam dH(«a) and Lemma 3.2 bounds this quantity for all a of interest.

LEMMA 3.1. Let a convex function H(a) be given. Let L = H* and assume
{B: L(B) < w0} = R% Let F, C R? be compact and let ¢ > 0_be given. Then
there is v > 0 depending only on ¢, H and F,, such that if H is any convex
function satisfying

|H(a) — H(a)| < y(1 + |af)
and T = H*, then
sup{|L(B) — L(B): BE F} <e.

ProoF. We argue by contradiction. If not, we find & > 0, v, 0, }7, such that
\H(a) — Hya)] < v,(1 + al)
and B; € F; such that for all i
IL(B;) — L(B;)| > &.
We may assume S; —>_,§ € F,. By Lemma 2.4, we may choose 8; and B;* such
that g* — B, B** — B and
L(Bf) — v < L(B;) < L(B!*) + ..
The continuity of L then implies
lim L(B;) = L(B) = lim Ei(ﬁi);

a contradiction. O

LEMMA 3.2. Let a continuously differentiable convex function H(a) be given.
Let L = H* and assume that {B: L(B) < w0} = R% Let F, c R? be compact
and let € > 0 be given. Then there is y > 0 depending only on ¢, H and F, such
that if H is any convex function satisfying

|H(a) — H(a)| < y(1 + |af)
and L = H*, then

sup{diam dH(a): a € U 8E(B)} <e.
BEF,
There are v, > 0 and M < oo (we may take, for example, v, = v when ¢ = 1
in the preceding equation) such that y < v, implies

sup{lal: ae U 3Z(B)} <M.
BeFR
Proor. The lemma is a consequence of [11, Theorem 24.5], which states the
following. Let f be a convex function that is finite on an open convex set C ¢ R¢
and let f, be convex functions that are finite on C and converge pointwise to f.
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Then for any ¢ > 0, X € C and x; € C such that x; — x, there exists i, < oo
such that for i > i,, 3f,(x;) C If(X)-

To start, we take C to be an open, bounded, convex neighborhood of F, and
claim that if y is sufficiently small, then for any B € F}, there is BEF,
(depending on L) such that

dL(B) c IL(B),

where L can be any convex function such that L=H * |H - H| < v(Q + |a)). If
not, we obtain &> 0, v;10, convex H; such that |H,— H| < y,(1 + |a|) and
B; € F, (which we may assume converges to 8 € F)) such that for all 8 € F,,

IL(B;) ¢ IL(B)"

and, in particular,
dL(B;) ¢ L(B)".

But L, is finite on C and by the preceding argument (Lemma 3.1), L,> LonC,
contradlctmg [11, Theorem 24.5].

The second assertion of the lemma is now a consequence of the precedmg fact
and the boundedness of the fixed set {|a|: a € Ugcp dL(B)} [11, Theorem
24.1]. (We may take M = sup{|a|: « € Ug 5 IL(B)} + 1.)

Now take C = R® and use the fact that H — H on C as y —» 0. We have
established that the set Uy dL(B) is contained in the fixed compact set {0},
independent of H. By prec1sely the same argument as before, for small enough y
we know that for any H such that |H(a) — H(a)| < y(1 + |a|) and any « € {0}¥,
there is @ € {0} such that

dH(a) c 3H()".
The differentiability of H implies diam dH(a) = 0 and the lemma is proved. O

From Lemma 3.2 we can obtain our “robust” version of Gartner’s theorem.

THEOREM 3.1. Let H(a) be a continuously differentiable convex function
(and thus finite on R?). Let L = H* and assume {f: L(B) < ©} = R% Let
F, c R? be compact and let u" be a sequence of probability measures. Define

HN(a) = %logfndexp N{a, x)pu™(dx).

Let 8, > 0, 8, > 0 be given. Then there is y > 0 such that if
(3.2) H_ (a) < liminf H¥(a) < limsup HY(«) < H (a),
then for all B € F,,

(8.3) liminf%logu’v({ﬁ}s‘) > —L(B) - 6,.
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PrOOF. We first prove that (3.2) implies { HV} is precompact in the topology
of uniform convergence on compact subsets of R€. Let F, R be compact and
let R be such that F, c {0}%. By (3.2) we can find A, h such that (at least for
large Ny)

(84 —ow<hx< inf HMa) < sup HMa) <h< .

N= Ny, a{0p® N2 Ny, ac{0)2R
The convexity of H" and (3.4) imply that H" is Lipschitz on {0}® with a
constant no bigger than (A — h)/R, and precompactness follows from Ascoli’s
theorem. . L

Choose M < oo such that for |H — H| <y(1 + |a|]), L =H* B€ F¥ and
a € JL(B), we have |a| < M, and such that M is independent of y for small y
(Lemma 3.2). Pick vy < §; A §, according to Lemma 3.2 so that for any convex H
such that H_, < H < H, and any a € {0} we have

diam 0H(a) < 8, A (8,/M).

Take any subsequence of N and extract a further subsequence, again denoted
by N, such that HN converges. If we prove (3.3) for this subsequence, then it will
be true in general. Let H(a) = lim H™(«). Being a limit of convex functions, H
is itself convex. By (3.2),

H_(a) < H(a) < H(a).

Define L = H* and let 8* € F, be given. By Lemma 2.4, there is B’ such that
|B* — B’| <8, and L(B’) < L(,B*) + 8,. As B’ is interior to {8: L(B) < 0},
there exists o’ € dL(B’) so that

L(B’) = sup[(a, B’y — H(a)] = (o, B’y — H(«)

and B’ € dH(«’) [Lemma 2.1(iv)]. We fix B’ henceforth.
Following Géartner, we now define the probability measures

pN (1) = [exp N(@, y) = HN(2)uM(dy).

By defining
1
HN%(a) = Flogj;dexpN(a,wa’“'(dx),
we see
HN%(a) = HN(a + o) — HN(&).

This implies

H(a) = lim HY“(a) = H(a + «) — H(&),

L(B) = (H*(a))* = L(B) - [(«, B) — H()].
Since

L(B) > [(«, By — H(«)]
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when B & dH(a’) [Lemma 2.1(iv)], we have L*(8) = 0 if and only if 8 € JH(«).
It follows from this and Lemma 2.2 that for any &’ > 0, p™ “(R%\ dH(a)*) - 0
[and therefore p™ “(dH(a)’) = 1] as N - 0.

We now use the equality

(35)  wN(9H(«)®) = —_ N(=(«, yy + HN(a))p"*(dy).
Since we have bounded the diameter of dH(«') by 8,/M and since B € dH(«)
implies L(B) = (a’, B) — H(a'), we have

L(B)=L(B) +(a,B— By <L(B)+38,
for B € dH('). Now let & = (8,/|«’|) A 8,. Then from (3.5)

pN( 3H(a’)8‘) > ;LN’“'( Bﬁ(a’)s')exp - N sup [(«, B) — HN(«)]exp — NB,.
BedH(a)

We thus obtain [since diam dH(«') < 8,]
liminf%log pN({B')*) = —L(B’) - 25,
and, therefore,
liminf%log pN({B*}*) = —L(B*) - 38,,
and the theorem is proved. O

REMARKS. Each of Lemmas 3.1 and 3.2 and Theorem 3.1 has an obvious
analog in the case where

S={B: L(B) < 0} #+ R

In this case, however, we must choose our compact set to satisfy F, c S° Since
we can possibly have paths ¢ such that S(¢) < co and yet for which ¢(¢) lies on
the boundary of {8: L(¢(t), B) < o}, we encounter technical difficulties. This
will be circumvented in what follows by the introduction of the x*? process.

As was the case in Lemma 2.2, for collections of sequences that are parame-
trized in some way, the estimate (3.3) is uniform for all values of the parameter
for which the convergence in (3.2) is uniform.

We turn now to the proof of the lower bound. We first give our assumptions
and the statement of the theorem. We then introduce and explain the use of the
x%% process. Finally we present several lemmas and finish this section with the
proof of Theorem 3.2. We recall the definition H (x, a) = H(x, a) + y(1 + |a]).

The appropriate assumptions required are:

AssUMPTION A3. There exist a constant K < oo and real valued H(x, a),
convex and continuously differentiable in @ € R¢ and continuous in x, and a
family of o-algebras #%(¢) D o(x%(s), 0 < s < t) having the following properties.
|H(x,, @) — H(xy, a)] < K|x; — x,|(1 + |a|) and, for all A>0, ¢ [0,1 — A]
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(uniformly in x € F and w as.),

(3.6) limsup(e/A)log E, [exp(a, D*x%(t))/el# (t)] < Hza(x(t), @),

(3.7) liminf(e/A)log E, [exp(a, D*x%(t))/el# (t)] = H_ga(x%(2), a).
REMARKS. We have made the assumption that

(3.8) |H(x,a) — H(X, a)| < K|x — %|(1 + |a]).

Let L(x,B) = (H(x,a))* and S(x) = {B: L(x,B) < oo}. It follows from (3.8)

and Lemma 2.4 that S(x) is Lipschitz in the Hausdorff topology. We note this

fact because it is often easy to characterize S(x) in terms of the statistics of the

forcing terms and, hence, provide a simple necessary condition for A3 to hold.

For example if the system is the interpolated version of X:,, = X: + eb (X)),

where {b,(-)} is a sequence of i.i.d. random vector fields (Section 4.2), then one
can easily prove that S(x) is the convex hull of the support of the distribution of

b, (%)

THEOREM 3.2. Assume Al and A3 and define S(¢) as in Theorem 2.1.
Then, in addition to the conclusions of Theorem 2.1, a large deviations lower
bound holds in the form of,

(iv) for any Borel set A C C,0,1],
liminfelog P{x* € A} > — inf S(¢).
€ e A°

The x*® process. Let w(-) be a standard R? Wiener process starting at 0 at
time ¢ = 0 that is independent of x*. Let

x50 = x* + /2w,
2

H%x,a) = H(x,a) + —2—|a|2,

Ld(x,B) = (Hs(x, a))*,
S2(9) = [(L(s,9) ds.

Our proof will make use of the x%? process. The advantage of dealing with x*?¢ is
that the presence of the quadratic term in H? implies that L%(x, B) is finite for
all B8 € R? and, as we will see, continuous in x € F, B € R% This allows the
convergence that will be obtained in (3.12). The “error” due to the introduction
of the Wiener process term will be shown to be negligible from the point of view
of large deviations.

REMARK. As pointed out previously, L(x,B) = co if |B| > K. We shall
therefore only have to consider paths ¢ for which |¢| < K as.

LEMMA 3.3. Let 8 > 0. Then L(x, B) is continuous for x € F, B € R%

ProOF. The lemma is a consequence of A3, Lemma 3.1 and the continuity of
L%x, B) in B (uniformly in x € F for any fixed 8). O
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The following lemma shows that in proving a lower bound for the x%? process,
we can restrict ourselves to a set of “nice” paths.

LEMMA 3.4. Let L(x, B) be continuous and let S.(¢) be defined as usual. Let
h > 0. Then given ¢ such that |$(t)| < K a.s., there is ¢ such that:
(i) ¢" is piecewise differentiable.
(i) ¢" & {p}*
(i) S(¢") < S(¢) + A.
@(iv) |¢" < K.

ProoF. The proof is similar to [2, Lemma 4.4]. Let y > 0. We can find a
finite number of disjoint Borel measurable sets A; and vectors v, such that
|v)] < K and

$) = LouL, ()<

We can then choose B; that are the union of a finite number of intervals and
that are disjoint and satisfy
n

2 m(A;sB) <y,

i=1

where m is Lebesque measure and A; 2 B; = A;\ B; U B;\ A,. Define
$M(t) = L odp(t),  ¢*(0) = 4(0).
i=1
Then since m{t: |¢ — ¢ > v} <,

|6(t) — o™(t)| < v(K + 1)

on [0,1]. Since L(x,B) is uniformly continuous on F X {0}, we obtain the
desired result when v is sufficiently small. O

COROLLARY 3.1 (to Theorem 3.1). Fix § >0, §, > 0, 8, > 0 and a compact
set F\. Assume A3 and let § be a N(0,I) Gaussian random variable that is
independent of x%(-). Then there exists A, > 0 such that for any A, > A > 0 and
any B such that B € F,,

(39) ™ inf(e/A)log P{(D*x<(t)/A) + (£/286/82) € {B)*#(t)}
> —L%x%(t),B) — &,
uniformly in w, x € Fand 0 <t<1 - A.
ProoOF. Since
Eexp|(a, Dx(t) /e + /286,62 #4(t)|
= E_[exp(a, D*x*(t)/e)|# *(t)] exp A8%|a|?/2e,
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the result is a consequence of Assumption A3, Theorem 3.1 and the definition of
Hi(x, a).O

ProoF OF THEOREM 3.2. Let 8, > 0, 8, > 0 and ¢ be given. We may assume
S.(¢) < oo, since otherwise there is nothing to prove. Let S(T, ¢) denote the
functional defined as S,(¢) was, but with [0, T'] replacing [0, 1].

The first step is to show that there is T > 0 (in the following text, it will be
seen that it is sufficient to consider any T < 1/10K) such that given ] > 0,
8, > 0, there is 8; > 0 such that

liminfelog B,{x* € {9}%} 2 -8, (T, $) — 8,

uniformly in & and x such that |x — ¢(0)| < 8;. (We consider x° only on the
interval [0, T'] here.) Pick & such that (87)2/508%dT > S,(T, ¢) + 1. Without
loss of generality we may assume ¢ satisfies (i)—(iv) of Lemma 3.4 on [0, T']. By
Lipschitz continuity, for A < §;/10K, we have
|D*%e(iA)| < 81/10, | D%(id)| < 87/10
for ¢t € [0, A]. Also, since ¢ is piecewise differentiable, by picking ‘A smaller (if
necessary) we can ensure |D'(iA)| < 87/5T for t € [iA,iA + Al
Now define the sets

2, = {D%x*(ih) /A & {8(in) )"

and let Hi = Rx{nksiﬂk}. We Will again use
I, = Rc{QJ ﬂ Qk}ni—r
k<i-1

Since [¢p(iA + A) — ¢(iA) — Ad(id)| < A8;/5T, it is clear that if |x — ¢(0)] <
8, /5, then on the set N, _,Q, we have

|x®2(iA + A) — ¢(iA + A)| < 387/5.
It follows that off the set where

(3.10) sup |e/%w(t)| > 81/5,
0<t<T

the Lipschitz continuity of x° and ¢ imply
sup |x(¢t) — ¢(¢)| < 8]
0<t<T
The probability of the set given by (3.10) is smaller than

2d exp — (8])°/5082dTe < 2d exp — (S,o(T, ) + 1)/¢

[12, Theorem 4.2.1] and hence is negligible for small e&. We can therefore use
elogIT, as a lower bound for ¢log P{x* € {¢}}, when ¢ is small.

Using the fact that on N, _;_,2, [and off the set where (3.10) holds] we have
|x%(iA) — ¢(iA)| < 8], Assumption A3, and Lemma 2.4, we can obtain B(iA)
depending on x%(iA), ¢(iA) and ¢(iA) such that |B(iA) — $(id)| < K8 <
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87/10T and
L¥(x(iA), B(iA)) = L¥(¢(id), $(id)) — K8;.
Consider the subset ), of @, given by {D*x®>%_iA)/A € {B(iA)}%/°T}. Now

choose y via Corollary 3.1 for our §;/10T, 8, (equal to 8,, 8, there), and any
B € {0}X+X%_ Again pick A smaller to ensure KA <vy.We then have

hmmfelogP{Q| N szk}> hmmfslogP{SZ’ N szk}

k<i—1 k<i—1
> A(—L(x%(iA), B(iA)) — 83)
A(-L¥((id), $(id)) — 8 — K87).

[\

This implies
liminfelog P,{x* € {¢}%)

> liminfelog Il s

(3.11) e
((T/A)—l

v

Y AL%(¢(id), ¢(iA)) | — T(8; + K87).
i=0
By virtue of the special properties of ¢ satisfying (i)—(iv) of Lemma 3.2 and
the continuity of L® on F X R, the right-hand side of (3.11) converges to

(3.12) - "L%(9,$) ds — T(8; + K8)

as A — 0. This proves our assertion.

The proof for the interval [0, 1] now follows by dividing the interval into 1 /T
subintervals, and using the fact that our estimate on [0, T'] holds uniformly for
x¢ starting in a neighborhood of ¢(0). Suppose for simplicity that 1/T = 2. In
the interval [T,2T] let &; = 8,/2, 8; = 8§, and obtain §; > 0. In the interval
[0, T] let 8; = 8,/2, 6] = &}. Then

liminfelog P{x* € {¢}"}

> liminfelog P{ sup |x%(¢) — ¢(¢)] <8;and sup |x(¢) — ¢(2) < 81}

0<t<T T<t<2T

v

liminfslogP{ sup |x(¢) — 6(2), 535}

€ 0<t<T

+ hmelnfslog (T){ sup Ix (¢) — o(2) <8, I|(x AT) - ¢(T))|<3}

8T, ¢) = Syr(T, ¢( +T)) - &,
= _Sx(¢) - 2

Finally, we consider the uniformity issue. Let 6 > 0 be given. From the
preceding proof and the ls.c. of S, (¢) (see the Appendix), we may associate to

v
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each ¢ € #= {¢: S(¢) < s, x € F} positive numbers y(¢) < 8 and ¢ ¢) such
that for |¢(0) — x| < v(¢) and 0 < e < g(¢) we have elog P{x® € {¢}°) =
—S,0(9) — 8, and for every Y € {$)"® we have S, (V) > S,(¢) — 8. By the
compactness of 5 there is a finite collection {¢;, 1 <i < N} C 5 such that
#c UN {¢,)7%). Define e, = AN 1e,(¢;). Then given ¢ € #, one of the ¢,’s is
within y(¢;) of ¢ and, hence, for 0 < ¢ < ¢,

elog P‘,,(o){::ca e {¢}28} > elog Pq,,(o){xe e {¢i}8}
—S¢,(0)( ¢;) — &

v

v

4. On Assumptions A2 and A3. While the preceding sections provide a
good notion of some sufficient properties that a stochastic process with Lipschitz
paths must possess in order to have a L.D.P., it is typically difficult to formulate
general conditions under which the assumptions hold and it can also be difficult
to obtain computable formulas for H and L.

In this section we shall show that the large deviations results presented in [5]
and [2] can both be obtained as special cases of the theorems presented here and
that the upper bound in fact holds under weaker conditions. We then consider
models not covered by either [5] or [2], which involve state dependent noise, and
indicate when A2 and A3 hold. The examples presented merely suggest the
possibilities, without attempting to be complete.

4.1. In [5] Freidlin considered the model (1.1) [with |b(-,- )| bounded and
exogenous noise] and assumed the following: For every pair of piecewise constant
functions ¢(-), a(+) mapping [0, 1] to R¢, we have

N
) lim%logEexp[E (a(i/N), b(6(i/N), £))
4.1 i=1

- fO‘H(qb(s),a(s))ds,

for some H(x, a), convex and differentiable in a and continuous in x and that
b(x, §) and its first derivatives are bounded. For our assumptions we take
F(t) =0(§;,i <[t/e] + 1). A3 implies (4.1) but the converse is not true and A2
does not imply (4.1).

Our assumptions do not completely cover this case since we assume that the
convergence in A2 and A3 is uniform conditioned on % (t). Freidlin uses only
(4.1) and does not need the uniform convergence in the data. However, it seems
likely that a proof that (4.1) itself is true would require this uniformity. It should
be noted that in any case such uniformity assumptions are necessary if one
wishes to use theorems on large deviations to prove more complicated results,
such as asymptotics for the mean exit time and locations of exit from a stable
domain.
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However, if we add the uniformity assumption, then one can easily show that
Freidlin’s case fits directly into our scheme. Let K’ be the Lipschitz constant for
b(x, ¢) and let K bound |b|. Then

(t+A)/e
eXP<a, z b(Xf’éi)>Vf”(t)]

i=t/e

limsup(e/A)log E

< limsup(e/A)log E |exp

(t+A) /e
@, Y b(X;,, &) +K’KAZI&I/E)19'”(10

i=t/e
= H(x*(¢), a) + K'’KAla| < Hgga(x%(2), @)

and the analogous bound holds for the lim inf. In fact, it is clear that for A2 the
Lipschitz condition is not needed and we can assume simply that b(x, §) is
continuous in x (uniformly in £).

4.2. Let p, be a family of probability measures on R¢ that are parametrized
by x € R? and let b,(x) denote a sequence of independent random vector fields
satisfying P{b,(x) € A} = p,(A). Define a dynamical system X¢ by setting

Xe o, =X:+b,(X,), n=>0,X=x.

This is the situation considered in Azencott and Ruget [2]. Actually [2]
considers a more general setup in which the state space of the process X: is
allowed to be a connected Riemannian manifold. However, this can be reduced to
the case considered here via “localization” arguments (such as those used in [1])
and the “contraction principle” [6, Theorem 3.1]. Define

H(x, a) = log [ exp(a, &)m.(dt),

L(x, B) = (H(x, @))*. An essential hypothesis used in [2] is that the “level sets”
{B: L(x,B) <I}

vary in a Lipschitz fashion in the Hausdorff metric. This was in turn shown to
follow from the existence of K’ < oo such that

(4.2) |H(x,a) — H(y,a)| < K'|x — y||a

[2, Lemma 3.7] (at least for the case considered there, where the u, were assumed
to be supported in a fixed compact set that is independent of x, for x in any
compact set). In addition to this assumption, a uniform nondegeneracy condition
on

S(x) = {B: L(x,B) < 0}

was also required. This latter assumption is not required in our approach.

To see that these assumptions are a special case of Al and A3, we first note
that the compact support requirement for the u, measures gives the Lipschitz
constant K required of x%(-). Take F%t) = 0(Xf,0<i<[t/e]+ 1). Then



LARGE DEVIATIONS OF RECURSIVE ALGORITHMS 1529

[with N = t/e and N’ = (¢t + A)/e]

€ N
XlogE exp<a, )y bi(Xie)>|3“(t)]
i=N
e N'-1
= {log Elexp( a, ¥ 5(X) )E [exp(a, by(X5))IX |17 (2)
i=1
e N'-1
<3 log E |exp{ a, Y. b,(X?) )\#(t)| + H(X, «) + K’'KA|a|
i=1

< H(Xy,a) + K'KA|a|.

Hence
(t+A) /e
limsup(e/A)log E |exp( «, Y, b(X;) )1#(¢) < Hyga(x°(2), ).
i=t/e .

An analogous lower bound holds for the lim inf.

It is not a simple matter to formulate general conditions on p, under which
(4.2) holds and a good deal of effort is expended in [2] to show (4.2) for some
interesting cases. The interested reader is referred to [2, Propositions 3.9 and
3.11] for examples.

We note that it is easier to prove the weaker A3 than (4.2). Again, for the
upper bound, the Lipschitz conditions can be weakened to simple continuity.

4.3. Our next example is based on results presented in Iscoe, Ney and
Nummelin [9]. The model we work with is the following:

Xt =X+ eb(X:,¢,), X5 =x.

Dynamics. We assume that b(x, £), x € R ¢ e E is bounded and uni-
formly (in £) continuous in x and that b is measurable in £.

Noise model. We will assume that given £,_, and X, the value of £, is
distributed according to a Markov transition kernel having a density with
respect to a fixed measure A that is independent of x:

P%i(¢, dy) = p¥(¢, ¥)N(dY)

(so that if X were fixed at x, then the noise process would be a Markov process
and the state X enters into this process only through the transition density).
In order to get a uniform L.D.P. for functionals of the noise £, we will need to
assume that, given a compact set F), the transition density p*(¢, ), or the
transition density for some fixed finite number of iterations of P*(¢, dy), is
uniformly (in ¢ € E and x € F;) bounded above and below away from zero. It is
proved in [9, Lemma 3.2] that under these assumptions the following is true: If
&7 is defined as the noise process was but for fixed x, then there exists H(x, a)
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such that (uniformly in &5 = £,)
1

(4.3) lim—

N
log Ezoexp<a, Y b(x, §f)> = H(x, a).
i=1

It is also proved [9, Lemma 3.4] that H(x, a) is convex and smooth (analytic)
in a. Define #4t) = o((X5, £,),0 <i < [t/e] + 1).

LEMMA 4.1. Consider the dynamics and noise model described previously.
Assume given compact F, C R? that:

(i) There are 0 <a <A < oo such that for all x € F,, & ¢ € E,
a < p*(&, ) < A (or that this is true for the transition density after some finite
number of steps).

(ii) p*(é, ¥) is continuous in x, uniformly in &,y € E, for x € F,.
Then Assumption A2 holds. If we strengthen the continuity in (i) and b(-, £) to
Lipschitz continuity, then A3 holds.

ProOF. Let y > 0 be given. Using the continuity condition and the lower
bound on p*(§, ¢), there is § > 0 such that for |x — y| < §,

pl(&¢) =p*(&,¥) + (p(&¥) - (&, ¥))
(& ¢) — p™(&,¥)|

a

< p*(& ¥)exp(p2(§,¥) — p*(§,¥))/a < p*(£, ¥ )expy,

<p*(&y)1 +

and similarly

P*(&,¢) <p’(& ¢)expy.

It follows from the uniform continuity of b(x, £) in x for all ¢ that for small
8 > 0 we can obtain

E, [exp{a, (3, £))] < B, [exp(a, b(x, £))]expy(1 + |a])

uniformly in £,, when |x — y| < 8. The proof is completed by iterating back-
wards (as was done in Section 4.2) and using (4.3). The proof of the second
assertion is completely analogous. O

4.4. The results presented in [9] actually cover a much broader range of
processes than the relatively simple example given in Section 4.3. Our present
example will make greater use of the generality of their results, without in any
way being complete in this respect.

We consider an extension of the previous example to the case where b(x, §) is
no longer deterministic but is instead an i.i.d. sequence of a random vector fields
whose distribution depends on the pair (x, £). We therefore adopt the notation
b(x, £). For simplicity we shall assume that the distribution of b,(x, £) is
concentrated on a finite set of points a;, 1 < i < N, and that the a; depend only
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on x. This can be viewed as the Markov version of the example of Section 4.2.
We have

N
P{bn(x, ‘E) € A} = Z pi(x’ g)sai(x)(A)
i=1
for some measurable functions p,(x, £) satisfying
N
Y pi(x,86) =1, 0<pix,é)<1,1<i<N.
i=1

(In order to correctly define the process, what really needs to be done is to prove
the existence of the sequence of independent random vector fields {b,} described
previously. We shall, however, ignore the details on this point, since it is
essentially the same situation as encountered in [2, Section 5].)

LEMMA 4.2. Consider the model just described. Make the same assumptions
on the transition kernel as in Lemma 4.1. Assume in addition that:

(i) The functions a,(x),1 < i < N, are continuous.
(ii) The functions p,(x, &), 1 <i < N, are continuous in x (uniformly in §)
and either bounded from below by ¢ > 0 or identically zero.

Then Assumption A2 holds. If we strengthen the continuity in (i), (ii) and b(-, £)
to Lipschitz continuity, then A3 holds.

ProOF. The results in [9] imply the obvious analog of (4.3):

1 N

hmjv—log Eeoexp< a, Z bj(x, g;)> = H(x, a).
Jj=1

It follows from the assumptions (i) and (ii) that given y > 0, there is 8 > 0 such

that if |[x — y| < 6, then

N
;1 (exp(a, a;(x)))pi(x, £)
(4.4) R

< X (exp(a, a,(¥)))pi(y, §)exp v(1 + |al)
i=1
uniformly in £. In the Lipschitz case there is K such that we may take y = K§.
The proof is now the same as that of Lemma 4.1. O

4.5. Continuous time. For examples of continuous time processes satisfying
the conditions of Al, A2 and A3 we refer to the continuous time examples
presented in [5]. For an example involving state dependent noise, one can
consider the continuous time version of the process considered in Section 4.3.
The proof of an analog of Lemma 4.1 is essentially the same, save that one must
quote the continuous time results in [9].
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5. Projection algorithms. Oftentimes recursive algorithms must be chosen
that will achieve a goal (such as convergence to an optimum point of some sort)
subject to constraints, such as requiring some kind of feasibility at each step. In
this section we consider a method that is commonly used in such situations,
namely projection algorithms. With projection algorithms, the state is mapped
after each iteration onto the point in a feasible set G that is closest. We consider
this problem in the context of the model of Section 4.4.

The approach we take to proving a L.D.P. for such algorithms is to adapt the
technique used by Anderson and Orey [1] for reflected diffusions. For simplicity
we confine ourselves to the simplest possible case, where G = {x € R: x > 0}. If
G is the closure of an open connected subset of R¢ with sufficiently smooth
boundary, then the general result follows from this special case [1, Sections 1.3

and 1.4].
Let 7(x) = 0 V x. We define the projected algorithm as
(5.1) X, =m(X:+eb (X5, ¢,)), Xi=x20.

Define x¢(-) as the usual piecewise linearly interpolated version.

THEOREM 5.1. Make the assumptions of Lemma 4.2 and define

L(x,B), ifx>00rx=0,8>0,
L(x,B) = ;IéfoL(x,,B), ifx=0,B=0,
0, else.

Define
5(9) = ['L(4,9)ds

if $(0) =x >0 and ¢ is absolutely continuous, and set §x(¢) = o0 otherwise.
Then x*© as defined through (5.1) satisfies a L.D.P. (in the sense of Theorems 2.1
and 3.2) with functional S(¢).

ProoF. Consider the unrestricted version of X;:
X=X+ eb(X5,8,),  Xi=x
Define £¢(-) as usual and define X%(-) to be the piecewise constant version of X:
having interpolation interval &:
x%(t) = X: fort < [ne, ne+¢).

We define a mapping T on the set of paths (continuous or not) sending [0, 1]
into R. T maps ¢ to ¢ if
(52) 8(t) = () = (inf_¥(s) A 0).

0<s<t

It is easy to verify that X? = I'(x®)(ne), which together with the definition of T’
and the fact that x%(ne) = £%(ne) imply that X: = I'(£°)(ne). We may therefore
write

X;+1 = ~;§ + £bn(r(:ic'e(ne)), gn)’ X(; =Xx.
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A simple calculation shows
(5.3) OsuP t|r(4’1)(s) = T(¥p)(s) < 203‘113 t|4/1(3) = ¥u(s)l-

It is now quite easy to adapt the proofs of Theorems 2.1 and 3.2 to yield a
L.D.P. for £¢, with functional

5(9) = ['L(T(6)(s), 6(5)) ds.

The important fact needed is that the inequality (5.3) ensures that the iterates
X¢ = I(&%)(ne) still vary in a sufficiently slow way, i.e., the interpolated paths
are still Lipschitz continuous.

Because the restriction of the map T to C[0,1] is continuous (with respect to
the sup norm) we can employ the contraction principle [6, Theorem 3.1] to
deduce that T'(£°)(-) satisfies a L.D.P. with functional

S¥(¢) = infS(y),
where the inf is over ¢ € C,[0,1] satisfying ¢ = I'(). The infimum over the

empty set is defined as + co0. Note that S,(¢) < oo implies ¢(¢) > 0 on [0,1]. For
absolutely continuous ¢ and ¢ we have ¢ = I'(¢) if and only if ¢(¢) > 0 and

P(t) = ¢(2) + () y5y=0) 2.
where 7(t) is any nonpositive, measurable function [3, Lemma 4.7]. Therefore
5(9) = S(¢)-
To finish the proof we need to take care of the fact that I'(£°) is not

necessarily the same as x° between the interpolation points ne. But this does not
actually pose a problem since I'(£¢)(ne) = x%(ne) implies
sup |T(£°)(s) — x%(s)| < Ke,
O<s<t

and therefore x* satisfies a L.D.P. with the same functional as I'(£®) (this latter
assertion follows from the equivalent formulation of a L.D.P. mentioned in the
first remark in the Introduction). O

6. Example: Application to a routing problem. We apply the results to
study an automatic routing problem considered in [10]. The description of our
system is as follows. Calls arrive at a switching station at random at the discrete
times n € Z*. We have

P{one call arrives at time n} = p, p€(0,1),
P{two or more calls arrive at time n} = 0.
From the station, there are two possible routings to the destination; the ith
route has N, lines and can thus handle N; calls simultaneously.

Let [n, n + 1) denote the nth interval of time. We assume that the duration
of each call is random with a geometric distribution:

P{call is completed in (n + 1)st interval|
uncompleted at end of nthinterval} = A;, ;€ (0,1).
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We shall assume that the double sequence of call durations and interarrival
times are mutually independent and to obtain an unambiguous formulation we
shall assume that calls terminating in the nth interval actually terminate at
time n + 1 and that calls come in and are assigned to routes at times n € Z*.
Define ¢ equal to the number of lines of route i in use at time n (this includes
those that have just been assigned).

We now describe the routing mechanism. We shall define a recursive al-
gorithm whose state will control how assignments are made. If the state takes
the value x € [0,1] at time n, then a random variable 7, with distribution

_ 1, w.p.ux,
=12, wp.l-—x

is generated.

If a call arrives at time n, it is assigned to route 7,,. If all lines are full, it is
reassigned to the alternate route, unless those lines are all full, in which case the
call is rejected and disappears. Let JJ} be the indicator of the event {call is first
assigned to route i at time n and is accepted by route i}. We may then update
the state by calculating )

x+e(l—x)J)! — exd?

and projecting this value onto some interval [/, u], 0 <l <u <1.

The transition probabilities of the route occupancy process {£}} are thus given
by (for i = 1)
P&, = ¢|¢,_| = ¢, state = x}
px(l —A,), & =£(+1, <N,
0, f&=¢§+1,6=N,
Q-p)A=A) +pxd +p(1-x)Q -2y, f&=£(£0<E<N,
Q=)@ -A) +px+p(1-x)A -2y, = E=N,

(1-p)+pd-x), ifg=¢£=0,

(1— A, +p(1 = x)A,, if&=¢-1,0<¢,
0, ifgr=¢—1,¢=0,
0, else.

It follows that if we define R,= (1 — x)J) — xJ?2, then for fixed x,
{(5},, £,2,), R,,} is a process satisfying the conditions of Section 4.4. We have
P(R,=r|(£, ) = (£, 82), 2}
px, ifr=(1-—x)and ¢ <N,
0, ifr=(1—-x)and ¢ = N,,
p(l —x), ifr= —xand ¢ <N,,
0, if r=—xand £ =N,
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and P{R, = 0|(£., £2), x} is defined so that the conditional probabilities sum
to 1.

The algorithm may then be defined by
Xrez+l = Xri + ERnly’ Rn = (1 - X:)Jr: - X7

n=n>

where | denotes the projection. _ _ _
In this case the action functional is given by S(¢) = [iL(¢, ¢) dt, where L is
defined in terms of L = H*:

L(x,B), ifl<x<uorx=18>0
orx=u,B <0,

L(x,8) = PEL(LB), ifx=1B=0,

;nfOL(u,B), ifx=u, =0,

0, else.

REMARKs. If the system just described is replaced by the analogous system
with no projection (in which case the state will still remain in [0,1]), then
Assumption A3 is no longer valid. It is easy to show that

[-x,1-x], x€(0,1),
S(x) = {{0}, £=0,1.

Since S(x) is not Lipschitz, A3 cannot hold (see the remark after A3).

Although we have presented the simplest possible problem of this type, it is
clear that this model can be generalized considerably, for example, in the number
of lines and switching nodes or in the input and call length statistics, and still
admit an analysis of the type given.

APPENDIX

In this section we concern ourselves with referencing and proving the lower
semicontinuity results that were needed in the paper. All results that follow are
under assumptions Al and A2 which imply that H(x, a) is convex and continu-
ous in a (for fixed x), u.s.c. in x (for fixed «) and that |H(x, )| < K|a|.

LEMMA Al Let L(x, B) = (H(x, @))* and define S(¢) and ®s) as in
Theorem 2.1. Let y mapping [0,1] into F be measurable. Then:
(i) L(x, B) is Ls.c. in (x, B).
(ii) Both S,(¢) and [JL(y, $) ds are Ls.c. in ¢.
(iii) ®,(s) is compact in C,[0,1] for any s < oo.

PRrOOF. (i) Define a(x, B, n) such that (a(x, 8, n), B) — H(x, a(x, B, n)) >
L(x, B) — 1/n. By the continuity of the inner product and the u.s.c. of H(x, ),
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there is a neighborhood N of (x, 8) such that for all (x’, 8) € N,
<a(x’ B’ n): B/> - H(x,: a(x’ B’ n)) > L(x: B) - 2/n

and hence
L(x’,B’) > L(x,B) — 2/n,
and therefore L(-,- ) is jointly Ls.c.
(ii) [8, Theorem 3, Section 9.1.4].

(iii) Since S(¢) < oo implies |¢| < K a.s., compactness follows from Ascoli’s
theorem and (ii). O
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