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LARGE DEVIATION PRINCIPLES FOR
STATIONARY PROCESSES

By STEVEN OREY! AND STEPHAN PELIKAN?

University of Minnesota and University of Cincinnati

Large deviation theorems at the Donsker—Varadhan level-three type are
established for certain classes of stationary processes. Proceeding from more
general to more specific assumptions allows us to describe the rate function
more explicitly.

Consider a discrete time stationary process (w,) with n varying over the
integers Z and w, taking values in a complete separable metric space M. Then
w = (w,) € M% = Q, and, using the product topology, @ is again metrizable as a
complete separable metric space. Let .#(Q) or .# denote the class of probability
measures on the Borel sets of Q. Let 8: @ — £ be the shift (§w), = w,,,. Let 4,
be the class of p € # such that p=pe 8~ that is, the class of stationary
measures determining stationary stochastic processes. )

For w € Q let &, be the element in .# assigning mass 1 to {w} and let &, be
the #-valued random variable whose value at w is given by ¢, , = n”'E}Z{ 8¢,
Note that for a Borel subset A of @, ¢, ,(A) represents n~! times the number of
k between 0 and n — 1 such that 8%w € A. Given p € #,, the random variable
e, has a distribution pee,!, and our concern is with the validity of a large
deviation principle and the identification of the corresponding rate function.
Here we use the familiar terminology of [10]. Precise definitions are given in the
body of the paper.

The pioneering work on this question is Donsker and Varadhan [2], where this
problem was discussed (actually for continuous time) in case the underlying shift
is Markovian with transition probabilities having good continuity and mixing
properties. Extensions to some non-Markovian situations are included in [4].

In the present paper we always assume M to be compact. In Section 1 a
certain mixing condition (RM) is introduced, and it is shown that this condition
alone suffices for the validity of a uniform large deviation principle. The condi-
tion (RM) does not appear to be comparable with other familiar mixing condi-
tions in ergodic theory. Section 2 briefly recapitulates some results from [4]. If
(RM) is supplemented by a condition (CD) the rate function in the large
deviation principle can be identified as a relative entropy as in [2]. In Section 3 a
certain class of Gibbs measures is considered (the same class studied in Bowen
[1]), it is shown that (RM) and (CD) hold, and an explicit identification for the
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1482 S. OREY AND S. PELIKAN

rate function is given. Finally, in Section 4 some examples and counterexamples
are given, and connections with the work of Takahashi ([8] and [9]) are given.
In Bowen [1] the theory of Gibbs states is developed with the motivation of
applying it to the symbolic dynamics of Anosov diffeomorphisms. We also have
such applications in mind; these will be given in a separate paper.
For stationary Gaussian sequences the large deviation principle has been
beautifully worked out in Donsker and Varadhan [3].

1. Alarge deviation principle. For every integer n let (M,,, %,) = (M, %),
where M is a compact separable metric space and % the corresponding Borel
field. Let

(=]

@ 7)= 11 (M,,%,)

n=-o

be the product space, endowed with the product topology. Let .#(£) denote the
class of probability measures on (£, %), with the topology of weak convergence.
Usually we write # for #(Q). Then Q and .# are also compact separable metric
spaces. The shift 8 and the class #, have been defined previously. If w € Q, &~
denotes the one-sided sequence (..., w_j, @), let @7 = {0™: w € Q}. For any
u € A the system (R, #,0, p) is called a shift. Let .#, be the class of p € #
such that p=ped~!. For —o <m<n<ow let &%, ,=II",% and put
Zy =% m For peM, p, , will denote the restriction of p to %, , and
Pm = Bm m- We now introduce a metric on .#. Choose a sequence (g,) of
continuous functions on  satisfying the following conditions: (i) the space of
(¢,) is dense in the continuous functions on &, (i) |p(w)| <1, w €L, n =

1,2,..., (iii) for each n there exists a positive integer m such that ¢, is
F_ . m-measurable. Now define
0
dist(v,p) = X 27" fqvndv— fqvndu\,
n=1

for v and p € 4.

For each A € # the random variable u(A|%_, ,) is defined only up to p-null
sets. Under our assumptions there exist regular conditional probabilities, that is,
the choice of random variables can be made so that p(-|#_, ()(«) is a probabil-
ity measure on (Q, #) for each w. We shall denote a choice of such a regular
conditional probability by (u*-) or simply p*, so that p*(A) is a version of
R(AIF_, 0)(-). If p €Ay we will always require that for every w € Q BeZF
and every nonnegative integer m,

(1.1) (87 "BIZ_ o, m) () = pfmyy-(B)
holds for p*- a.e. n € Q.
We will consider p € .#, satisfying the following ratio-mixing condition.

(RM) There exists a nondecreasing function m(n) such that 0 < m(n) <n,
m(n)/n — 0 as n - oo, and

o1 pi-( o e oe
lim —sup{log i E€EQ, W ER,AEF, 4 =0.
I’
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Denote by ¢, the .#-valued random variable whose value at « is

1 -1

£n,w = ; Z 80”40‘
k=0

For a fixed p € #, and choice of p* = (u¥%-), let @, ,- denote the distribu-
tion of ¢, under p*-, that is,

Qn,w“(‘d) = I»":,‘[n: 8”"’7 E'M]’

for & a Borel subset of /. Let @, , be the distribution of ¢, under p. Also
define

Pint(A) = ing pi-(4), AeZF,
w €™
and
Qn('ﬂ) = nU‘inf[n: en,'q Gﬂ] = wiené_ Qn,w“(‘y)’

The purpose of this section is to prove the following theorem. .

THEOREM 1.1. Let p € #, with p* satisfying (RM). Then there exists a
lower semicontinuous function K: # — [0, o] such that

1
(i) liminf;log ing Q. .- (&)= —inf(K(v): v €}, o open,
w e

n—oo

1
(ii) limsup ;log sup @, ,-(#) < —inf{K(»): v €},  closed.
w €

n— oo
REMARK 1.1. The K in Theorem 1.1 is easily shown to be unique; see [4].

REMARK 1.2. Our proof exploits the subadditivity of @,(%/) for suitable <.
It is quite similar to the proof given (by Theorem 6.2 of Stroock [7].)

We proceed by a sequence of lemmas. First we introduce the class I' of all
subsets ./ of .# representable in the form

o= {V e

[Yidv—¢,

<egl= 1,2,...,p},

where p is some positive integer, ¢; are real numbers, ¢ < 0 and Y; are real-val-
ued, continuous (hence bounded) random variables, and there exist nonnegative
integers N, and N, so that Y; is #_y y-measurable for1 <i <p.ThenI'isa
basis of convex open sets for the topology of .#. Denote by I, the subclass of T
consisting of all &€ T for which N, = 0.

LEMMA 1.2. For nonnegative integers n and m and « € I,

Quim(H) 2 Q(H)Q().
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ProoF. Observe that

m n

m

€
m+n

*_ = p¥_ 00 =
Mo [8n+me'ﬂ] 8 [( m+n£n m) M]

2”:-[£m€.ﬂ,8n°0m6ﬂ]

- pr-[0mle, € ZNF ., ] (n)p-(dn)

[eme]

= M’?ﬂ’"'q)'[en Eﬂ]l"z-(dﬂ)
len €]

> Q,(#)Qn(H),

where the first inequality follows from the convexity of &/, the second equality
holds because [¢,, € #]1 € #%_, , since &€ I, and the third inequality uses
(1.1). Taking the infinmum over ©~ gives the lemma. O

LEMMA 13. For €T, Q(Z)=0 or Q&) >0 for all sufficiently
large n.

ProoF. Let &€ T and assume @, (%) > 0. The parameter ¢ enters in the
definition of «; let us write &= .2/¢, and for 0 < ¢ let /¢ be defined like /*
but with ¢ in place of . Assume /¢ # Q. For ¢’ < ¢, &/¢ C &/ and indeed there
exists ¢ > 0 such that dist(»’, ») > ¢, whenever »’ € &/° and » ¢ &/°. By taking
¢ < e but sufficiently large we can ensure @, (%) > 0. By Lemma 1.2
Q,,.(Z%)>0for k=1,2,.... For n > m write n = gm + r, 0 < r < m. Then
Qm(#%) > 0. For n sufficiently large dist(e,,,, €,) < ¢, and so [¢,, € #“] C
[e, S #°] and hence Q,(#*) > Q,,.(~*) > 0.0

LEMMA 1.4.
o1 1
lim —log @,(#/) = sup—log @,(s/) = A(s/), /€ Ty,
n— oo

Proor. By Lemma 1.2 —(1/n)log @,(%/) is a subadditive function of n for
&€ Ty; by Lemma 1.3 this function is strictly positive for all large n, or else
identically infinite. This suffices. O

Consider & € T, and write &/ = &/¢ as before. Then

1
lim —log @,(*) = A(#°)
n—oo N
is an increasing function of ¢, and hence it has at most denumerably many points
of discontinuity.

Now let &/ € T, with ¢, N;, N, as in the definition of T. Let &= 6™ and
note &/ € I'°.
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Define I to be the subclass of T consisting of all &/ €T such that the e
corresponding to %7 is a continuity point of the function A(%/¢). Then I' is a
basis of convex sets for the topology of .#.

LEMMA 1.5. For #Z €T, lim, _, (1/n)log Q,(&) = A(H) exists.

PRrOOF. Let &/ € T, then &/ € I'° and if ¢ corresponds to .7, it is a continu-
ity point of A(&¢). For ¢ < ¢ < ¢’ and n sufficiently large
[e, € #°] c [e, € #°] € [e, €2Z7].

Applying @, taking logarithms and dividing by 7 and then letting n — co, the
first and last terms go to A(Z?) and A(F), respectively. Since ¢ is a
continuity point of A(sZ¢) the result follows. O

Now we define
K(v) = —inf{A(&):» €, Z€T}.
It is easily verified that K is lower semicontinuous and convex, and if &/ is
closed and «/® is a §-neighborhood of &7, then

(1.2) lsiil(l)inf{K(v): ve/®} = inf{K(v): v € #}.

(Complete details for the analogous results in [7] are given in Section 6 of that
monograph.)

Proor oF THEOREM 1.1. To prove (i), let » € &, where & is open. There
exists &/! € I'! such that » € #! and #' C /. Then Q,(%) > Q,(«*") and so

1
lim inf ;log Q. ()= A" > —K(v).
Taking the supremum over all » € o7 in the last relation gives (i).

For the proof of (ii) choose &/ to be closed (hence compact). Let ¢ >
—inf{K(»): » € &}. For a > 0, choose for each » € &/ a neighborhood A" of » of
diameter less than a with A" T and A(A") < c. Recall the constants N, and
N, entering the definition of #". With m(n) the function introduced in (RM),
define

k(n) = m(N, + 2n) + N,.
Then k(n) < n for n > n, say. This guarantees
(1.3) — N, + k(n) > m(k(n) + N, + n).

There exist neighborhoods 4" and A4 of » and a positive integer n’ such
that /€T, &/ c A" C N and for n > n/,

[e, et ] 26V [e, e '] 2[e,€N"].

The event in the middle is #_y | 4(»), k(n)+ N, + n-easurable. Now choose a finite
set »,,...,7, such that the correspondmg JV’ ooy Ny cover . For each i,
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1 < i < g, there will be a corresponding .#; depending on integers N{*), N{".
Now

q
pi-len el < X pi-le, e 4]

i=1

q
< ¥z [0 e, e 7]
i=1

Let ki(n) be defined like k(n) but with N{¥ and N{” for N, and N,. Put
8:(n) = sup (logps-[0*[e, € #7]]) - log pine [ 0% e, € #7]]
w €N

(1.4)

and observe that (1.3) allows us to apply (RM) to conclude that §,(n)/n — 0 as
n — oo. Then from (1.4)

1
limsup —log sup p*-[e, €]

n— o0 w e

1 ¢
limsup —log Y sup p*-[8%™[e, € #7]]

n— oo i=1w €Q°

IA

1
max limsup ;log sup p*-[0¥™[e, € #7]]

1<i<q pnoow w eN”

1
max limsup —,;(logpinflo"(")[en € -/V,']] + 6i(n))

1<i<q pow

1
max limsup — (logpmf[e e AN:] + 8,(n))
1515q n—oo

max A(A;) <c

l1<i<gq

IA

and since ¢ was an arbitrary number greater than —inf{K(»):» € &} (ii)
follows. O

2. Entropy. In their work [2] Donsker and Varadhan not only prove the
existence of a rate function K, but they identify it as a relative entropy. As was
shown in [4] their proof can be adapted to more general situations. In addition to
the hypothesis (RM) of Section 1, one needs an assumption of continuous
dependence:

(CD) For every real-valued continuous random variable Y which is #_ ;-
measurable, v~ — p*-(Y) is a continuous function.

Let p € #,, v € M#, and let (p*-),(,-) denote regular conditional probabili-
ties given #__, , as in Section 1; by p*-|, and »,-|; we denote the restrictions
to #,. The entropy H(»; p*) will now be defined. Set Hy; p*) = 0 if v & .//{9 or
if »,-|, < p,-|, fails on a set of w~ having positive »-measure. In the remaining
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cases

dv,-|;
Hes ) = [ [ f Jos dﬂg_lh(y)vw—ll(dy) v(dw”).

Note that H(»; u*) depends on p* and not just u, because one is integrating with
respect to » and p-null sets will not usually be v-null sets.

Throughout this paper we take M to be compact.

The next result, Theorem 2.1, is included in [4]. We include a brief proof,
taking this opportunity to make explicit some details not given in [4].

THEOREM 2.1. Let p € #, with p* satisfying (RM) and (CD). Then Theo-
rem 1.1 holds with K(v) = H(v; u*).

Proor. It will be shown how to adapt the ideas of Donsker and Varadhan
[2]-

Actually in [2] it is not the random variable ¢, but a closely related random
variable ¢;, which is studied. For each positive integer n define ‘7,: @ - Q by
(m,w); = w;, 0<i<n, and (7,0);,, = (mw), for all j. Then ¢, ,=2¢, , o)
Note ¢, , € #y. As n > oo, dist(e, ,, €, ,) = 0 uniformly in w, and the distri-
butions of the random variables (¢, ) have the same rate function as those of the
random variables (¢},). Hence K is infinite off .#,.

In [2] the underlying measure is assumed to be Markovian. We can easily
reduce our situation to that one by keeping track of the past. Formally consider
the space © of all bilateral sequences (n,) withn, = (...,m, _1,m,,0) € Q. For
w= (v, €Qlet &=(d,) € bedefined by &, = (..., w, ,, »,). This mapping
takes p on € onto fi on Q and fi is Markovian, corresponding to a Markov chain
with values in ©~. The measures p*- now correspond to the measures for the
Markov chain started at time 0 at position w~. The condition (CD) is just the
Feller property for the Markov chain. By the results of [2] we have a uniform
large deviation principle with rate function K(#) = H(%; p*) if # is stationary,
and K(#) = oo otherwise. Observe that actually only the closed subspace &, of
consisting of those sequences (7,,) such that 7, , =n,,, ,_, for every integer n
and nonpositive integer £ plays a role. In particular, K(#) < co implies ﬁ(le) =1.
Finally, map back to the original space by ®: § — Q defined by ®(n) = w, where
@, = M, o This map is continuous and @ restricted to $, is a homeomorphism.
To see that one obtains the upper bound (ii) of Theorem 1.1 with H(»; u*) in
place of K, one only needs to note that for » € .#, there is a unique stationary #
on Ql with » = 5o ®~! and from the definition of entropy H(»; p*) = H(p; pu*).

Finally, we must argue that the lower bound (i) of Theorem 1.1 holds with
H(»; p*) in place of K. Our Markov process (w*) will never satisfy the assump-
tions of [2] (there is not even a reference measure in our case). However, going
back to the original shift on @, the condition (RM) is exactly what is needed to
imitate [2]. We sketch this briefly.

Start first with » € #, which is ergodic and satisfies H(»;u*) < o0. Using the
properties of H, one obtains as in [2] that (v,-)y , < (#,-)o, , With corresponding
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Radon-Nikodym derivative §,(w) [¢,(®0) = ¢ (07 @y,..., w,)]. Then ¢, =
¥, ¥Yno0" v ae, so that the ergodic theorem immediately implies the follow-
ing “conditional Shannon-McMillan theorem”:

1
(2.1) lim —logy, = H(v; u*), vae.
n—-oo N
Now for a > 0,

p*lepen] = f e lB¥ndy
[een’]

. 1
> e~ n(HO; K )+a),,w_[e;, €N, —logy, < H(»; p*) + af.
n

Let A4 be a neighborhood of ». Then as n — oo the second factor in the last
member tends to 1, » a.e., so that

1
(2.2) . liminf ;logp,:-[e;l €N'] = —H(v; p*), vae.

n—oo

To obtain Theorem 1.1(i), we need (2.2) to hold for all w~, and indeed the
inequality is to hold uniformly in «~. Let m(n) be as in condition (RM) of
Section 1. Since m(n)/n — 0, there exist neighborhoods #" and 4" of » and a
positive integer n’ such that /' 2 A" 2 A" and

(2.3) [e,en ] ™™[e,en']2le,eN], n>n'.

According to (2.2) there exists an w~ € Q~ and for every a > 0 an n, such that
%logn:—[s; EN] > —(H(V; p*) + %) n>n,
Now it follows from (2.3) and condition (RM) that there exists n’, such that
%logp;“,—[s;,e./i/'] > —(H(v;p*) +a), n=n,,n e€q .

Since dist(e’, , €, ,) — 0 uniformly, the corresponding relation with ¢, in place

n,w -n,w

of &, is also valid.
It remains to consider the case that » € #, is not ergodic. This can be
handled exactly as in [2]. O

3. Gibbs measures. Our compact space will now be a finite set M =
{0,1,..., N — 1}. For any finite sequence (x,, xy,..., X,_;) let

[x0,%..0,2, ] ={0EQM):0;=x;,,0<i<n}.
0 1 n—1 i

Also set B; = {w € Q(M): w, = i}.
Given p € A ,, the condition (CD) of the previous section reduces to

(3.1) w~— p*-(B,) is a continuous function, 0<i<N.

For given a conditional probability distribution (p%*-) defined only for
(B:0 <i< N} one naturally extends it to %. For example, if w =
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(... 0_y, ), B=I[i j, k], p*-(B) is defined as follows: Let wj =
(..., 0w_1, wy, j) and set

M:-(B) = 8100, iﬂ':'(Bj)"":"j(Bk ) .

If (3.1) holds p* will satisfy (CD).

Instead of (M) we will also consider a subshift 2, determined by an N X N
matrix A of 0’s and 1’s. Thatis, @, = {0« € Q: A, = 1for all i}. All concepts
can be relativized to €, and this will be mdlcated by an A in the notation, e.g.,
FA=(BnNQuBeF), #* is the class of probability measures on (2, .”/A)
and /3 is the class of f-invariant members of .#4. Any p € #3 may be
extended in exactly one way to a p € A4 9, evidently pu(B) = 0 for B € &\ JA
This will allow us to start with p € # and apply the results of the previous
section. In working with £, we will assume that there exists a positive integer m
such that

(3.2) (A™);;>0, 0<i<N,0<j<N.

A finite or infinite sequence (x;) of nonnegative {ntegers less than N is
A-admissible if A, =1 for every pair of consecutive elements'x; and x,,,
of x.

PROPOSITION 3.1. Assume p € A3 satisfies (3.1) with v~ varying over Q}
and also

(3.3) inf{p*-(B;): w iis A-admissible} > 0.
Then (RM) holds with m(n) = m. Considering p. as an element of M 4, one can
define (p*-) so that (CD) and (RM) continue to hold for the extended family.

Proor. If x~ and y~ belong to € and x~i and y~i also belong to Q; we
can write
pi-(B;) = p3-(B)(1 + a(x7, y7, 1))
and define
a,=sup{a(x™, ¥y ,i): x, =, —s<k<0,0<i<N}.
Our assumptions imply
(3.4) lim a, = 0.

§— 00
In verifying (RM) it will suffice to consider the supremum over all sets
B e #A, having the form B = 0"™[i,,i,,,...,i,)- Then

MZ;-(B) = zk‘,llfr(Bkl)H:-kl(Bkz) Mﬁ-k, »»-k,,,_l(Bi,,,) T

(3.5)

o by bsi - i Bi)
where the sum extends over all k2 = (k,..., k,_;) such that
(wp, kyy..., k1, 1,) is admissible; by our assumption the sum contains at

least one term, and at most N™~! terms and each factor in the sum is bounded
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below by a positive constant, by (3.1), and bounded above by a constant
times I17-"(1 + «,), and by (3.4)

n—m

lim n 'og [ (1 + a,) =0.
=0

n—oo

The final assertion of the proposition is easily seen to be true. O

Following the exposition of Bowen [1], a certain class of p € .# 3 will be
introduced and called Gibbs measures. (According to traditional terminology
this class ought to be called “Gibbs measures with translation invariant ex-
ponentially decreasing interactions”; see Ruelle [5], Section 5.18.)

For B € (0,1) define the metric dg(w, ) on Q4 by dg(w, n) = B", where n is
the least nonnegative integer such that w, # 7, or w_, # n_,. Let H, denote
the class of real-valued functions ¢ on €, which are Hélder continuous. H, does
not depend on B (though changing B may change the Holder exponent). Note
¢ € H, if and only if there exists a positive constant b and y € (0,1) such that

sup{|¢(x) — ¢(¥)|: x € Qy, y € Qu, x; = y; for |i| <n} < by",
n=0,1,....

We rely on the following theorem: For ¢ € H, there exist a unique p € A 3
and unique real number P for which one can find positive constants ¢, and c,
such that

I"[‘*’O, Wyyeeey wn—l]

exp(—Pn + Tj_p(0%)] ~ 7

(3.6) ¢ <

for every w € , and n > 0. For a proof of the theorem see [1], Theorems 1.2
and 1.22. The measure p is called the Gibbs measure corresponding to ¢. (The
constant P is equal to the pressure of ¢; see [1], Theorem 1.22. If ¢ and ¢’
belong to H, they determine the same Gibbs measure if and only if there exists a
constant ¢ and a ¢ € H, such that ¢ — ¢’ = c + ¢ o0 — ¢; see Ruelle [5].
Theorem 5.21.) For ¢ € H, there exists ¢’ € H, such that ¢'(x) = ¢/(y) for all
x€Q,, yEQ,, with x;,=y, for i >0, and ¢’ determines the same Gibbs
measure'as ¢; see [1], Lemma 1.6.

Given » € #, the notations (v,y) and [y dv will be used with the same
significance. If » € #,, h, will denote the Kolmogorov—Sinai entropy of » with
respect to the shift 6. The principal result of the section can now be stated.

THEOREM 3.2. Let ¢ € H,, p the corresponding Gibbs measure extended to
Q, P the pressure, as in (3.6). Then there exists p* satisfying (CD) and (RM).
The large deviation principle as given in Theorem 1.1 holds and

(38.7) K(v)=H(v;p*)= —h,— (v,9) + P, vEM,,
where (v,¢) = oo if vE Mg\ M}.
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The conditional probabilities p*-(8-[i]), with x € @~ and 0 <i < N, will
be obtained as limits. Assume p is a Gibbs measure. Let

plax_pseees xg,i]

3.8 M) =
(3.8) pE(i) 5]
which is well defined if (x_,,..., x,, i) is A-admissible; otherwise make the
following convention: p{?(i) =0 if A, ;=0, and if A, ; =1, p((i) = (i),
where s is the largest integer such that (x_,,..., x,, {) is A-admissible.

Statements similar to the following lemma can be found in the literature (see
Remark 4.5), but we have found no place where a proof is given.

b

LEMMA 3.3. For a Gibbs measure p, p{”(i) converges uniformly in x~ as
n—o,0<i<NAN.

Proor. It will suffice to investigate the ratios on the right side of (3.8) for
x € 2,. To avoid negative subscripts, define now
P‘[xo’ cc xn’ xn+1]

P‘[xO,'“’xn]

Ba(%x) =

It has to be shown that
Jim sup(jpesp(x) = porn(D: 2 €8y, y €0y, 2=,

fork<i<k+s+1,k>0}=0.

It follows from the definition of a Gibbs measure that p,(x) is bounded away
from O for x € 2,. For (3.9) more information about p is needed. As shown in
[1] there is a useful formula for p[x,,..., x,] involving an auxiliary measure
W €My, a strictly positive function h € H, such that h(x) = h(y) if
x,y€Q,,x,=y, for i >0. Since A does not depend on the past write
h(xyxy,...) for h(x). If 2 = (2, 2,...), then (x,,..., x,2) denotes the sequence
(Xgy+vs Xpy 29, 2p,...). With A = e® the formula for p[x,,..., x,] reads

l"[xo’“" xn]

(3.10) _ }\-("“)fexp{ 'zn: ¢(0f(x0,...,x,,z)}h(xov--’xnz)"'(dz)’

j=0

(3.9)

the integral extending over all z = (z,, 2;,...) such that (x,,...,x,2) is A-
admissible. Assume (x,,..., x,) is admissible and let w = (wy, wy,...) be any
sequence such that (x,,...,x,w) is admissible. Let n = k2 + s,s > 1. On the
right side of (3.10) replace the argument (x,,...,x,2) by (x4,...,%,_w) in
those terms of the exponential sum corresponding to 0 < j < k, and make the
same replacement in the argument of 4. One obtains

k
}\'("“)exp{ Y ¢(0(x,,..., xn_lw)}h(xo, ey Xy W)

Jj=0
k+s

Xfexp{ Y ¢(9f(x0,...,xnz)}p’(dz)

j=k+1
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and the ratio of p[x,,..., x,] to this quantity differs from 1 by a quantity going
to 0 exponentially as s = 0. In like manner p[x,,..., x,_,] is approximated by

k
}\"‘exp{ z o(07(x,, ..., xn_l)}h(xo, ey Xy W)

Jj=0

k+s—1

Xfexp{ Y ¢(0j(xo,...,xnz)}p'(dz).

J=k+1
Hence, defining for n = & + s,

k+s

&, (%) =27 fexp{ x ¢(af(xo,...,x,,z>}w(dz)

J=k+1

k+s+1

x[/exp{ Y ¢(0f(x0,...,xn_lz)}p'(dz)] ,

J=k+1

one finds
M[x0v°°’xn] _
plxgs- vy %noi]

Note that if y, = x, for £ <i < k — s, then a,, (x) = a, [(¥). So (3.9) is proved,
and the lemma follows. O

ams(x)

:n>s,erA}=O.

lim sup{
§—00

PROOF OF THEOREM 3.2. Let p be a Gibbs measure. Using Lemma 3.3, define
pa-(B;) = lim p(2(i),
n—oo

for w € Q4. Then the conditions of Proposition 3.1 hold and so the conclusion of
this proposition applies. Now Theorems 1.1 and 2.1 apply. This justifies all parts
of Theorem 3.2 except the second equality in (3.7).

For v € #}' define

v[wgy.ner@,_1]

F[wOv"»“M—l]'

1
v =1
R(v) = —log
By (36)'
1 1 n—1
R’(w) = —logv[wy,...,w,_1] — — X, ¢(6%) + P + a,(w),
n n o

where a,(w) = 0 uniformly in . One obtains immediately that as n — oo,

(3.11) (v,R,) > —h,— (v,9) + P.
We wish to identify the right side of (3.11) as H(»; p*). For w € ©, put
v[wk,...,wn] f—n,l(‘*’)
fk, n(w) =

plog, ... 0,1’ (@) = fomolw)
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and note that if the denominator in r, vanishes so does the numerator: In that
case interpret the ratio arbitrarily (e.g., set it equal to 1). Now R”, = n"'log fo, n—1-
Note

n—-1

3.12 ) ) += Y logr,c6
(3.12) nogfo,n—nogfo,o nj=0°grj .

It will be shown that
(3.13) (v,logr,) > H(v; p*)
and then (3.12) will imply (», n™'log f, ,) = H(»; p*), as desired.

Recall the notation introduced in (3.8); »{”(i) will have the corresponding
definition, where here and in the subsequent discussion 0,/0 may be interpreted
to have the value 1. Also (»,-) will denote regular conditional probabilities
V[ |F ,0)(w). Write

"[‘*’—m-“»“’o,wl] l"[‘*’—m-u""o] sz_t)(wl)
r(w) = =

l"[‘*’—nv--»‘*’o""l] ”[“’—nv-'»“’o] B l"(:-)(‘f’l)

and so

(v,logr,) = [, — (logr,)»(dw")
(3.14) = f( E_o v{P(i)log v‘f,'_‘)(i))v(dw‘)

-/ ( glvs@(i)logua,@(i))v(dw-)-

By the martingale convergence theorem »{™(i) — (»,-),(i), » a.e., and by Lemma
3.3 pl2(i) - (p%-)((i) uniformly in w~. It follows then from (3.14) that
(v,log r,,) » H(w; p*). This justifies (3.7) for v € #§. If v € M, \ M2, then for
some &, v, , is not absolutely continuous with respect to o, k- By the basic
properties of entropy (see [2]) this implies H(»; p*) = oo and again (3.7) holds. O

For the class of Gibbs measures treated here one can actually verify a stronger
condition than (RM). Namely, there exists a constant ¢ such that
pr-(A)

<e, f €EQ,weEQN ,AEZ, ,,n> 0.
w (4) ¢, forqg ® h=m2

log

4. Examples and remarks. The following examples and remarks give some
more insight into the applicability of large deviation principles to stationary
shifts.

EXAMPLE 4.1 (Adapted from Sokal [6]). This example will present a strongly
mixing shift on M = {—1, +1} for which the large deviation principle fails.
According to a basic result of Donsker and Varadhan (cf. [2], Corollary 1.7) if
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p €M, is a stationary shift obeying a large deviation principle with rate
function K, then for any bounded and continuous random variable Y,

n—1
(4.1) lim —logp(exp{ Y Yo 0”}) = sup {(»,Y) — K(»)}.
n— o0 k=0 ve#

In the present example the limit in (4.1) will fail to exist for Y(w) = w,. It
remains to specify p € #,. The measure p is concentrated on those w consisting
of a sequence of blocks of +1’s followed by an equal number of —1’s. The length
of each block is the same as the number of +1’s and —1’s, (i.e., twice the num-
ber of +1’s). It is assumed that the lengths of successive blocks form a sequence
of independent identically distributed random variables. Thus any time coordi-
nate, say 0, belongs to a block of random length 2L. Let a, = p[L = n]. Of
course, since u is to be stationary, given that L = n, the coordinate 0 is equally
likely to occupy the first,second,...,2nth position of the block. Let N be an
integer, N > 2, and choose 0 < a < (N —1)/N. Let n;= N%, i=1,2..., and
let a(n;) = c,e™*™, a(n) =0, if n # N* for every i, w1th ¢, so that Ya(n) = 1.
This determmes pE M, Now let S, =X¢ o, g(k) = p(exp{Sk}) Our claim
is that as n — oo, n~'logg(n) oscillates. To see this, note p[S, =n;]=
P[0 occupies the first pos1t10n of a block of length 2n;] = a(n; )/(2n,), and this
implies

(42) g(n,) > c(2n,) exp{n,(1 - o).

Next consider k; = Bn;, where 1 < 8 < N. If, for g'iven w, k; is in a block of
- length 2n, with n < n;, then S, <n <n; if &, is in a block of length 2n with
n>n;,, use S, <k, Note there exists cl such that p[k; in a block of
length > 2n,,,] < caexp{ an;.,}. Hence

M(eXP{Sk,}) < exp{n,} + cexp{—an,,, + Bn;}.
Now choose 8 = Na + 1 and find
(4.3) g(k;) < (L +cy)e™ = (1 + c;)exp{k/B}.
Our assumptions ensure 87! < (1 — a) and oscillation is established.

ExAMPLE 4.2. Consider a shift (2(M), #, 0, p), with p € #, such that the
(w;) are m-dependent [i.e., (... w,_;, @,) and (@, 41, @p4m+2,---) are indepen-
dent]. Then (RM) certamly holds However, easy examples show (even for
M = {0,2,2}) that (CD) may fail.

EXAMPLE 4.3. Piecewise monotonic maps of the unit interval onto itself have
been extensively studied. In [4] it was shown that under familiar hypotheses
these maps have an invariant measure and the corresponding symbolic dynamics
give rise to a stationary shift satisfying (RM). Thus Theorem 1.1 gives the
existence of a rate function. From [8] an interesting expression for the rate
function becomes available.
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EXaMPLE 4.4. Let p be the Bernoulli shift on Q(M), M = {0,1}, with
plw, = 0] = p[w, = 1] = . Define (n;) by 1, = £¢_,2 %0, . This gives rise to a
new shift on [0, 1], for which the large deviation principle will hold; this follows
from the Donsker—Varadhan contraction principle, or see the discussion in [4].
This shift is deterministic (n, determines all »;, with i > 0), and (RM) does not
hold. This indicates that it may be difficult to find necessary conditions for the
large deviation principle.

REMARK 4.5. Instead of the condition (CD), which gives a continuous depen-
dence on the past, one can condition on the future and ask for continuous
dependence. This is the approach of Takahashi [8]. In the case of a Gibbs
measure u for ¢ € H, it follows from the formula (3.10) that

plxg, x4,--05 x,]

plag,...,x,]

= j(xoxy,...)
(4.4)
B h(xgx,,...)
© h(xy,...)
as n — oo uniformly for x € Q4. So j, is continuous and it follows from [9] that
K(v)=—-h,+ (v, —log j“)

Indeed one can extend Theorem 3.2 to a wider class of Gibbs measures if one uses
the results of [5], Exercise 2, page 97.

A lexp{o(xoxy,...)}
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