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INTEGRATION BY PARTS AND TIME REVERSAL FOR
DIFFUSION PROCESSES

By A. MILLET,! D. NUALART AND M. SANZ
Université d’Angers and Universitat de Barcelona

In this paper we obtain necessary and sufficient conditions for the reversi-
bility of the diffusion property, assuming the existence of a density at every
time ¢. The proofs are based on techniques of the stochastic calculus of
variations.

Introduction. Suppose that {X,, 0 <t<1} is a d-dimensional diffusion

process solution of the stochastic differential equation

dX, = b(t, X,) dt + o(t, X,) dW,,

where {W,, 0 < ¢ < 1} is a Brownian motion in R’ It is well known that the
reversed process X,= X,_, is Markovian, and we may ask if the diffusion
property is preserved too. This is not true in general (see [18]). Then an
interesting problem is to find minimal conditions that guarantee the reversibility
of the diffusion property and to compute the diffusion and drift coefficients of
the reversed process.

Different methods have been used to solve this problem. The approach of
Anderson [1] and Haussmann and Pardoux [6] is based on the study of the
solution of forward and backward Kolmogorov equations. The technique of the
enlargement of a filtration has been used by Pardoux [14]. F6llmer [4] presents
an approach based on the notion of entropy which, when ¢ = Id, allows one to
deal with the non-Markov case.

Following the ideas contained in the paper of Follmer [4], we have used the
integration by parts formula to attack the time reversal problem. This formula
establishes the duality between the derivative operator D on the Wiener space
and the Skorohod stochastic integral, and it is a fundamental tool in the
applications of Malliavin calculus.

Assuming that X, has a density for any ¢ > 0, we obtain a necessary and
sufficient condition for the reversibility of the diffusion property. The condition
is as follows.

(C) The sums of the distributional derivatives EjL ~ j(aij( t,x)p(x)),i=1,...,d
(with a = o6*), are locally integrable functions.

This result includes the sufficient conditions given by Haussmann and Pardoux
[6], and we want to point out that our work has been inspired by this paper,
although our proofs are essentially different. '
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The organization of the paper is as follows. In Section 1 we present some
preliminary and well-known results about the derivation on the Wiener space
that will be needed in the sequel. In Section 2 we prove the main result
(necessary and sufficient conditions for the reversibility of the diffusion property),
assuming that the coefficients b(¢, x) and o(¢, x) are globally Lipschitz functions
of x, uniformly in ¢ Section 3 is devoted to extending this result to the case of
locally Lipschitz and bounded coefficients. The necessary part follows easily from
an approximation argument. The proof of the sufficiency is more sophisticated
than the corresponding one in the case of globally Lipschitz coefficients. An
integration by parts formula for particular elements which are locally in D, , has
to be proved. We also need a detailed analysis of the dependence of the diffusion
process on the initial condition. In this section some additional assumptions are
introduced: the conservative character of the diffusion and the existence of
exponential moments for the gradients of the coefficients b and o.

In Section 4 we present some sufficient conditions on the coefficients that
ensure the absolute continuity of the law of X, and condition (C).

Finally, we include in the Appendix some technical results on Sobolev spaces
that have been used in the paper.

Some remarks on the notation: All constants will be denoted by the same
letter, although they may vary from one expression to another one. We also  jise
the usual convention on summation of repeated indexes.

1. Basic results about derivation on the Wiener space. In this section
we recall the main properties of the derivative operator on the Wiener space. For
a more detailed exposition of this topic we refer to Malliavin [10], Ikeda and
Watanabe [8], Watanabe [17], Zakai [19] and Nualart and Pardoux [12].

Let {W,, 0 < ¢ < 1} be an /-dimensional standard Wiener process defined on
the canonical probability space (2, #, P). That is, @ = C([0,1], R), P is the
Wiener measure, % is the completion of the Borel s-algebra of Q with respect to
P and Wy(w) = w(t). We denote by H the Hilbert space L%([0,1],R%).

Let E be a real separable Hilbert space. An E-valued random variable F:
Q — E will be called smooth if

M
F= Z fi(ml""’v‘,tn)vi’
i=1

where f; € ‘%,‘,”(IR’"), t,.--, t, €[0,1] and vy,..., vy € E.

Here %°(R™) denotes the set of ¥~ functions f: R — R which are
bounded, together with all their derivatives.

The derivative of a smooth random variable is the random variable taking
values in the Hilbert space H ® E = L%[0,1],R’ ® E), given by

o
=1k=1 dx®

(VV,I, [ER) w’tn)l[o, t,,](t)oi’

for t€[0,1]and j=1,...,L
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Notice that for any h € H, Y!_,[¢D/Fh'(t)dt can be interpreted as the

directional derivative
0 (F h(s)ds
T E=0( (w.+ e[) (s) ))

The Nth derivative of F will be the H®" ® E-valued random variable defined
by

(D(N)F)f:,’:f:,’tjg = Dt{IDtgz Dt.){JNF.

For any integer N > 1 and any real number p > 1, D, n(E) will denote the
Banach space which is the completion of the set of smooth random variables
with respect to the norm

N
I1FllLr, £y + Y. [DOF | 1o, HeMgE)-
M=1

Set D, y(E)=N,.,D, y(E) and D (E) = Ny .,D o, ~(E). The set D _(E)
is the space of test functionals which plays a basic role in Malliavin calculus. If
E = R, we write D, y for D, y(E).

We will baswally deal with the space ID2 1(E). Consider the orthogonal
Wiener-chaos decomposition L2, E) = 9? and denote by J, the projec-
tion on 5,. The space D, ,(E) coincides w1th the set of random variables
F € L*Q, E) such that

0
E(|IDFI4es) = ¥ nE(I,FI%) <
n=1
We recall the following two basic properties of the derivative operator.

PROPOSITION 1.1 (Chain rule). Let g: R¢ > R be a continuously differentia-
ble function with bounded partial derivatives. Suppose that F = (F',..., F%) is
a random vector whose components belong to D, , for some p > 2. Then
gF)eD,, and

(1.1) D(g(F)) = (vg)(F)DF".
ProPOSITION 1.2. Let F € L% Q, %#,, P), where A is a Borel subset of [0,1]

and %, is the o-algebra generated by the random vectors {(W(G), G C A}.
Assume F € D, . Then D,F =0 for all (v, ¢) in @ X A° a.e.

We will also need the next result, which is a refinement of the chain rule. In
the sequel a,(x) will represent a sequence of regularization kernels of the form

(1'2) a,(x) = n(nx),

where a € €°(R?) is a nonnegative function whose compact support contains 0
and such that fgea(x)dx = 1.



TIME REVERSAL FOR DIFFUSIONS 211

PrOPOSITION 1.3. Let g: R > R be a globally Lipschitz function. Suppose
that F = (F,..., F?%) is an absolutely continuous random vector whose compo-
nents are in D, , for some p > 2. Then g(F) € D, , and (1.1) holds.

Proor. Set g, =g*a, Then we know that lim,g,(x) = g(x) and
lim (vg,)(x) = (Vg)(x) a.e.,, by choosing a suitable subsequence denoted again
by g,. Then the Lebesgue dominated convergence implies that

.(F) 22 g(F)

and

LP(@x[0,1],RY)
_—

(v:&,)(F)DF* (v,g)(F)DF"

as n — oo and the proposition follows. O

Denote by & the dual of the operator D defined on D, ,(E). The domain of §
[denoted by dom 8(E)] is the set of square integrable processes u € L%(2 X
[0,1,R‘® E) = LXQ, H ® E) such that

|E({u, DF )yog)| < ClIF|l 2, £)»
for any F € D, \(E), where C is some constant. In this case we have

(1.3) E((u, DF)yop) = E((3(u), F)g).

Expression (1.3) is known as the integration by parts formula. Another
important relation between the operators D and § is given by the following
proposition.

PROPOSITION 14. Let u € D, (H ® E) be such that Dju € dom 8(H ® E)
foranyi=1,...,land t € [0,1] a.e. and suppose that T!_, [tE(|8(Diu)|?) dt <
0. Then 8(u) S ID2,1(H ® E) and

(1.4) Dj(8(u)) = 8(Dju) + ul.

Consider the [-dimensional Wiener process W as a Gaussian orthogonal
measure on T = [0,1] X {1,...,1} and let u € L2(Sl % [0,1],R’ ® E). By means
of the Wiener-chaos decompos1t10n of L*(Q,R'® E) we can write u, as an
orthogonal series

w= L L(1(0)

where for any m, fJv-Jmi(s,,..., s, t) is a symmetric function of the m vari-
ables (S;, j1)y---5(Spms Jn) for each fixed (¢, j) and belongs to L2([0,1]™*},
RYm*D @ E).

“The Skorohod integral of the process u is then defined by

flut aw, = E Im+1( fm)’
0 m=0
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where fm denotes the symmetrization of f,, in the (m + 1) variables (s;, j;),
1 < i< m,(t, j), provided that the series converges in L%(Q) (see Skorohod [15],
Nualart and Zakai [13] and Nualart and Pardoux [12]). Notice that this integral
allows one to integrate nonadapted processes and is in fact an extension of the
1td integral (see [13]).

Gaveau and Trauber have proved in [5] that the operator § coincides with the
Skorohod integral. Using the Wiener—chaos expansion, it can be proved, as in
[13], that D, ,(H ® E) C dom §(E).

We suppose that our reference probability space is the product of the Wiener
space (£, #, P) with some separable probability space (&, %,, P,). Then we
can take E = L*Q,, %, P,) and identify L%*Q, E) with L%Q X Q,,
F® %,, P X Py). In this way we can define the operator D on square integrable
random variables defined on the product space Q X §,. The preceding results
concerning the operators D and 8 can be properly translated into this new
framework.

2. Time reversal for diffusions: Globally Lipschitz coefficients. Con-
sider the d-dimensional diffusion process {X, = (X}, ..., X?), 0 < t < 1}, solu-
tion of the stochastic differential equation

(2.1) X, = X+ [(o(s, X,) dW, + [b(s, X,) ds,

0 0
where X, = (X3,..., X¢) is a random vector, and o: [0,1] X R¢ > R? ® R’ and
b:[0,1] X R¢ - R are Borel measurable functions satisfying the hypothesis:

(H1) There exists a constant K such that
sup [lO(t, x) - O'(t, y)l + |b(t, x) - b(t’ y)l] =< le - yl,
¢

sup llo(2, x)| + |b(2, x)]] < K(1 + |x]),

for every x, y € R%

In order to study the reversibility of the diffusion property we need a result
which is partly contained in [2].

THEOREM 2.1. The process X given by (2.1) belongs to D, ,(L*([0,1],R%)).
Moreover, assuming ‘

(H2) for any t > 0, X, has a density p,(x),
the derivative of X is the solution of the stochastic differential system
Dfxi=0, ift<r,

DX} = oi(r, X,) + ['V,0i(s, X,)DEX} AW
(2.2) "
+ [‘Oubi(s, X,)DExkds,  rst,

i=1,...,d,8=1,...,1L
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ProoF. 1.If ¢ and b are ¢! functions in the x variable the result holds
without assumption (H2). This can be proved by a slight modification of the
approximation argument used by Ikeda and Watanabe in [8].

2. In the general case, we consider the sequence of regularization kernels
defined by (1.2) and take new coefficients o,(¢, ) = o(¢, -)*a,(:), b (¢t ) =
b(t,-)*a,(-). 0, and b, are ¥ functions in the second variable, and it is easy
to check that they satisfy hypothesis (H1) uniformly in n.

Moreover,

(2.3) nlim sup {|o,(¢, x) — o(t, x)| + |b(¢, x) — b(¢, x)|} = 0.

®© x, ¢t

Now consider the stochastic differential equation
Xr=X, + j:on(s, Xr) dW, + /o‘b,,(s, X?) ds.
By the first part of the proof, X" € D, ,(L*{[0,1],R¢)) and
DEXMi =0, ift<r,
DEX = o} o(r, X7) + ['Vj0), s, XI)DEX D Wy

+ ftvkb,';(s, X*)DEX™*ds,  otherwise.
r

We have
(2.4) lim E{ sup | X - Xt|"} =0, Vp=x=2.
n>o  \g<y<l
In fact,
{ sup 17~ 1)
0<t<1

< CE{ ['liou(s. X2) = o(s, X,)P + [bo(s, X7) — b(s, X)) ds)

< CE{ [ sup 1X7 - X, ds
0

+ [llou(s, X,) = o(s, X)P + [bi(s, X,) = b(s, X,)P] ds).

Therefore, using (2.3) and Gronwall’s lemma, (2.4) follows.
On the other hand, it is easy to prove that

sup sup E{ sup |D,X;‘|P} < o0,
n O0<r<1 r<t<l1
for all p > 2. Hence the sequence {DX", n > 1} is bounded in LP(2 X [0,1],
R¢ ® R’). Denote again by {DX", n > 1} a subsequence converging in the weak
topology o(L?, L9) to some Y € LP(Q X [0,1]%, R? ® R").
The next step is to identify Y with DX, by proving that they both have the
same projection on every Wiener chaos.
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To this end, consider Z € L% X [0,1]%, R? ® R’) having a finite Wiener-
chaos representation. By the integration by parts formula and (2.4),
(DX",Z) = (X", 8Z) —2(X,08Z)
and
(DX",Z) =2 (Y, Z).

Consequently, Y = DX, where DX is formally given by a series expansion like
¥, - 11, X. This fact, together with (2.4), implies that X € D, (L%([0,1],R?)).

Suppose that (H2) holds. Once we know that X € D, 1(L2([O 1],R%)) we can
write

DEXi = Df[/‘o;(s, X,) awg + ['b(s, X,) ds]
0 0
= [Df[oi(s, X,)] dWe + oj(r, X,) + [DE(bi(s, X,)) ds, ift=r,
0 0
by the derivative rules of D. By Proposition 1.3 we obtain
DIX; = oi(r, X,) + ['Vioi(s, X,)DEX}FdW + [*v,bi(s, X,) DEX} ds,

t>r.

Notice that v,0i(s, X,) and v,bi(s, X,) are well-defined, measurable and
adapted processes, and by the usual methods it can be proved that (2.2) has a
unique continuous solution. Therefore we are done. O

_We next state necessary and sufficient conditions for the Markov process
{X,, 0 <t <1} to be a solution of the martingale problem associated with a
second-order operator
(2.5) L,f(x) = 3a“(¢t,x)v;;f(x) + b'(¢, x) v, f(x),
for f € €P(RY).

THEOREM 2.2. Assume that ¢ and b satisfy hypotheses (H1) and (H2).

Conszder measurable functions a: [0,1] X R® > R, b [0,1] X R > R, i, j =
, d, such that

(2.6) ftljD[|aif(1 —t, %) + 51 — ¢, %)|] p(x) drdt < oo,

for any bounded open set D C R? and any t, > 0.

Let L, be defined by (2.5) and assume that {X,, 0 < t < 1} is a solution of the
martmgale problem associated with L,.

Then the sums of distributional derwatwes v (a”(t x)p(x)), i = d
[a¥/ = (o0%), ;;], are locally mtegrable functions, i.e.,

@.7) ft waj[a”(t,x)p,(x)]mxdt < o,

for any bounded open set D C R? and any t, > 0.
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In addition,
a’(t,x) =a(1 - t,x)
and
p(x)[B(1 - ¢, x) + bi(t, x)] = v,(a*(t, x)p(x)),

for all t, x a.e.
PRrOOF. Since X is Markovian,
B|1(X) - (%) - [(Tar)(R) @] =0,
for any f € €X([R?), 0 < s < ¢ < 1. Equivalently,
E[f(xt) - 1(X) = [(Z.f)(x,) dulx,] -0,
where [, = —L,_, That is,
E([1(X) - (X e(X0) = B{( [{(Lar)(X,) du)e X)),

where g is any function in €°(R?).
By Lebesgue’s differentiation theorem

limiE{[/tt (Iiuf)(Xu)du]g(Xt)}

ri0h -h
= E[(— -;--ifu - t, X,)v,;f(X,) - 51 - ¢, Xt)vif(X,))g(X,)],

for almost every ¢ € [0,1].
By I1td’s formula

tim ~E[(/(X) - /(X,_)&(X,)]

1 ¢ i o i
= tim 2 E{([* [V.f(X,)oi(s, X,) dWs + 9. f(X,)b4(s, X,) ds

FEVH(X)a (s, X,) ds] (X)),

The martingale property of stochastic integrals together with It6’s formula
applied to g yield

tim 22| [ 9£C0)alte, %) Wy )a(x)]

- %%E[(jt‘_hvif(?’fs)o.f(s’ X,) dW)

([ watants, xyaws [ o(oya)]
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where
G(S) = ng(Xs)bj(s, Xs) + %ijg(Xs)ajk(s’ Xs)

is bounded. Since v, f(X,)oi(s, X,) is also bounded, Schwarz’s inequality and
standard estimations imply that

e[ oty 00

< Climh'/2 = 0.
10

Hence by the Lebesgue differentiation theorem

fim ~E[(/(X) ~ (X 1)a(X,)]
- }}%%E{( [ h[vif(Xs)b"(s, X) + 59ui(X)a%(s, X,)| ds)g(X,)
+ [ VXA, X,)9,8(X,) ds)
= 5{ [ 0B (e %) + 5 9, 1R)a %) e(x)

Fv(X)a(t, X,)v,.g(X»},

forall ¢t € [0,1] a.e.

We remark that this result could also be obtained using the integration by
parts formula (1.3). Therefore for all ¢ € [0,1] a.e. we have

[ (=330 = £, 2) v f(x) -1 - 8, x)vif(x))g(x)p(x) dx
- Ldvif(x)aij(t,x)ng(x)Pt(x)dx

(28) + [ (Tt @B, 2) + 39,1 (x)a (¢, 2))g(x)pdx)

B ,/;‘dvf(vif(x)aij(t’ x)pt(x))g(x) dx

+ [ (Gt @)B(L ) + § 951 (x)a (8 2))g(x)px)-
In particular, for f(x) = x; we obtain

LB =t 2)p(x)a(x) ds

= [ [9i(@i(t, x)px)) = (2, )p ()] 8(x) ds,

for any t € [0,1] a.e. and every g € €P(R?).
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Consequently, )
vi(a'(t, x)p(x)) = [6}(1 — ¢, ) + bi(¢, x)] p,(x),

for all ¢, x a.e., and (2.7) is satisfied.
Looking back to (2.8) and taking f(x) = x,x;, we finally obtain 6”(t, x) =
a(1 — t, x) for every t, x a.e. O

THEOREM 2.3. Assume that o and b satisfy hypotheses (H1) and (H2)
Suppose also that the sums of distributional derivatives v (a”(t X)PLX)), i =
» d, are locally integrable functions, i.e., satisfy (2.7). Then {(X,0<t<1)
zs a dzﬁ’uszon process with generator Lt given by (2.5), where :

a’(1 - t,x) = a¥(t, x),

(29) B(1 = £, %) = —bi(t x) + ——

v,(a(t, x)p(x)),
( )
with the convention that the term involving (p(x))~ ' is 0 if p(x) =
Before giving the proof of this theorem we will state a lemma.
LEmMA 2.4. Let {X; (x), s < t < 1} be the process solution of

(2.10) X, (x)=x+ fo u, X, (x)) dW, + jb u, X, (x)) du

and g € €°(R®). Define
o(s, %) = E[g(X,)IX, = x] = E[g(X, (x))],
where t € [0,1] is fixed. Then ¢(s, x) is globally Lipschitz in x, uniformly in s.
ProoF. We will use the following fact. If g € €}(R%) and a:[0,1] X R¢ - R
is locally Lipschitz in x, uniformly in ¢, then x - vg(x)a(t, x) is also globally
Lipschitz in x, uniformly in ¢.
For any x, y € R we have, using It0’s formula,

(#(5,%) = 0(s, ) <[ex) -~ ()
+E| [(9i(X, )6 (u, X,.(+))
—vig(X, )b (u, X, ())) d”]
+3E] [(v8(X, o)) 0, X, ()
~v8( X, 7)) a"(u, X, (»))) du] }
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But
E[|vig( X, (x))6(u, X, [(x)) = Vig(X, )5 (1, X, )]
< CE[1X, (x) - X, ()],

by the remark at the beginning of the proof, and the same majorization also
holds for the last term. Therefore

lp(s,x) — (s, ¥)| < C{lx -y + sup E[|X, (x) - Xs,,,(y)l]}
s<ux<t
< Clx - yl,
as can be easily seen from Gronwall’s lemma. O

PROOF OF THEOREM 2.3. We need only to show that {X,, 0<t<1}isa
solution of the martingale problem associated with L, i.e., since X, is Markov

(210 B([/(X) - ((X)]e(X)} = B{( [(Lur)(X) du)e(x)), s <t

First we remark that the left-hand side of (2.11) is absolutely continuous as a
function of s € [0, ¢]. In fact, using It6’s formula and integration by parts, we
obtain

E([1(X,) - 1(X,)]&(X,))
- E{[ [V (X)ai(u, X,) aw

V(X6 X,) du+ §9,1(X,)a(w, X,) dulg(X,))

=E [ftvif(Xu)Oi(u, X,)v,8(X,) DXk du
+ v (X,)b(u, X,)g(X,) du
+3 Vi (X)a(u, X,)e(X,) du|.

Hence in order to establish (2.11) it will suffice to prove that for all s € [0, ¢]
a.e.

(212)  lim SE[(1(X,) ~ H(X,_)8(X)] = B[LA(X)s(X,)].
We have

im %E[ [ h(v,-f(xu)b"(u, X,)e(X,)

(219 3Vl (X, X)e(%)

- E[S1(X)6(s, X)8(X) + 5 1 (K)als, X)g( )|

for any s < ¢ a.e.
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Furthermore,
oy SB[ vt ol x,) awe)e(x)|
~tim B[ ol X) aWe)o(s, X)),

where @ is defined in Lemma 2.4.
The solution of (2.2) can be written as DX} = B”(r X )Yi(t, r), where
Yi(t, r), t > r, is given by the stochastic dlfferentlal system

Yi(t,r) = 8, + ['90(s, X)Yi(s, r) AWy
+ftvjbi(s,Xs)Y,{(s,r)ds, i, k=1,...,d.
{Y/i(t, ), t > r} has a continuous version in (¢, r), as follows from Kolmogorov’s

continuity criterion.
By the integration by parts formula, Lemma 2.4 and Proposition 1.3, we have

(010) = m B[ [ 9u/(X,)of(u, X,)(V40)(s, XD du]

oy D 28| [, £ vt X)) X)
Xo(u, X,)Y}(s, u) du}
= E[vif(Xs)aij(s, X,)(v,9)(s, Xs)] , Vs<tae.
By Lemma A.1 we obtain

(215) = [ 9if (x)a¥(s, x)(v,0)(s, ¥)p,(x) dx

_./ (v:f(x)a'(s, x)p(x)) (s, x) dx

- fRdVijf(x)dij(s, x)p,(x)o(s, x) dx

- [T 9@, 2p()els, ) d,
and finally by Lemma A.2 .
(2.15) = —E[v,;f(X,)a'(s, X,)8(X,)]

(2.16) .
- B[ v () iy e X)X )a() |

The results obtained in (2.13) and (2.16) prove the equality stated in (2.12). O
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3. Locally Lipschitz coefficients. In this section we suppose that the
coefficients o and b of (2.1) satisfy the following conditions.

(H1,,.)(@) Given any constant A, there exists a constant K(A) such that
sup [|o(¢, x) — o(2, y)| + |b(¢, x) — b(t, )] < K(A)lx - 3],
t

sup llo(t, %) + 16(2, x)I] < K(A)(1 + |x]),

for each |x|, |y] < A.
(b) The solution X, does not explode on [0, 1].
(H2,,,) For all ¢ > 0, X, has a density p,(x).

Our goal is to extend in this situation the results proved in Section 2. The
proof of Theorem 2.2 only uses the local Lipschitz and boundedness properties of
b, o and a; hence it remains true when b and o satisfy (H1,,.) and (H2,,). In
order to prove the analogous of Theorem 2.3 we need some preliminaries.

3.1. Preliminary results. We approximate the solution X, of (2.1) by a
sequence of process (X;*) which coincide with X, up to a stopping time 7, and
have a density; this is done by a slight modification of the classical argument
(see Kunita [9]).

Let W denote a d-dimensional Brownian motion independent of W. For each
n>1 let ¢, R,—» R be defined by ¢, (x)=[(2—nrn"'x) V0] and let ¢,:
R — [0,1] be a ¥ function such that ¢, (x) =1 if |x| > 2n, Y, (x) =0 if
|x] < n and ¢,(x) > 0 for n < x.

Define o,: [0,1] X R? > R? ® R**? and b,: [0,1] X R? - R? by

(on);(t,x) =oi(t, x)p,(x]), ifl<B<l1<i<d,
B1)  (0)iep(t, %) = 8(xI), if1<p<d1s<is<d,
ba(t, x) = b(¢, x)@(Ix).

An easy computation shows the existence of a constant K,, depending on the
constant K(2n) given in (H1,,.) and of ||{}|,, such that

sup [|o,(¢, x) — 0,(£, )| + |b,(¢, x) — by(¢, ¥)I] < K, Jx — |
t

and
sup [|o,(¢, )| + [b,(¢, x)I] < K,(1 + x]).
t
Let X" denote the solution of the stochastic differential equation (on the
enlarged probability space)
dX! = o (t, X?)d(W,, W,) + b,(¢, XI) dt,

(32)
Xon = Xo.
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Set T, = inf{¢,|X’| > n} A 1. Then if 0 < s < ¢ on the set {¢ < T,} one has
that (o, )ﬂ(s X”)—oﬁ(s XM for 1< B<l (o ),+B(s XM=0forl<fB<d
and b,(s, X) = b(s, X). Thus on the set {¢ < T,}, X" = X"*k for each & > 0.
Therefore setting X, = X on {t < T,}, we define a solutlon of the given
stochastic differential system on [0, 1] by assumption (H1,. )(b).

Each random variable X;* belongs to D, , and the sequence {({T,, > t}, X}*);
n > 1} localizes the random variable X,. Hence X, belongs to D} (see [12]), and
we can define, up to a dP X dt equlvalence class, the derlvatlve DX by setting

Drath(T,, >t DraXﬂ(T,,zt)-

However, the derivative is not square integrable and we do not have an
integration by parts formula for random variables in D%

We prove that assumption (H1, . )(b) implies that the approximating processes
(X/) have a density.

LEMMA 3.1. For each t> 0, n > 1, the random variable X' has a density.

Proor. Set S, = inf{(¢, |X| > n}. Then for 0 <s <t on (S, >t},
(0,)i(s, X") = a4(s, X,) for 1 < B <1, (6,)h,/(s,X)=0 for 1 <B<d and
b(s, XI) = b(s, X,).

Let B be a Borel subset of R? with Lebesgue measure A(B) = 0. Then if P
denotes also the probability on the enlarged space,

P{X!e B} =P(X'eB,S,>t} +P(X"€B,S, <t}
- P(X,eB,S,>t} + P(X'€ B, S, < t}.

Since X, has a density, the first term in the sum is 0. Notice that X" € D, ;.
Therefore by Theorem 9 of [2],

E{l(x;'eB)det(<D A Dth'j>1si,jsd)} =0.
The determinant is nonnegative. Consequently,
E<1(x;~e3, S,,<t)det(<D >t DX j>lsi,jsd)} = 0.

Therefore, in order to conclude the proof, it suffices to check that
det({(DX™*, DX/, _; J<d) >0on {X*€B, S, <t}

Let A = {(s,x) € R,X R%rank o (s, x) = d} and suppose that S (w, @) < .
The path continuity of the process X" implies (w,®) a.s. the existence
of a (random) interval [s — A, s + h] C [0, ] such that |X}(w,d)| > n for
u € [s — h, s + h]. By definition of g,, the rank of o,(u, X)) is larger than that
of ¢ (IX2)Id, and is equal to d for u € [s — h, s + h]. Hence if

S= inf{t, [1a(s, X7) ds > 0},
0

one has that S(w,&) <t on {S(w, &) < t}. The proof of Theorem 19 in [2]
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shows that
det((DX*, DX7y, _; ;.q) >0 on{S<t} > (S, <t} m]

In the sequel, when no confusion arises, we still denote by P (resp. W) the
probability [resp. the (d + I)-Brownian motion (W(w), W(&))] on the extended
space.

3.2. Direct part: Preliminary results on the dependence on the initial condi-
tion. Our purpose is to state an analogue of Theorem 2.3 in the case of locally
Lipschitz coefficients. The proof is more complicated than the corresponding one
in the case of globally Lipschitz coefficients. Indeed, we do not know if the
functions ¢(s, x) = E[g(X,)|X, = x] is Lipschitz, because the expected value
“mixes” the various Lipschitz constants corresponding to the various w. In order
to avoid this problem we study the dependence of the solution of the stochastic
differential equation upon the initial condition and then prove a result which
replaces the integration by parts formula.

Fix s >0, x € R? and let X, (x) denote the solution of the stochastic
differential equation (2.10). When s = 0 simply set X,(x) = X, t(x)

Let T(s,x) denote the explosion time of X, (x) and set D, («) = {x,
T(s, x) > ¢t} for s < ¢. We suppose that the solutlon X, {x)is stnctly conserva-
tive, i.e., P{T(s, x) > 1 for all (s x)} = 1. Then almost every set D, (w) is equal
to IR"’, and we have X,(w) =X, (X (w)) ae. for s < ¢ (see, e.g., Kunita [9],
Section 5).

Given a bounded domain D c R™, m > 1, let W%%(D) denote the Sobolev
space of functions f: D — R such that f and its distributional derivatives are
square integrable functions, i.e.,

11 = [V + Ei9if (] de < o

Let W2 denote the intersection of W'2(D) over bounded domains D of R€.
If a (real- or vector-valued) process X,(x) belongs to L%(Q X [0,1], W'2(D))
set

X1 =2 W@ at]

First we prove that the process X, ,(x) belongs to Wk2, and, under additional
assumptions, that the gradlent Vst Ax) is the solution of a linear stochastic
differential equation and is square 1ntegrable All the results needed are sum-
marized in the following lemma, which is stated w1th s = 0 for the sake of
simplicity.

LEMMA 3.2. Suppose that the coe/ﬁczents b and o satisfy the condition
(Hlloc)(a) and that the solution X (x) is strictly conservative. Then:

1. For any t, X,(-)(w) belongs to W2 a.s
2. Suppose furthermore (H2,,.) for X, = x, i.e., X,(x) has a density for t > 0.
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Then the distributional gradient v X,(x) is solution of the stochastic differen-
tial equation
ViXHx) = 8k + [(0,08(u, X,(2)) v, Xi(x) AW}
0

3.3
(39) +‘/:ijk(u, X, (x))v.X}(x) du.

3. Suppose that each random variable X,(x), t > 0, has a density, and that for
2

1/2 1/
B(x) - zvib%s,xs(x»z] , Af(x)=[Zvio;(s,Xs(x))2] ,
(34) i, k i,k

xeD

sup E{exp(Ll[4Bs(x) + 8%(Af(x))2] ds)} < o0,

where D is a bounded open subset of R% Then ||vX,(x)||? is integrable for
each t > 0, and

sup E [sup X (viXt"(x))2] < oo.

x€D t ik

ProOOF. (A) We at first suppose that the coefficients b and ¢ satisfy assump-
tion (H1) of Section 2. Define recursively the sequence £7(x) of processes by

f(x) ==,
lx) =x + fta(s £(x)) AW, + ftb(s ¢(x)) ds n>0
t 0 ) 55 s 0 ’ 5s ’ = Y-
Standard arguments show that
B|Z sup k() - P < e,
n 0<t<l1
and hence that X,(x) = lim £7(x) in L%(Q X [0,1]).
1. Fix a bounded domain D C R We prove by induction on 7 that for any ¢,
£7(x) belongs to W2(D) a.s. and that
(3.5) sup supE(||£{‘(x)||f,2) < o0.
0<t<l n

Then for any fixed ¢ (3.5) yields the existence of a subsequence £ converging
weakly to £, € Wh%(D) in L% Q, W-*(D)). Thus X, = ¢, and X,(x) € W 2(D)
a.s.

To prove (3.5), we show that oy(s, £2(x)) and b'(s, £2(x)) belong to L%(Q X
[0,1], WL2(D)) and that

E [ fo "Tllai(s, £2(2))1125 ds] < ¢ + ol
(3.6) o
B[ [/ 2o, €206 ] < e + e,

where ¢, and ¢, do not depend on n.
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These inequalities imply (see Lemma A.3) that the integrals [jos(s, £7(x)) dw?#
and [Zb(s, £(x)) ds belong to L*(Q, W"*(D)) and

v{ [[oh(s. €2(x)) aw?) = ['vilai (s, ex)] W2,

v [0H(s, £5(2) ds) = ['wi[H(s, £2()] .
0 0
Then (3.6) and (3.7) imply that there exist constants A, and A, such that
1
sup E(I€*1()IF2) < 41 + Az sup E(IEX)IE,) ds,
<u<s

0<s<l1 Y0
and (3.5) follows.

The inequalities (3.6) are proved by using the sequence of regularization
kernels defined by (1.2). Suppose that S,(t, x) = o(t, x)* a,(x), B,(¢ x)=
b(t, x)* a,(x). Then S, and B, satisfy hypothesis (H1) with a constant K
independent of m. Moreover,

Bk(s, £7(x)) - bk(s, £2(x)) in L*(Q x [0,1]) a.s. m — o,

(3.7)

and

v, [ BE(s, £2(x))]l = 1(9,BE) (s, £2(x)) Vi /(2)] < K|V ().

Thus the sequence {BX(s, £%(x)), m > 1} is bounded in L*(Q X [0,1], W"?(D)).
Hence it has a weakly convergent subsequence to some element which must
coincide with b%(s, £%(x)) and verifies the second inequality of (3.6). The proof of
the first one is similar.

2. Assume furthermore that X,(x) has a density for each ¢> 0. Then by
Lemma A.4 | ‘

v [[oh (s, X.(2)) dWE) = ['9,08(s, X)) V. X(x) WY
and similarly
v [¥(s, X () d5) = ['9;bH(s, X,(x)) 0X(x) s

Therefore, taking the distributional derivative on both sides of the stochastic
differential equation defining X,(x), we obtain (3.3).

(B) Now suppose that the coefficients b and o are locally Lipschitz and
bounded and let X™(¢) denote the solution of (3.2) for X, = x, on the enlarged
probability space described in Section 3.1.

1. Set T,(x) = inf{s, |X(x)| > n} and for any fixed ¢ € [0,1] let D/(w) =
{x, Ty(x)(w) > t}. Then X,(x) = X/*(x) on {£ < T,) and X}(-) € W-%(D(w))
a,s. The strict conservativeness of X,(x) shows that for every ¢ and almost every
w, D(w) 7 R% Thus X,(-)(w) € W2 as.

2. Suppose furthermore that each random variable X,(x), ¢ > 0, has a den-
sity. Then by Lemma 3.1 the approximating processes X;*(x), ¢ > 0, also have a
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density. Therefore (A) shows that the distributional derivatives v, X {(x) satisfy
the stochastic differential equation

vXPHE) = 8+ [V, (0)h(s, X2(2) VX (x) AW
0
t . B
+ [0, (0X @) 7 X () T

+ [(08(s, X2(x)) V. X2 (%) ds.
0

Since {t < T,} 1 2 a.s. we have that v,X(x) satisfies (3.3).

3. For the sake of simplicity, we drop x from the notation. The argument
involves an arbitrary vector x € D.

Set Y’(t) = v,X/(x) and apply Ito’s formula to each |Y/*(¢)>. Then for
Y, = L, 41Y*(?)|% one has that ¥, > 0 a.s. and

(38) Y,=d+ [TUs)Y,dW! + [[(V(s) + V"(s))Y, s,
with
Uy(s) = [zigkms)vja;(s, Xs(x»xf(s)]lc-l,
V(s) - [2 X ¥Ha)vps, Xs(x))nf(s)]n-l
i, J,
and
vi(s) = [ T s X)) vk, Xs(x»x-’(s)]n-l.
L, J,R, ¢,
Apply Schwarz’s inequality to X; and then ¥,; we obtain that

1/2
(s < z[z vigk(s, Xs(x))z] - 248,
i,k

V(o) < 2| vk, Xs<x»“’]w - 25,

ik
Schwarz’s inequality applied to ¥;, X ; and then ¥, yields

V(s < ¥ viok(s, X,(x))* = L (4f)’.
i,k,B B

The integrability assumption (3.4) implies the integrability of
L z,= dexp{f‘U,,(s) dW? + f‘[v'(s) + V(s)] ds — 3 [T U(s)’ ds},
0 0 0 B

which is the solution of the linear stochastic differential equation (3.8) and thus
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equal to Y,. Indeed,
= ¢ s _ (* 2
z, dexp{jo Up(s) Wt - [ ZU(s) ds}
Xexp{ft[V’(s) + V'(s)+ 1Y UB(s)Z} ds}
0 B
The first term in the product is square integrable, since by assumption
E{exp[fl2z Uy(s)? ds]} < E{exp[IISZ(Af)2 ds]} < 0.
0 B 0 B
The second term also is square integrable. Indeed,

E{exp[Lt[2|V’(s)| + 2|V"(s)| + %%(3)2] ds]}

r

Therefore Holder’s inequality yields that
1/2
sup E

sup []em.+ oz (aty] ds]}} .

This completes the proof of the lemma. O

4B, + 6Z(Af)2] cLsD < 0.

< E{exp
B

supZ,l < sup d{E{exp
t

xeD

REMARKS.

1. The lemma remains valid if the initial condition is X, = (X{, x), where
X, € R is fixed, x € R¥, d > d’, and the function X,(-)(w) is studied on
R?. In this case the property of strict conservativeness with respect to
x € R? is sufficient.

2. The existence of the dens1ty of X,(x) for t > 0 is only required to ensure the
definition of v, b*(u, X,(x)) and v oﬁk(u X ,(x)) as P equivalence classes. It is
therefore not necessary if b(%, -) and o(t, -) are of class ¥' with derivatives
locally bounded uniformly in ¢.

3. If for some components 1 < i < d’, the coefficients b* and o; are null (and
hence X/, ¢t > 0, remain constant), then the existence of the density (with
respect to Lebesgue’s measure on R9~%) of {X}, d’ < i < d} is sufficient to
obtain (3.3), and the integrability condition (3.4) is expressed in terms of

11/2
B(x)=| X X (s, X(x))
Ld <ik<d
sand
11/2
A -T ¥ Vg (s, X(x))
| d’'<i k<d
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3.3. Direct part: The main theorem. We now prove the direct part by a
technique similar to that of Theorem 2.3. Since X, € D}, we have to establish a
formula of integration by parts for X,. This is done in Lemma 3.4 by means of
Girsanov’s theorem and Lemma 3.2. For each x € RY, s < t, let X, (x) be the
solution of (2.10) and set

1/2 ‘ 1/2
B, (x) = [z vibk(t, Xs,t(x))z] AR (x) = | T v, Xs,t(x))z]
i, k i, k

THEOREM 3.3. Suppose that the coefficients b and ¢ of (2.1) satisfy condi-
tions (H1,,.) and (H2,,,), that the system X, (x) of solutions of the stochastic
differential equation (2.10) is strictly conservative and that each random vari-
able X, (x) has a density when s < t. Suppose finally that the coefficients satisfy
the integrability condition (2.7) and also

(3.9) sup supE{exp[j:[4Bs, (x) + 8§|Af, t(x)|2] dt}} < o,

xe€D s

for each bounded domain D c R?. B
Then the reversed Markov process X, = X, _, is a diffusion with generator L

defined in (2.5), with coefficients @ and b given by (2.9).

Before proving this theorem, we first establish an integration by parts for-
mula.

LeEMMA 3.4. Suppose that the assumptions of Theorem 3.3 are satisfied and
let {¢g(u, x), 1 < B < I} be bounded functions with compact supports, Lipschitz
in x, uniformly in u. Then for g € 3°,

E|&(X,) ['o(u, X,) awt]
(3.10) t
- E[ [faus X)9,8(X,)0f (w1, X)Yilt,w) |,

where Y/(t, u) is the solution of the stochastic differential system
Yi(t,u)=0, ifu>t,

{ =8/ ¢ o/ i 8
ary  YABw =8+ [viod(r, X)Vi(r, u) dW,

+ ftvibj(r, X,)Yi(r,u)dr, ifu<t.
u B

Proor. For ¢ € R let X¢ denote the solution of the stochastic differential
equation ’

t t
Xp=X,+ , X2) dWE +
¢ 0 '/;oﬂ(u ) j(;

b(u, Xg) — ) og(u, X,)05(u, X;)| du.
B
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Then if W2, = Wf — effop(u, X,) du,

dP, 1 1,4
&?(w) = exp efo op(u, X,) dWg — 582[) %‘Pp(% Xu)zd“]»

and Girsanov’s theorem shows that W, is an I-dimensional Brownian motion
under P, and that the law of X*° under P is the same as the law of X under P,
(see, e.g., Ikeda and Watanabe [8]). Hence

-1 3 -1 dﬂ
€ E[g(Xt)_g(Xt)] =¢ K g(Xt) d—P_l .
The derivative of the function

‘s g(xt)exp[s [op(ae, X,) dWE = 3¢ [ T gy, X,)° du]
0 0 B

is dominated by a P-integrable random variable for |¢| < 1. Thus

dP) J

}i_r)r(l)e_lE [g(Xte) - g(Xt)] [g(X) ( P
- E[g(xt) [lostae, X,) aw|.

On the other hand, for u € [0,1], x € R?, yeR% 2€R,1 <8<, 1<i<
d, set

&5(u,(x,y, 2)) = oj(u, x),

6 (u, (%, ¥, 2)) = oi(u, ¥),
6% (u, (%, y,2)) =0,

(3.12) b(u,(x, y,2)) = b¥(u, x),

l
6% (u,(x, y,2)) = b(u, y) — z 3. oi(u, y)e(u, x),
B=1

b2+ Y(u,(x, y, 2)) = 0.

Then ¢ and b _gre locally Lipschitz and locally bounded in (x, y, z), uniformly
in wu. Clearly, X} = (X,, X}, ¢) is the solution of the stochastic differential
equation

(3.13)  X:=(X,, Xo,¢) + f‘aﬁ(u, X:) dwp + /fE(u, X:) du.

Since P, is absolutely continuous with respect to P, X is strictly conservative
under P and hence X¢ is conservative with respect to P.

Fix a bounded open set containing 0. Let T(¢) be the explosion time of X¢. We
know that P{T(e) = oo} = 1. For any fixed ¢t > 0set D,= {e € I, T(e) > t}. It
holds that (cf. [9]) D, is an open set dense in I a.s.
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Consider the sequence X*" of approximations of X¢ described in Section 3.1
and define T)(¢) = inf(s, |X7"| > n} and D> = {¢ € I, T,(¢) > ¢}. Then D1 D,
a.s. as n — oo0. On the set D;* the processes X ¢and X" coincide. Using the first
part of the proof of Lemma 3.2 and Remarks 1 and 3 after this lemma, we obtain
that ¢ » X>" belongs to W2(D}*) for any n. We want to show that D, = I and
that ¢ = X/ belongs to W%(I) as.

To this end let us consider the process Z; given by

t t
Zi = '/(; Vk"p(u, X:)Zykdwe — efo % Vkap(u, XE)Ze k¢ﬁ(u, X,) du

+ /:[ka(u, X:)Zok — Zaﬁ(u, X:)og(u, Xu)] du,
B

and the process

& n d ;’n
Zpn = e
For almost all w and for all ¢ € D/*(w) a.e. we have
dX; dXpn en_ e
de  de Ze" =2

Consider the process Z,, which is the solution of the stochastic differential
equation,

2= ["Viou(u, X,)2LaWE + [ v,b(u, X,)2,

(3.14)
- %%(u, X,)p(u, X,)| du

Girsanov’s theorem implies that the law of the pair (X,', Z") under P is the
same as the law of (X,, Z,) under P,.
Furthermore, an easy computation shows that

l
(3.15) zt=[ ‘Bga,f(u, X,)5(u, X,)Y}(t, u) du,

where Y(¢, u) is the solution of (3.11).
Lemma 3.2 shows that under the integrability assumption (3.9) we have

supE[sup Z|Y’(t u)|2} < 0.
t J k

Since ¢y(u, x) and Efe 1aﬁ{(u x)¢p(u, x) are bounded, we have sup,E[|Z,?] <
o and E[(dP,/dP)*] < oo. Therefore

dP,
E f|Z”|dn <supE(—Zt|)|I|
|I{ (dP )2E|z|2}l/2
< su < 0.
ner e |
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As a consequence the process {J/, ¢ € I} given by
€
Jf= X, + f Z dy
0

is well defined and has a.s. continuous paths.

Denote by (&(w), e5(w)) the connex component of D(w) containing 0. Notice
that we may assume 0 € D(w) a.s. The preceding arguments show that the
variables X; and J coincide on (g(w), &(w)) a.s. On the other hand, X/
explodes at times & = ¢(w) and & = ey(w). Hence we must have D, = I and
e = X} belongs to Wh%(I) as.

Therefore for almost all w,

d d .
= [8(X0)] = v,8(X8) - X/
and, as a consequence,
e d .
g(th) - g(Xt) = ./(; ng(X,")d—nX;’”d'q.
The Fubini theorem implies
e d ,
B Lg() - g(X)] = ['B5,8(x0) g0
Lt de,,
= fOE v,8(X)Z/— | dn.

Consequently,
A, =|e'E[g(Xs) - 8(X)] - E[v,8(X)Z/]|

L
dp_”'

oy 1/2

< e_lj;E[|ng(Xt)th|

. dP,
< Ke‘le(|Zt|2)1/2E(’d—1;' -1
0
dF,

2\ 1/2
S ] | el dn.
< Ke fOE(I aP 1 ) 1
The map n — E[|dP,/dP — 1|*]"/ 2 is continuous and null for 5 = 0. There-

fore lim,_, ,A, = 0.
Replacing Z/ by the integral in (3.15), we obtain (3.10). O

PROOF OF THEOREM 3.3. As in the proof of Theorem 2.3,let 0 < h <s < ¢,
f, 8 € €§°. By Itd’s formula

E([1(X) < (X, D]8(X)) =L + L,
with
lim I, = B{g(X)[V.f(X,)b(s, X,) + $v,,(X)a(s, X,)]},
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for all s a.e., and

1 s .
L= 3E|e(X) [ vif(X)oi(u, X,) W |

Forf=1,...,1set

1,2) = 7 V(2030 2)1gu i, ():

¢, is bounded with compact support and is Lipschitz in x, uniformly in .
Therefore by Lemma 3.4 we have

I, = h/ EVf(X)ap(uX)

(3.16)
xv,8(X,)o5(u, X,)Y{(t, u) | du

where Yf(t u) is the solution of (3.11).
Asin the proof of Theorem 2.3 we have that s - E[ f(X,)g(X,)] is absolutely
continuous. Furthermore, Lebesgue’s differentiation theorem implies that

lim I, = E[v,/(X,)a(s, X,) v,8(X) YAz, 5)],

for any s € [0, t] a.e.

Let X, ,(x) be the solutlon of (2.10) and apply Lemma 3.2. Then for almost
every (w, t) the map x - X, ,(x) belongs to W2, The integrability assumption
(3.9) shows that, given any bounded domain D of RY,

sup supE[supr ,(x)|2] < 0.

x€D s
Set ¢(s, x) = E[g(X, (x))]. Lemma A.4 implies that
(3.17) vio(s, x) = E[v,8(X, (x)) v, XL (2)].

Since the solution X, (x) of (2.10) is strictly conservative, we have that
t(w) X, ,(X (w)), @ as. (see, e.g., Kunita [9]). We next prove that
Vi XI (X (w)) is well defined a.s. and that ’

(3.18) X; (X,) =Y(¢t,s) as.

Indeed, V,X7 /(x) is deﬁned for almost every x. Let £(s,t w,x) =
£,(s, t,w, x) for almost every (w,x) be elements in the equivalence class
VX, {%)(«). Then

A=E[j(s, t, 0, X,(0)) — &(s, t, 0, X,(w))”]

=E [E[Igl(s’ t’ w, Xs(w)) - £2(s’ t’ “’; Xs(“"))IZIXs]] °
Since £,(s, t, w, x) only depends on increments of W after time s, it is indepen-
dent of X,. Hence

A= [p(2)E[i(s,t, 0, %) = (s, 8, 0, x)*] dx =0,
Therefore VX, (X,) is well defined, w a.s.
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Furthermore, Lemma 3.2 shows that v, X, ,(x) is the solution of the stochas-
tic differential equation

VXS (x) = 8+ ['Viof(u, X, (%)) v, X} (x) AWE
(3.19) S .
+ [*vibi(u, X, (%)) v, X, (%) du

(except on a null set of w independent of x).

In order to establish (3.18) it suffices to check that v,X/ (X, (w)) is the
solution of the stochastic differential equation (3.11).

The composition of stochastic flows X, = X, (X,) a.s. shows that

(ftvibj(u’ Xs, u(x))ka:, u(x) du) ° Xs = ftvibj(u, Xs)ka:, u(Xs) du a.s.
Fix j, k; for B=1,...,1 set xp(u,x) = Vioj(u, X, u(x))kas‘" ). Notice

that x4(u, x) is &,-adapted and only depends on increments of W after time s.
We will prove that

t t
(3.20) ([ 'xolr x) aWE)o X, = ['xyu, X,) aW.

Indeed, let ¢ € €°(R?) and let R(u) be a bounded Il-dimensional adapted
process. Then

J= E{\P(Xs)[fstRﬁ(u) deHf:xp(u, X,) de]}

)

- E{ap(Xs)E[( [ o, ) awe|( [ Ry(w) aw

|

Since the stochastic integrals [/ 4(u, x) dW? and [/Rp(u) dW? are independent
of Z,, we obtain

J= /S“Ld\p(x)ps(x)E[%Rﬂ(u)xﬁ(u, x)] dx du

- E{¢(XS)E f:;xﬁ(u, X,)Ry(u) du

= _Ld\P(x)Ps(x)E[(/:Rﬁ(u) duff)(/:xﬁ(u,x) de)} dx
)
- E{lP(Xs)(fstRB(u) dwf)[(/:xp(u,x) dw;f)oxs]},

The function ¢ and the process R are arbitrary, therefore (3.18) holds. Equa-

Xs=x]dx

= /';d\p(x)ps(x)E[(./:RB(u) dW)(j:Xp(u::x) dW}
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tions (3.17) and (3.18) show that
(3.21) E[ve(X)Y{(t,$)IX,] = Vig(s, X,) as.
Then (3.21) implies that

lim I, = E{v,f(X,)a™(s, X,) E[v;a(X,)Y{(t, s)IX,] }

= E[v,f(X,)a*(s, X,)Vi0(s, X,)],

for any s € [0, ] a.e.
Now we proceed as in the proof of Theorem 2.3 to conclude the proof. O

4. Sufficient conditions for absolute continuity. Assume that ¢ and b
satisfy hypothesis (H1) of Section 2. We will now discuss sufficient conditions
that guarantee the following properties:

(Ai) X, has a density p,(x) for all £ € (0,1]. N
(Aii) The sums of distributional derivatives, v (a*(t, x)p(x)), i = 1,..., d, are
locally integrable functions.

From Section 2 we know that if (Ai) holds, then (Aii) is equivalent to the
reversibility of the diffusion property. We first observe that Hérmander’s condi-
tions (see [7] and [3]) imply the smoothness of the density p,(x) for ¢ > 0, and
then properties (Ai) and (Aii) are true. These conditions include the assumptions
that b and o are ¥ functions of x. On the other hand, under conditions (Ci)
and (Cii) of Theorem 3.1 in [6], the process X, = X,_, is a Markov diffusion
process, and therefore these conditions imply (Ai) and (Aii) due to Theorem 2.2.
We remark that conditions (Ci) and (Cii) of [6] require very little regularity on
the coefficients and the existence of an initial density p, satisfying some growth
assumptions.

In relation to the existence of a density for X,, we can state the following
result.

PROPOSITION 4.1. One of the next conditions implies that X, has a density
for any t > 0:

(Hi) The initial value is a fixed point x, € R? and rank o(s, x,) = d for all s in
some neighborhood of 0.

(Hii) X, has a density, and the coefficients o and b are of class €%* for some
a > 0, i.e., with a-Hélder continuous derivatives.

PROOF. Suppose first that (Hi) is true and define
T =inf{t >0, |{s € [0, ¢], rank o(s,X,) = d}| > 0}.

Then by (Hi) we have P{T = 0} = 1, and Theorem 19 of [2] implies that (Ai)
holds.
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Now assume (Hii). We know (cf. [9]) that for almost all w, x - X,(x) is a

diffeomorphism of R¢ onto R¢ of class ¥# for any 0 < B <aand 0 < ¢ < 1.
We can write for any Borel subset B of R¢,

P(X, € B} = [ P(X(x) € B}p,(x) de

B E,/';dl(x, X (x) e B}po(x) dx.
Then |B| = 0 implies |{x, X,(x) € B}| = 0 and so P{X, € B} = 0. O
Finally, the next result provides sufficient conditions for (Aii) to hold.

PROPOSITION 4.2. The following hypothesis implies (Aii) [and also (Ai)]:

(Hiii) The coefficients o and b are of class €2 in x, and there exists ¢ > 0 such
that a(t, x) > el.

Proor. Denote by I, the Malliavin matrix of X,,
L= (<DXti’ Dth>lsi,jsd)'

Assume that detI, > 0 a.s. [which is true under hypothesis (Hiii) and implies
(Ai)]. Let ¢ € €P(R?) be a test function and compute

Ld(P(x)Vj(aij(t, x)pt(x)) dx

(4.1) = - [ vo(x)a(t, x)p(x) ds

~E[v9(X,)a"(t, X,)]

—E[v,(9a¥)(t, X,)| + E[9(X,)v;ail(t, X,)].

Then
D(p(X,)a"(t, X,)) = vi(9a”)(t, X,) DX}.
Therefore
d
<D(‘P(Xt)aij(t, Xt))’ Dth> = 0¥1 Vo(q)aij)(t’ Xt)(rt)ko
and

<D(‘P(Xt)aij(t’ Xt))’ Dth>(Ft_1)jk = Vj(‘Paij)(t’ Xt)‘
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As a consequence,

(4.2) E[W(‘W”)(ﬁ Xt)] = E[<D(‘P(Xz)aij(t, Xt))’ (Ft_l)jkDth>]
= E(‘P(Xt)aij(t’ X)8[(T7) Dsz]),
if the stochastic processes

(4.3) uP(s) = (I;Y) n DEXE,  se[o0,1],8=1,...,1,

are Skorohod integrable, for any j = 1,..., d.
Now, from (4.1) and (4.2) we deduce the following fact.

If detT, > 0 a.s. and the processes u] given by (4.3) are Skorohod integrable,
then (Ai) and (Aii) hold for this value of t, and the coefficient c¥(¢,x) =
(1/pLx)) V(a*(t, x)p(x)) verifies E(|c(t, X,)|) < co.

In fact, we have
oi(t, X,) = v,a'(t, X,) — a'(t, X)E{8[(T,) » DX}|IX.}.

Under hypothesis (Hiii) (and assuming that the first partial derivatives
of 0 and b are bounded) we can show that X € D, 4(L%([0,1],R?)), and
sup,E[(det,) P] < oo for any p > 2 (see Stroock [16]). From these properties we
deduce that u; is Skorohod integrable. This completes the proof. O

APPENDIX

In this last section we state some technical lemmas which have been used
throughout the paper.

LEMMA A.l. Leth € 42[R?) and f’, g: R® > R, j=1,...,d, be functions
such that g and its distributional derivatives v ;g are locally bounded functions,
f’ and v; f’ are locally integrable functions. Then

fRdhfj vgdx = —flndvj(hff)gdx.
ProOOF. Let {a,(x), n > 1} be a sequence of regularization kernels. Then

[V (hi)gde = tim [ 9,(hi*)(g+a,) ds

= —limf hfi(v;g*a,) dx = —f hf/ v g dx.

In fact, the first equality holds by dominated convergence because Vv ,(hf 7y =
hv;f/ + (v,;h)f’ and IV,(hf’)(g*a )| < |V(hf7)|. sup, c klg(x)|, where K is a
sultable bounded set containing-the support of A. The second equality follows
from the relation v (g*a,) = V,g*a,. Finally, the last convergence is also
immediate. O
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LEMMA A.2. Let p(x) be a probability density on R? and let a: R* — R® be
a locally Lipschitz function. Assume that a’ v ;p is a locally integrable function,
then a’ v;p = 0 a.e. on {x, p(x) = 0}.

Proor. It follows the same lines as that of Lemma A.2 of [6]. We recall the
main points. Let {a,, n > 1} be a sequence of regularization kernels of the form
(1.2). Clearly, the sequence p, = p * a,, converges in L'(R?) and a.s. (by taking a
suitable subsequence) to p. Furthermore, if we fix a bounded open set D Cc RY, it
can be proved that a’/v;p, converges to a’v;p in the weak topology
o( LY D), L®(D)) by choosing a suitable subsequence. This result uses the fact
that a is locally Lipschitz, as in Lemma A.1 of [6].

It suffices to show that a’ V;p = 0 on theset {x, p(x) = 0} N {x, |a(x)| # 0},
or more precisely, on {x, p(x) =0} N {x, k, < a¥(x) < k,)}. So, dividing by
a'(x), we may assume that a'(x) = 1. Fix x, on the open set {x, &, < a’(x) < k,}
and consider the transformation x — y(x) given by

yh=al,

(A.].) dy‘

dxl

for x in some neighborhood V of x, Call U the image of V under this

transformation. Let p be the image of the Lebesgue measure by (A.1); then p
and Lebesgue’s measure are equivalent.

Replacing p by ¢p with a ¥ -function ¢ with support contained in U, we
may assume that p has compact support contained in U. Then we have

(A.2) p(y(x)) = f 1 (ajvjp)(y((),xz,...,xd)) do,

X
— 00

= a'(y(x)), yi(x(l,,xz,...,xd) = x!, i=2,...,d,

for all x in V a.e. In fact, this is obviously true for p,, and we can pass to the
limit using the preceding convergences.

Finally, as in [6] this shows the desired property, taking into account that p
is minimum on {x, p(x) = 0}. O

LEMMA A.3. Let ¢(x) be an adapted process of LY X [0,1], W-2(D)). (We

assume for simplicity that | = 1.) Then for any t the integrals [{¢,(x)ds and
[dé(x) AW, belong to L*(Q, W"*(D)) and

v [o(x)ds) = [‘via(x) ds,
v [ox)awm) = [ Vit (x) AW,

ProOF. We only show the second equality. First note that v;¢,(x) is mea-
surable in (x, s, w) and adapted and E/[}/p|V;,(x)|?> dxds < 0. So the preced-
ing stochastic integral is well defined. Let ¢ € ¢°(R?) be a test function. The
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stochastic Fubini theorem yields

[p@( [ i) aw) a = [ [o(x)9i0.(2) | aw,

- [ fe@ @ | aw

- [ [ox) aW,) as,
D 0
which proves the result. O

LEMMA Ad4. Let {Yi(x), i=1,...,d} be random variables belonging to
L¥(Q, WY%(D)) and let f: R® > R be a Lipschitz function. Assume that for
almost all x, Y(x) has a density. Then f(Y(x)) € WY%(D) and

vi({(Y(x))) = (v,f )(¥(x)) v.¥(x),

for all (x, ) a.e.

ProOF. Let {a,, k> 1} be a sequence of regularization kernels and set
fr = f * a,. It holds that

vi( f(Y(x))) = (ijk)(Y(x)) v.Y/(x).

In fact, for any ¢ € °(R?) we can write

Ldfk(y(x))vi¢(x)dx li'rln /Rdfk(Y* a,)V,pdx

B li,rln ‘/I;d(vjfk)(y* “n)(Vin * an)‘P dx

= [ (9 )(X)(v)p ds.

By choosing a suitable subsequence we have
V;fr 22 v;f-
Hence
ijk(Y(x)) _"(ij )(Y(x)),

for all (x, ) a.e., and the result follows easily. O
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