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A particle system in Euclidean space is considered where the particles are
subject to spatial motion according to a symmetric stable law and to a critical
branching law in the domain of attraction of a stable law. The “branching
intensity” may be position-dependent (varying medium) or be given by a
realization of a random field (random medium). It is shown that under
natural assumptions the hydrodynamic limit fluctuations around the macro-
scopic flow are the same as those given by the “averaged medium,” the limit
being a generalized stable Ornstein—Uhlenbeck process. The convergence
proof is based on an analysis of a nonlinear integral equation with random
coefficients.

1. Introduction. The question of the existence and oroperties of equilib-
rium states for critical branching particle systems has been extensively studied;
see, for example, the comprehensive presentation by Kerstan, Matthes and
Mecke (1982), as well as Dawson, Fleischmann, Foley and Peletier (1986), and the
references therein. On the other hand, there is considerable current interest in
understanding the behavior of distributed systems in random media (environ-
ments); see Kozlov (1985) and Papanicolaou (1983) for recent surveys.

In Dawson and Fleischmann (1983, 1985) a branching model in a random
medium was introduced in a discrete space—time setting. Another model with
branching was treated by Greven (1985). These branching models have the
advantage of being more tractable than most interacting particle models such as
those arising in statistical physics and consequently can serve as test cases.

In this article we will study the large scale fluctuations of a critical branching
particle system in the spirit of Holley and Stroock (1978), Dawson (1981) and
Dittrich (1987). Our model is different in that the branching law may have
infinite variance and may also depend on a random medium. The treatment of
the random medium involves ideas from the method of averaging [Kozlov (1985)
gives a recent review of these ideas].

The model under consideration may be described roughly as follows. The
states of the process are counting measures on Euclidean space R? of dimension
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d, representing a system of particles. These particles independently undergo
spherically symmetric stable motions with exponent a, 0 < « < 2. In addition
each particle branches at rate V > 0 according to a critical law in the domain of
attraction of a stable law with exponent 1 + B8, 0 < 8 < 1. The branching law
depends on a parameter 2 which is location-dependent: If a particle branches at
x, then it produces particles with intensity h(x). This yields a branching particle
system in a spatially varying medium h = {h(x): x € R?)}. Finally, we assume
that A is given by a realization of an ergodic random field; we refer to % as the
random medium. A more precise description will be given in Section 2.

We denote by N, the state at time ¢ > 0, and we consider the counting
measure-valued process N = {N,, ¢t > 0}. The distribution of the initial measure
N, is chosen to depend on a parameter ¢ > 0 in such a way that as ¢ — 0 the
scaled random measure ¢?Ny(¢~!-) converges in distribution to a nonrandom
measure A,. In this sense N, and A, describe the initial spatial distribution of
particles at the microscopic and macroscopic levels, respectively.

The long-time behavior of the critical branching particle system N involves a
competition between the long-range “mixing” effect of the particle motions and
the “clumping” effect of the branching. In order to exhibit this we consider the
process viewed in the natural scaling associated with the particle motions,
namely

X:(A) = eN(e %, e 'A).

One objective of this article is to show that in dimensions d > a/8 we obtain the
hydrodynamic limit

XH(-) > SA,(-) ase—0,

where S, is the semigroup of the particle motion. In other words in high
dimensions the spatial diffusion dominates. In the case of low dimensions (which
is not considered in this article) the branching dominates and the system
degenerates to zero in this scaling [cf. Dawson and Fleischmann (1983, 1985) and
Fleischmann and Gértner (1988)]. For hydrodynamic limits of another branching
model refer also to Dobrushin and Siegmund-Schultze (1982).

The main objective of this article is to investigate the fluctuations around this
hydrodynamic limit. In the case « = 2, 8 = 1 and the medium is deterministic
the limit fluctuations are given by a well-known Gaussian generalized
Ornlstein—Uhlenbeck process [see Holley and Stroock (1978), Gorostiza (1983),
Bojdecki and Gorostiza (1986) and Dittrich (1987)]. In particular, we consider
the rescaled fluctuation process

Ye=e %[ X - SA,],

where £ = (dB — a)/(1 + B). The main result of this article is that Y converges
as ¢ = 0 to a generalized Ornstein—-Uhlenbeck process. This limit process can
also be described as the solution of a generalized Langevin equation which is
riven by Gaussian noise when 8 = 1 and by stable noise when 8 < 1.
Our approach can be regarded as a generalization of Dittrich (1987). The key
to the proof of these results is an analysis of the scaling properties of a nonlinear
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integral equation which enables us to establish the convergence of finite-dimen-
sional distributions. [This key scaling argument is given in the proof of Proposi-
tion (5.3.1).] Concerning tightness, due to the lack of finite second moments, we
cannot apply the usual methods based on the increasing process of martingales
[as in Holley and Stroock (1978) and Gorostiza (1983)]. Instead we develop a
method to verify Aldous’ tightness criterion based on a moment inequality
involving the characteristic functional. '

The outline of the article is as follows. In Section 2 we describe in detail the
branching system in a random medium. In Section 3 we introduce the state
spaces for the process N and the limiting fluctuation process Y. The precise
statements of the main results described above are given in Section 4 and the
proofs are given in Section 5.

2. Description of the system. The motion of the particles is assumed to be
a spherically symmetric stable process of R® with exponent a, 0 < a < 2.

Fix B, 0 < B < 1. A varying medium, denoted by h = {h(x): x € R%)}, is an
element of the space H of real-valued measurable functions on R? satisfying
0 <A <(1+ B)"! (ther reason for imposing the upper bound is related to the
branching law to be introduced). Let 5# be the o-algebra of subsets of H
generated by the mappings 2 — [z« f(x)h(x) dx with f € LY(R?).

The random medium is prescribed by a probability measure m on (H, 5#),
not concentrated on A = 0. We assume that m is stationary and ergodic with
respect to the translation group on R The “classical” medium %4 = const. is
included as a special case. Another family of examples is given by A(x) =
(2/7(1 + B))|arctan g(x)|, where g is any continuous regular stationary Gauss-
ian random field on R?.

To each h € H is associated the family g” = {g”(x): x € R?} of offspring
~ generating functions

g"(x,8) =s+h(x)(1-s)"*
2.1 e n
&1 =t h@) 5 (VEA) e i<,
n=0 n
where s is a complex number. Here and in the following 2! *# = exp[(1 + 8)log 2]
is always understood in the sense of the principal branch of the logarithm.

g"(x) describes the local branching law: If a particle located at x splits, then
n particles are produced with probability

h(x)(l;t'B)(—l)" itn*1,
1-h(x)(1+B) ifn=1.

pr(x) =

Note that the branching law is critical, that is, it has mean 1, and it belongs to
the domain of normal attraction of a stable law with exponent 1+ B [if
h(x) > 0]; thus for B < 1 it has infinite variance. In the case 8 = 1, p(x) =0
for n > 2 and the variance is 2A(x). The condition p?(x) > 0 requires A(x) <
(1 + B)~’. Since the probability that more than one particle is produced at x is
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Bh(x), we may interpret A(x) as the branching intensity or fertility at x. Note
also that A(x) = pl(x) is the probability of extinction at x.

Each particle has an exponentially distributed lifetime with parameter V > 0,
and at the end of its life it branches according to g” given above. The offspring
appear at the site where their parent branches.

The motions, lifetimes and branchings of all particles are independent of each
other and of the random medium (except for the branching intensity). It is
assumed that the random medium is sampled first (and fixed for all time)
according to m and then the system evolves in the resulting varying medium.

The description of the system is completed by specifying an initial distribu-
tion of particles which may possibly depend on the random medium.

Let N,(A) denote the number of particles in the system which lie in the Borel
set A C R at time ¢ > 0. For fixed 2 € H and in the case of a finite number of
initial particles the existence of process N follows from Moyal (1962, 1964) and
Ikeda, Nagasawa and Watanabe (1968a, b, 1969). In the next section we make
precise the formulation of N as a measure-valued process and its extension to an
appropriate class of infinite measures.

3. State spaces for the basic processes.

3.1. The counting process N. The first objective of this section is to intro-
duce a space A/( R?) of infinite counting measures with an appropriate topology
which serves as the state space for N.

Given a topological space M we define the following spaces of real-valued
functions on M: C(M) is the space of continuous bounded functions on M with
the topology induced by the sup-norm || ||..; C{(M) is the subset of functions
having compact support, and if M is locally compact Cy(M) is the subset of
functions vanishing at infinity. The collection of nonnegative elements of a real
function space will be indicated by the index +.

When M = R? with its usual norm |- |, we denote ¢,(x) = (1 + |x|>)72,
x € R% p > 0, and we define the spaces

C,(R?) = {9 € C(RY): ||¢/dpll., < 0}, p>0,
C,o(R?) = {¢ € C(R%): ¢/, € C(R?Y)}, p>o0.

Note that C, ( R?) ¢ C,(R%) c Cy(R?).

For p > 0, let ./ ( R?) denote the space of nonnegative Radon measures p on
R such that [4« ¢, dp < 0. We equip /# (R?) with the p-vague topology, that
is, the smallest topology making the maps p — (¢ dy continuous for all ¢ €
C(Rd)+U{¢p} We denote (u,¢) = [pdp for ¢ € (Rd) and pe A (Rd)
The space A (R" ) is Polish but not locally compact. The Lebesgue measure on
Rd belongs to /l (Rd ) for p > d/2. We denote by ./, (Rd ) the space of counting
measures in /# (Rd), that is, the integer-valued measures finite on bounded
Borel sets.
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On C,(R%), p > 0, we define the norm
060, = 19/$plle, ¢ € C(R?),

making C,( R%) a Banach space, and we consider the dual Cj( R?) with norm
O¢0_, = sup{|(¢, )|: ¢ € C,(R?),0¢0, < 1}, £ € Cy(RY).

Then A ,( R?) can be regarded as a subspace of C;( R?). 1t is easy to verify that

OpO_, = {(p, ¢,y for all p € # (R?). The topology induced on M (R%) by the

norm O - O_, is stronger than the p-vague topology.

Occasionally, we will use some of the function space symbols introduced above
(and below) for the corresponding spaces of complex-valued functions.

Let {S? ¢ > 0} denote the semigroup determined by the spherically symmet-
ric stable process on R® with exponent a, 0 < a < 2 [see, e.g., Mijnheer (1975)].
By definition this is a time-homogeneous strong Markov process whose transi-
tion probability has a density pf(x, y) = pf(y — x) with characteristic function
given by

j;?de""yp;"(x) dx = exp{ —t|y|°}, y € R

(- denotes the inner product in R?). The case a = 2 corresponds to the Wiener
process with variance parameter 2. We will suppress the « in the notation of the
semigroup and the transition density. We have

S6(t) = [ $(N)pdy =) dy

= fqub(x +y)p(y)dy, >0,

S = ¢, ¢ € C(R?) (real- or complex-valued).
For pe # p(Rd) with p > 0, we also define the Borel measure

Sim(A) =fm(Lpt(y—x)dy)u(dx), t>0,

Sorr = .
Note that (Su, ¢) = (u, S;¢) if ¢ € C,(R?) and p € A (R?).
Throughout the remainder of this article, p is a fixed number satisfying
(3.1a) p>d/2 in all cases,
(3.1b) p <(d+ a)/2 inthecase a'<2.
This condition is imposed in order to guarantee that Lebesgue measure belongs
to # (R?) and that S, maps ./ ,(R?) into itself. The appropriate technical

results given below are based on results of Iscoe (1986). [Note, however, that
Iscoe defines ¢,(x) = (1 + |x[P)~! so that his results translate to our setting with

2 p instead of p.]
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(3.2) LEMMA. If p satisfies (3.1), then S, is a bounded linear operator from
(C,(R%),0-0,) into itself, and from (M (R®),0-0_,) into itself.

PrOOF. Since ¢ € Cp(Rd) is uniformly continuous, then S,¢ is continuous
and bounded. We have

18,6 (x)| = 1S,(6,9/9,)(x)] < 060,59, ().
By Iscoe (1986), Corollary 2.4, S¢, < C,¢, for s < ¢ and some constant C,. Hence

S¢ € C,(R?) and 0S¢0, < C,O¢0,,.
For p € # ,(R®), by duality and the previous result,

OSpa_, = sup{|(, S)|: ¢ € C,(R?),0¢0, < 1}

< sup{OpO_,08,¢0,:0¢0, < 1} < COpO_,,. O

(3.3) LEMMA. If p satisfies (3.1), and ¢ € C,(R?) is such that

lim,, _, , $(x)/¢,(x) exists [e.g., ¢ € C{R?),U{¢,}], then t > S,¢ is a contin-

uous curve in (C,(R?),0-0,). Also, for p € #,(R%), t— Su is p-vaguely
continuous.

Proor. Let 0 <s <t < T. By the proof of (3.2) and Iscoe (1986), Corollary
24,

0S¢ — S0, = O8,(S,_ ¢ — ¢)0, < C;0S,_ ¢ — ¢0,

for some constant Cr, and OS, ¢ — ¢0, — 0 by Iscoe (1986), Lemma 2.4. By
the first part of the lemma and dominated convergence,

(S — S;p,0) = (n, S0 —Sp) >0 ast—s—-0,
for ¢ € C(R%),U{¢,}. O

The infinitesimal generator of {S,, ¢ > 0} is given by the fractional power of
the Laplacian, A, = —(—A)*/? [see Pazy (1983)].

Given a topological space M, we denote by D,, = D(R,, M) the space of
functions from R, into M which are right-continuous and have left limits. D,,
is equipped with a Skorohod-type topology when M is a metric space [see Ethier
and Kurtz (1986)].

We now return to the counting process N described in the previous section.
Following the method of Iscoe (1986), this process can be extended to include
initial measures p € A/( R?) and with sample paths in D 4, (R?) [see the proof of
Lemma (5.2.3)]. Then N is a time-homogeneous Markov process with character-
istic functional

F(t,¢,pn) = E[exp{—i(N,,¢)}INy=p], ¢=0,¢€ C(R?), p€A,(R?),
which has the following properties:
(?34) (multiplicative property)

F(t; o, 0y + .U~2) = F(t, ¢, Hl)F(t, ¢, P'2): My, g € Np(Rd)’
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(8.5)  (branching property) o(¢) = {v(¢, x) == F(t, ¢,8,), x € R%}
satisfies the integral equation

o(t) =e ViSe " + ft[S,gh(o(t -r))|VeVrdr, t>o0.
0

Property (3.4) is a consequence of the independence of the systems generated by
different initial particles. Property (3.5) is a nonlinear renewal-type equation
which arises as follows: If we start one particle at location x, this particle moves
according to the stable law and does not branch before time ¢ (first term on the
right-hand side), or it splits at time r at rate V according to g” and all its
offspring evolve independently after birth in the same way (second term).

3.2. The limit fluctuation process Y. In the remainder of this section we
discuss some technical points concerning the Schwartz space of tempered distri-
butions, &’(R?), which serves as the state space for the limiting fluctuation
process Y. Further information on this material can be found in Gelfand and
Vilenkin (1964), It (1984) and Mitoma (1983).

Let &(R?) denote the space of infinitely differentiable functions which are
rapidly decreasing at infinity together with all their derivatives. #(R?) is
topologized by either of the two following sequences of increasing norms:

1/2

uqsu,,=( X[+ ) iDbe (P ds)

lloll, = max sup (1+ |x?) D% (x), ¢e€L(RY),
OslklsnxeRd

=0,1,2,..., where k= (ky..., k), |kl =h + - +hy D*=
a1l /9xk ... dxks. The | - ||, are Hilbert norms, and for each n > 1 there exist
constants ¢, and 4,> 0 such that |6l < c,|éll,s; and 911, < calldlln-s
¢ € #(R?). We w111 denote by S,(R%) the completion of F(R?) with respect to
Il - Il,- Then #(R?¥) =NL_yL(R?) is a countably Hilbert nuclear space; this
fact makes possible the apphcatlon of the results of Hida (1980) and Mitoma
(1983). Note that S(R?) c C, ((R?) for all p > 0.

The topological dual of &( Rd) will be des1gnated by &’(R?); this is the space
of tempered distributions. We have #/(R%) = &/ (R?), where &/(R?) is
the dual of %(R?), with the dual-norm written || - ||_n We will denote by { -, -)
the duality on (&'(R%), #(R%)) and on (%/(R?), #(R?)), as well as other
dualities.

If #'(R?), designates the space of nonnegative members of &#’(R?), then

L(R%),=U,, oM (R?). Moreover, for each p > 0 there exists n > 1 such
that ./ ,(R?) c &/(R®); the topology induced on .# (R%) by %,(R?) is weaker
than the Dp-vague topology, and still weaker is the one induced by & "(R?) [since

&’(R?) is not the strict inductive limit of the %/(R%)].

The space Dy, g, is equipped with a Skorohod-type topology [see Mitoma
(1983)].



1090 D. A. DAWSON, K. FLEISCHMANN AND L. G. GOROSTIZA

(3.6) REMARKS. 1. As is now common with models of the present type, an
appropriate setting for the fluctuation limit theorem is the nuclear triple

#(R?) c L¥(R?) c #'(RY).

Since the Brownian motion semigroup and the Laplacian map %( R¢) into itself,
the latter is therefore a natural space of test functions for our model when the
particles undergo Brownian motion [e.g., Holley and Stroock (1978)]. However, a
technical difficulty arises from the fact that, contrary to the Brownian motion
case, the semigroup and the infinitesimal generator of the symmetric stable
process with exponent a < 2 do not map %(R?) into itself. To verify this, note
that (3.2) implies that S(&(R%)) c C, (R?) for all p which satisfy (3.1).
Moreover, S,;¢ is infinitely differentiable for all ¢ € #(R?), since the stable
density p,(x) is infinitely differentiable in x. Nevertheless S,(&(R?)) is not
contained in #(R%) for a < 2 because in this case fast decay at infinity fails due
to the long tails of the stable law. Moreover, the domain of A, contains & (R%)
and A (S (R?)) c C, (R?) but A (F(R?)) ¢ S(R?) again due to the long tails
of the stable law [cf. Dawson and Gorostiza (1988)]. Since S, and A, do not map
#(R?) into itself for a < 2, extra work is needed in order to use #(R?) as a
space of test functions. We will come back to this point in Remark (4.7).

2. An alternative approach would be to define an ad hoc nuclear space F of
test functions which is invariant under S, and A,. Such a space can be con-
structed but turns out to be smaller than y(Rd) Consequently, F’ is larger
than %’(R?) thus yielding a weaker result than the one obtained by working
with #/(R?).

4. Statement of the main results. In order to set up the scaling limit we
introduce a parameter ¢, 0 <& <1, and a corresponding family of processes
N¢= (N, t > 0}. For fixed h € H we denote by P" the distribution of N°® on
Dy pey- Then the distribution of N° in the random medium is given by

(4.1) P(-) = [ PM(-)m(dh);
H

and the expectation with respect to P™ is given by

(42) E(-) = [ Ey(-)m(dh),
H

where E, denotes the expectation with respect to P [see Dellacherie and Meyer
(1978)].

We will assume that as ¢ — 0 the scaled initial random measure &?N, e )
converges weakly under P to a nonrandom measure A, € .4 (Rd) An example
of this is N§ = Poisson pa.rtlcle system with intensity measure ¢~ %A (¢ - ), with
Apedt (Rd) The index ¢ is introduced only in connection with this assump-
tlon on Noe, the £ has no bearing on the transition probability of N¢ hence (3.4)
and (3.5) hold under each P*.
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Given N°® we define the C,/(R?)-valued process Y* = {Y,, ¢ > 0} by
(4.3) (Y, ¢) = e *[(X;,¢) — (A, 9)], 20,6 € C,(RY),
where

(X7, ¢) = eX N, d(e ),

(4.4) (dB - )
At= StAO and k= ’(1+—B)

Y¢ is the large scale fluctuation process around the macroscopic deterministic
flow A. The distribution of Y* in Dy e, is determined by P’ for the varying
medium A, and by P for the random medium. Note that the space-time scaling
involved in (4.4) preserves the distribution of the particle motion, and that
d > 2k because B8 <1 and a > 0.

We will denote weak convergence by = .

Let us recall our assumptions: d > a/B, p satisfies (3.1a) and (3.1b), N§ may
depend on the random medium and takes values in ./ ,(R?) and ¢*Ng(e -7 )=
A, under P™, where A, € A (Rd ) is deterministic. In addition, we will assume
that E(N(f, ) < 0 and E(XO, ¢y >0ase—>0if ¢ > 0inC (Rd), where E
is given by (4.2) [see, however, statement 3 in Remark (5.3.8)]. Note that Y§ is a
Cy( R%)-valued random variable. We will now formulate our main result.

(4.5) THEOREM. (a) If Y§ = Y, under P™ as ¢ — 0, where Y, is a C’(Rd)
valued random variable, and supeEDYO"Dl“;ﬂ < o0, then Y¢ = Y under P"‘ in
Dy (gey as € > 0, where Y = (Y, t > 0} is an V’(Rd) valued tzme-homogeneous
Markov process whose transition characteristic functional is given by

E[exp{—i{Y,, ) }|Y,]
= E [exp{ ~i(Y,, $)}(Y,, ¥), ¥ € #(R?)]

= exp{—i<Y;, S,_ ) + <As, VZ/‘St_r(iSr_s¢)1+B dr>},

0<s<t ¢<Z(R?,

where h = [;; h(0)m(dh) is the mean of the random medium.

(b) If the assumptions hold with respect to P* for m-almost all h (in
particular if N§ is independent of the random medium), then the limit result in
(a) is valid for each fixed varying medium h in a set of m-measure 1, the limit
process Y being the same as in (a).

(4.6)

4.7) REMARK The notation (Y,, S,_ 8¢) in (4.6) needs justification because
S,_,$ lies in C, o( R%) but not necessanly in #(R?). It can be shown that ( y e )
has a contmuous linear extension to C, o(R%), and therefore ¢ — (Y, s¢)
defines a linear random functional on #(R?) [see Lemma (3.2) and Remark
(3.6)]. Then, by the regularization theorem [e.g., It6 (1984)], this linear random
functional has a regular version, that is, a version which is an %’(R%)-valued
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random variable. We denote the regular version also by (Y,, S,_ ), ¢ € L(R?),
and this is what is meant in (4.6). It should be noted that the previous argument
does not allow us to assert that Y is a CI;’O(Rd)-valued process because the
regularization theorem does not hold on CP,O(Rd). This and related questions
involve other techniques, and they are discussed in detail in Dawson and
Gorostiza (1988).

The fluctuation limit theorem, more precisely Proposition (5.3.1) below, also
yields the hydrodynamic behavior of the system, that is, the law of large
numbers, namely:

(4.8) CorROLLARY. (X/ ¢) = (A, ¢) under P™ as ¢ > 0 for each ¢ €
C( R?), and a corresponding a.s. result for condition (b) above.

In the next theorem we will give some properties of the limit fluctuation
process Y.
(4.9) THEOREM. (i) Y satisfies the generalized Langevin equation
dY,= A Y, dt + dZ,, t>0,

where Z = {Z,, t > 0} is an &'(R?)-valued process with independent increments
such that

EexP{ _i(<Zt’ ¢> - <Zs’ ¢>)}
=exp{V71ft(A,,(i¢)HB) dr}, 0<s<t ¢<F(R?).
(i) For t > 0 and ¢ € #(R?Y),, (Y, ¢) — (Y,, S;¢) has a distribution with
characteristic functional

E exp{iu({Y,, ¢) — (Yp, S;¢)) )}

= exp{—c(¢)|u|1+’*[1 - isgnutanz(—l—;—@—)

}, u€ER,

that is, a Gaussian distribution if B = 1, and if B < 1 it is a stable distribution
with index 1 + B, and anisotropy parameter —1 [see, e.g., Breiman (1968),
page 204). The normalization constant c(¢) is given by

() = —cos("—u;—ﬁ)) <A0,V7z[0‘st_,(§,qb)“’3 dr>.

(iii) Y, — S,Y, is spatially homogeneous for each t > 0 if and only if A(dx) =
Adx, A > 0. In this case, if Y, =0 and B = 1 (the Gaussian case), the spectral
measure of Y, is given by

VRA|x| (1 — exp{ —2¢|x|*}) dx.

(iv) There exists n > 1 such that Y, — S,Y, takes values in S}(R?) for all

t>0.
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(4.10) REMARKS. 1. Under condition (b) in (4.5) the tightness proof is basi-
cally the same as in case (a), but simpler. We will do it only for (a). The condition
sup, EOY;0' 1 < oo can be replaced by the slightly weaker one: sup, E oy:o'!
< oo for some 0 < @ < B but this complicates the calculations.

2. Under each of the two cases in (4.5), if the random medium is only
invariant (not necessarily ergodic) with respect to the translation group, then the
results hold with % replaced by E[A|#], where £ is the o-field of invariant sets.

3. In view of (4.9)i) and (4.9)ii) we refer to Y as a generalized stable
Ornstein—Uhlenbeck process. More precisely, Y — SY, is such a process. In the
case B =1, Y — SY, is a special case of a generalized Gaussian Ornstein—Uhlen-
beck process with continuous paths [see Holley and Stroock (1978) and Dawson
(1981)]; Bojdecki and Gorostiza (1986) discuss a more general class of such
processes; in this case the continuity can be shown by an extension of the
Dudley-Fernique theorem [cf. Mitoma (1981)]. On the other hand, for 8 < 1, Y
has discontinuous paths. Hence the properties of Y being Gaussian or strictly
stable, and correspondingly continuous or discontinuous, depend on whether the
branching law has finite second moment or not (8 = 1 or B < 1, respectively),
and these properties are independent of whether the particle motion is Brownian
motion or a strictly stable process (a = 2 or a < 2). It should also be noticed
that (4.6) shows that the conditional distribution of the stable process Y — SY, is
also stable; this is generally not true for symmetric stable non-Gaussian pro-
cesses [Adler, Cambanis and Samorodnitsky (1987)].

4. The asymmetric behavior of Y — SY, in the case 8 < 1 occurs because the
branching law is the distribution of a nonnegative random variable and belongs
to the domain of attraction of an asymmetric stable law.

5. If Nf is a Poisson system with intensity measure & %A(e-), then
e~/ (e?Ng(e~' - ) — A,) converges weakly to a Gaussian white noise on R“
determined by A,, and therefore Y, =0 because d > 2k. In this case the
normalization which yields a nondegenerate limit at times ¢ > 0 is too strong to
yield limit fluctuations at time ¢ = 0.

6. In the Gaussian case (8 = 1) and Brownian motion (a = 2), the Langevin
equation in (4.9)(i) can be obtained by applying Theorem 3.6 in Bojdecki and
Gorostiza (1986). For @ < 2 and B = 1 the equation is formally the same, just
replacing A by A,. However, for @ < 2 (and B < 1) the Langevin equation cannot
be interpreted in the usual way, that is,

(¥ 9y = (%, 8) + [ “Y,,Ag)ds + (Z,$), t20,¢cP(RY),

because A, does not map ¥(R?) into itself. A generalized interpretation of the
equation is necessary. This turned out to be a fairly technical problem, and we
preferred to discuss it separately [Dawson and Gorostiza (1988)].

« 5. Proofs.

5.1. A nonlinear integral equation with random coefficients. The proof of
convergence is based on properties of solutions of an integral equation. In this
section we will derive these properties.
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Fix T>0, ¢ € C,(R%), L >0and 0 <X < L, and assume that for each % in
a subset H, of H and 0 < e <1 we have a bounded complex-valued function
u(t) = u(t x)=ult, oA, x) = uft,¢A), 0 < ¢t < T, x € R? (we omit the de-
pendence on % in the notation) which satisfies the integral equation

u(t) = §[e* (1 — exp{—ie?"*gA})]
(5.1.1) —ekaOtS,_s[h(e_l Jul*h(s)] ds, O0<t<T.

(5.1.2) LEMMA. There exist 0 < e ; <1 and 0 < K < oo such that
sup{Ju(¢,x)]: t<T,x € R%, ¢ <er 1, h € Hy} < const.||¢||, A = KA.

PROOF. Let a(t) = sup{|u(t, x)|: x € R%}. Then, since S, is a contraction
and 0 < A < 1, (5.1.1) implies

0 < at) <llpllA+ eV [al*F(s)ds, 0<t<T.
0
The equation
b(t) = 6l A + skvf‘b;”*(s) ds, 0<t<T,
0

has unique solution b(t) = |||l A1 — ¥VB||[|5APt)~1/F for all 0 < A < L pro-
vided that

(5.1.3) e < 1/(VBTlell5L?)"".
Clearly, there exists e, ;, > 0 such that b(t) < const.||¢||, A for 0 < ¢< T and
&€ < €r -

By a comparison theorem [Miller (1971), page 121], a (t) < b(t)for0 < ¢ < T;
hence the assertion follows. O

(5.1.4) LEMMA.
sup{lu(t)|: & < e , h € Hy} < const.S|¢p[A, O0<t<T.

ProoF. By (5.1.5) and (5.1.2),
suplue(t)l < SJo|A + ekVKﬁ)\”ftSt_s suplue(s)| ds, 0<t<T.

The comparison theorem used in the previous proof does not apply in this case;
henceforth we assume &, ; is small enough so that ¢ = ek [VKPLPT < 1 where
K = const.||¢||,, [this is consistent with (5.1.3)]; then by iteration of the inequal-
ity it can be shown that

suplu(t) < (1—c) 'SJ¢\, 0<t<T. O
h

(5 1.5) LEMMA. There exzst positive constants K, and K, such that for all
t< T and e < €T L>

sup|u(t) — iS;pA| < K,e*S|p|N "8 < K ek,
h
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PROOF. Since
lexp{ —ie? %A} — 1 + ie? *pA| < eXI7P)||2A\2 < const. X RN A,
then
(a) 1S,{5 (1 — e7¥"#*)} — iS,pA| < const. e?AS|p|N+A.
Then, by (5.1.1), (5.1.2), (5.1.4) and (a),

lu(t) — iSoA| < |S,{e*~4(1 — e~ M)} — iSeA| + £*V f 'S,_Jus)F ds
0
< const. e?74G|¢p|N *# + const. ekVKﬁ}\ﬁftSt_sSslqbl)\ ds
0

< const. e?7%S,|p|\ £ + const. eXS;|¢|\ T# < const. eXS;|p|A T4,

the last inequality because d — & > k. This proves the first asserted inequality;
the second one is obvious. O

(5.1.6) PROPOSITION. There exists y > 1 such that forallt < Tand ¢ < e,

sup u(t) — S\ + eV ['S,_ [ n(e™ -)(iSeA)" ] ds
h 0

< const. e"4G,|p|N A,

PROOF. Let A = {(s,y) €[0,T] X R% |S,¢(y)| < 2K,¢e*}, where K, is the
constant in (5.1.5). Then, by (5.1.5), on A,

lu(s, ¥)| < luls, y) — iSo(¥)A| + [So(y)A| < K e¥A + 2K ,e*A < const. e¥A.
Hence, by (5.1.4), onA,

lu s, YN = |uls, y)l luls, y)IF

(2)
< const. S;|¢|( y)Ae*AP < const. e¥AS|p|(y )N HE.
Also, on A, :
(b) ISo( )N 8 < 1So( )l ISe(y)AN*#

< const. "85S |p|(y) N A,
Using (a) and (b), we have

eV ['ds [ dyLy(s, 9)pa(-2 DN H(s, 3) - (1Sp(nN)
0 R

e

< const. £ka+ﬁ)}\l+ﬁ LtdSdeypt—s(" y)SsH’I(y)a
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SO

k t 1+8 (s 1+8

eV [(ds [ dyla(s, y)pesl-, 2)lul*B(s, y) = (iS4(2)N)'"
0 R

< const. e*+AG|p|N A,

On the other hand, on A¢, |iS¢(¥)A| > 2K,e*A, but by (5.1.5) |u(s, y) —
iS;¢(¥)A| < K,e*A. Hence on A° both u(s,y) and iS¢(y)A lie on the
same half-plane Im(z) > 0 or Im(z) < 0. On these half-planes the function
2'*# is Lipschitz-continuous on compact sets. Now, A¢ is bounded since
sup, . S,|¢[(y) = 0 as |y| = oo, due to (3.2) and Iscoe (1986), Corollary 2.4.
Hence A€ has compact closure. Therefore by (5.1.5), on A,

ul*A(s, y) = (iS¢(¥)N)" | < const.|u(s, ) — iS$(»)A|
< const. &S, |p|( y)N 4,

()

consequently

EkaOtdszddylAv(s, Y)Peo(-, Pl (s, y) — (iSp(y)N)'

< const. g2\ +8 ftdsf dyp,_(+, ¥)S¢I( ),
0 R?
SO
b t 148 _(: 1+ 8
€ V/dg/ddylA”(s’ y)pt—s(W y)lue (S, y) (lssd)(y)}\) I
0 R

< const. e2kG,|p| N +A,
Finally, using (5.1.1), (5.1.5)(a), (c) and (d), we have

(d)

w(£) = iSoh + V'S, [ N ison) ]
0

sup
h
< S, {e* (1 — e M)} — iSeA|

+£kV/otdszddy1A(s, NP5 PNES(1N) P — ul (s, )

+etV[ds [ dyLis, 3)ps(, VISV~ ul (s, )

< const.(e97% + 1 +A) + g2k)G |p| N +A
< const. e7%S,|¢|\ A,
where y = min{(d — k)/k,1 + B,2}; vy > 1 because d — 2 > k and 8 > 0. O
’ REMARK. The randomness in (5.1.1) is due to A. The only fact which we used

about A is that it is bounded by 1, and therefore the previous results hold for all
realizations of A in H,.
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5.2. Properties of the process N. We will derive here some properties we
need of the process N* = N = {N,, ¢t > 0} under P" (h fixed). We denote by E,,

the expectation with respect to P*.
(5.2.1) LEMMA. For 0 <s <t, ¢ € C,(R?) and X € R,
(i)  Ej[exp{—iA(N,, ¢)}IN,] = exp{(N,,log[1 — w(t - s)]}},
where w(t) = w(t, oA, x} satisfies the equation

(i) w(t) =8[1-e "] - Vj(;tS,_,[hw1+B(r)] dr, t>0,

and w(t,0, x) = 0. Moreover,
(i)  Ejexp{—iM(N, ¢)} = Enexp{(Ny,log[1 — w(t)])).

Proor. By (3.3),
() v(t) = v(t, A, x) = E,[exp{ —i{N,, pA)|N, = 8.}],
t>0, x € R®,
satisfies

o(t) = e V!Se " + Vfte‘v“_s)St_sgh(o(s)) ds, t>0.
0

The generator of the semigroup {e~ V'S, ¢ >0} is A, — VI, where I is the
identity operator. Hence v also satisfies the following variation-of-constants
equation with respect to the semigroup S, [see, e.g., Pazy (1983)]:

o(t) = Se i + VfOtSt_s[g"(v(s)) —o(s)]ds, t>0.

By (2.1), g"(v(s)) — v(s) = A(1 — v(s))'*#; then setting
(b) w(t) = w(t, oA, x) =1—0(t), t>0, x € RY,

we see that w satisfies (ii) and w(¢,0, x) = 0
Using the multiplicative property (3.4), the time homogeneity of N, (a) and
(b), we have

E,[exp{—iM(N,, ¢)}IN,]
= exp{(N,,log E [exp{ —iM(N,, §)}IN, = 8] )}
= exp{(N,,log[1 — w(¢ - s)])}.
Then (iii) follows by taking expectation. O

We have stated the previous lemma as if we already knew that N, takes
values in ./ (Rd) In fact this will follow from the next results. For the moment
we may assume the validity of the lemma for ¢ € C(R?). Moreover, the
assumption E(N,, ¢,) < co implies E,(N;, ¢,) < co for m-almost all A [see
(4.2)]; we may assume for simplicity that this holds for all A.



1098 D. A. DAWSON, K. FLEISCHMANN AND L. G. GOROSTIZA

(5.2.2) LEMMA. For 0 < s < tand ¢ € C,(R%),

(i) EL[(N, ¢)IN,] = (N,, S,_$)
and
(ii) Ei(N,, ¢) = E(N,, S;¢) < 0.

Proor. By (5.2.1)(i),
E,[(N,, ¢)IN,] = id/9dN(exp{(N,,log[1 — w(t = 5)]}})lr=0
= i(N,, —3/3Mw(t = 5)))Ir=05
because w(t,0, x) = 0, and from (5.2.1)(ii) we find 3/IAN(w(t — 8))|x—0 = IS;_P,

because 8 > 0. This yields (i), and (ii) follows from (i) by taking expectation. The
results hold for ¢ € C,(R?) due to (3.2) and the assumption E,(N,, ¢,) < 0. O

Since E,(N,, ¢,) < o, then (N, ¢,) < oo as. Hence for each ¢t >0, E,N,
and N, take values in # (R?) as. Since # ,(R%) C #/(R?) for some n > 1,
then for each £ > 0, N, and N, — E, N, take values in %,/(R%) a.s. Moreover, we
have the following result.

(56.2.3) LEMMA. The processes N and N — E,N can be realized in Dy, (pa,
for some n > 1, and they have the strong Markov property (under P").

ProoOF. We assume the filtration generated by N is completed and made
right-continuous in the usual way. The result for N follows by an application
of Theorem 9.4 in Chapter 1 of Blumenthal and Getoor (1968) to the ./Z ,( RY)-
valued Markov process N. However, since ./ ,( R?) is not locally compact (in
the p-vague topology), in order to apply this theorem we embed ./ R?) in
the locally compact space . ,( R?) introduced by Iscoe (1986).

Let P,(p,dr) denote the transition probability of the time-homogeneous
Markov process N in the medium A. For ® € C(A ,( R%)) we define

To(u) = [ e 2OB( ), 620, p e A (R,

As in Iscoe (1986) this definition can be extended to p € ./V;,(Rd), and it can be
shown that T;: CO(./VI',(R”’)) —>'CO(.A/1‘,(R‘1)), and T,® —» ® as ¢ — 0 uniformly on
A R?) for each @ € C( H( R?)). Then the quoted theorem applies, so that N
can be realized in D v, (i) and has the strong Markov property. As in Iscoe
(1986) it can be shown that N is ./Vp(Rd)-valued. Then from the results in
Section 2, N can also be realized in D, g« for some n >1 and the strong
Markov property is maintained in this space.

The result for N — E;, N now follows from the fact that by (5.2.2)(ii) and (3.3)
t—> E,N,= S,E,N, is p-vaguely continuous. O

(5.2.4) LEMMA. Let ¢ € Cp(Rd) and assume ¢ is in the domain of A,. Then
the process

(N, ¢) — /0 NN, Agydr, =0,
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is a PMmartingale with respect to the filtration %, = o{(N,,y):r<s,y €
F(R%)}, s = 0.

ProOOF. Integrability follows from the previous results. The integral in ¢
exists because of (5.2.3). Let s < t. Using the Markov property of N, (5.2.2)(i)
and d/dt(S,) = S,A,, we have

Eh[<M, &) - [N 0 drlé“"s]
= BLN.9)IN] = [N, Ag) dr = [E,[(N., A@)IN,] ar
= <Ivs’ St—s¢> - fs<Nr’ Au¢> dr - <sz’ftsr—sAu¢ dr>
0 s

= (N,, ¢) — fOS<N,, A ) dr. O

Replacing N by N — E,N in (5.2.4) also yields a martingale. Note that the
assumptions in (5.2.4) hold for ¢ € #(R?).

5.3. Convergence of finite-dimensional distributions.

(5.3.1) ProposiTION. If (Y§, ¢) = Y(¢) under P as ¢ > 0 for each ¢ €
C,(R%), then

(€Y 010, (Y 6)) = (Yi($1)5- -, Yil(44))

under P" as ¢ > 0 foralln>1,0<t < -+ <t, and ¢,,...,9, € Cy(R?),
where Y,(¢,), k= 0,1,..., n, denote the limit real random variables (t, = 0).

Proor. It suffices to prove that

k k
(a) Esexp{ —i ) (Y, ¢j>} - Eexp{—i Y Y,j(cpj)} ase—> 0
=0 =0
for all k>0, 0=1¢t,<t, < -+ <t, and &, o,,..., 9, € C(R?), where E,
denotes expectation under P™ and E expectation under the limit distribution.
For k = 0 (a) holds by hypothesis. Assuming (a) is true for 2 = n — 1, we will
show it holds for & = n. .
Using the Markov property of N under P”, by (5.2.1) with A = 1, we have
[with the notation of (5.2.1), N = N¢]

E,,exp{ -iy <Mj,¢,>}
=0

Jj=

n-1
=E, exp{—i Y (th, ¢,~)}Eh[exp{ —i(N,, ¢n>}|Nt,,_1])
j=0

n—-1
= Eh exP{_i Z <th’ ¢/> + <1Vt,,_1110g[1 - w(tn —liys ¢n)]>})
j=0

J
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Hence, by (4.4),

Ehexp{ —i E (8_”Xf» ¢,>}
J=0
= Ehexp{ zj: et e’ F,(e - )>}
= Ehexp{ i E (N, e % (e))

+ <Ne‘“t,,_,,10g[1 - w(f_a(tn = tao1), € R, (e ))] >},

and therefore

E, exp{ —i ) (e7kX;, ¢j)}

j=0
n—1
= Ehexp{—z Y (s'kX;, ;)
Jj=0

+ <X;;’l_l, e~ ?log[l — w(e (¢, — t,_,), e¥ g, (e ), e ] >}
Hence, denoting

(b) 2(t) = 2(t, x) = 2(¢, ¢, x) = w(e™%, e *p, (e ), x),

we have

Ehexp{ -i)y (e—kth., ¢;l>j)}

Jj=0
n—1
(c) = Ehexp{— iy <e‘kaj,¢j>
Jj=0

+ <X;;_l, e Mog[1 — 2(¢, — t,_,, e -)]>},
where z satisfies, by (5.2.1)(ii),
2(0) = S [L ~ exp(—ie?Ha (e )] = VIS, [ ()] ds
{d) = 8-of1 - exp{—ie? Hp, (s -)}]

—f"‘V/tSE—a(,_,)[hz”B(r)] dr, 0<t<T.
0
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Now, using the self-similarity of the stable density, that is,
p(x) = e %, -o(e7x), t>0,x€R?
which is a simple consequence of the stable characteristic function,
S,f(x) = (Se_"‘tf(s -))(e_lx);
hence by (d), z satisfies
2(t,e7t) =81 - exp{ —ie? *p,}]

e
©) —e_"‘VftS,_s[h(s'l~)21+B(s,e_1-)] ds, 0<t<T.
0
Letting
(f) ue(t) = ue(t’ (r”n’ x) = Ek_dz(t’ ¢n’ €_lx)’

by (c) we have

E, exp{ -iy <£_kth,, ¢j)}

Jj=0
n—1
(8) = EheXp{— i3 <£_kth~7 ;)
Jj=0

+(X; e ¢log[1 — e Fu(t, - t,,_l)]>},
where, observing that e~ *t#~d+(d=k1+E) = ¢k y (e) u, satisfies
u(t) = S,[e# 91 - exp{ —ie?*p,})|
5.3.2
( ) —&szftSt_s[h(e_1 Jul*b(s)] ds, O0<t<T.
0

Note that this coincides with (5.1.1) if ¢, = ¢ and A = 1, and that (5.2.1)(a) and
(5.2.1)(b), (b) and (f) imply the boundedness required of u, in Section 5.1.
By (4.3), (g) and (4.2) we have

C.:=E, exp{—i Yy (th, ¢j>}
j=0 ‘
n-1

(5.33) = Eeexp{—i Y (Y5 ¢y + (X e log[1 — e Fu(1)])
/=0

=
+ie kA, s,¢,,>},

where we have denoted 7 = t, — ¢,_, and u, solves (5.3.2). This can be written
as

(h) Ce=Eeexp{_iAl,e_iA2,e+Ge_Bl,e+B2,e}



1102 D. A. DAWSON, K. FLEISCHMANN AND L. G. GOROSTIZA
with

n—1
= Z <Ytj’ b, = <Yn " S,

< v[s e ) s,,)”ﬂlds},

B, =¢* <X u(1) = iSg, + V['S,_ [h(e7t )(i89,)" ] ds>
0

and
B, .=(X; , e'd{log[l — el ku(1)] + ed"’ue(f)}).
We will show that
C.,—» C:=FEexp{—iA, —iA,+ G} ase— 0,
with

n—1
= Y Y(%), A,=Y, (5¢,)
Jj=1

and

G = <Atn—l, VE/"S‘T—s(iSs n)1+Bds>’
0

where E is the expectation with respect to the limit distribution. Note that G is
nonrandom.

The convergence statements below refer to P™. Suppose for the moment that
we have already proved the following lemma.

(5.34) LEMMA. B, , and B, , converge to 0 in probability as ¢ > 0 and G,
converges to G in probability as ¢ — 0.

Now, since A, , and A, , are real, |exp{G B, .+ B, }| =1, and hence
lexp{G, — G — B, .+ B, }| < e!%, which is bounded. Therefore for any & > 0,
by (h)

IC E exp{ lAl e + G}l

< e'G'Ee|exp{G,3 - G - Bl’e +B, .} -1

< const.(P™[|G. - G - B, .+ B, |>8]+e’-1).
Taking limits as ¢ — 0, using (5.3.4) and then letting § tend to 0, we have

C.— E,exp{—iA, ,—iA, .+ G} >0 ase— 0.
Then, to finish the proof of the proposition, it suffices to show that

E exp{—iA, ,~iA;, , +G} > C ase—0,

but this follows from the induction hypothesis and Lemma 3.2.
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PROOF OF LEMMA (5.3.4). By the induction hypothesis, (Y, ,¢) = Y, (¢)
as ¢ = 0, ¢ € C,(R?). Hence

(i) (X; ,9)=(A, ,9) ase—0,¢€C(R?).
By Proposition (5.1.6), for ¢ < ey ;, we have
|B,, .| < const. e"" VK X; ., S|,l),

where y > 1. Then, by (2.1) and (i), B, ,= 0 as e — 0.
Now we turn to B, .. According to (5.1.2), ¢ *u(7) - 0 as ¢ - 0 uniformly
in x and A, since d — k > 0. Hence, for sufficiently small ¢ < ep ,

By, | < const.(X;_, e”4(e? Hu(r)))"),
and then, by (5.1.4),
By, | < const. e *(X; (S,|¢,])*) < const. e? 2K X¢ S |9,).

Hence, since d > 2k, by (3.2) and (i), B, ,= O as ¢ — 0.
In order to show that G, = G, suppose that we have already proved the
following lemma.

(5.3.5) LEMMA. For ¢ € C,(R?),
0[S, [ A7t -)(iS9)"**] ds - ZfTS,_s(iSsqs)”B ds0, -0 ase—0
0 0
for m a.e. h.

[We will see in Lemma (5.3.6) that the integrals above belong to C, (R%).]
Let

() &= [S-[r(e)(i89) "] a5, g=R[S,_(i59)""" .

By (i) we have (X; ,g) = (A, , &) ase — 0. Therefore to show that G, = G,
it suffices to prove that (X; , g, — g) = 0 as ¢ - 0. Now (see Section 3.1)
KX; .8 — &) <0X; O_,0g —g0,

‘and by (i) OX; O_,=0OA, O_,; hence the result follows from (5.3.5). O

Before proving Lemma (5.3.5) we need the following lemma.

(5.3.6) LEMMA. For each 0 <e<1, g, and g deﬁned by (j) belong to
C,,o(R).

,PROOF. g is a special case of g e with A = h. We will prove first the
continuity of g,. Since |iS6|® < [IS;¢l2 < ||$]|2, then

(k) (e -)(iS9)" "F < const.||¢|lL".
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Let f, = (iS¢)'*#. For each 0 < § < 7 and x, z € R since 0 < & < 1, by (k),
lg8(x + 2) — g(x)|

0 < [ ON Pz + 2, 9) = (5, ) dyas

+28 const.||p||LA.

The stable density p,(x) is uniformly continuous in {s: s > §} X R% Hence for
any such § above there is an n > 0 such that if |z| < 7 the first term on the right
in (1) can be estimated by

87" M()dyas < const. [ Sjel(y) dyds

= 8 const. 'rfd|q5|(y) dy = const. §.
R

Hence the continuity of g, is obtained.
For all 0 < s < 7, by (k) we have

(m) IS, ,h(e™'-)(iS9)' "/, < const.(S,|$|) /¢, < const.OS 6|0,

which is finite by (3.2).
By (3.2),

IS0 F /%, < 1S.91°1S.|/4, < OS,90,IS¢",
. and since S;¢ € Cy(R?), then |[Sg¢|'*# € C, o(R?); consequently

(n) lim |x|?P|S,p(x)|** = 0.
|x|—= 0

Now, |S,_,h(e™! - )(iS¢)' "4 < S,_,|S¢|'*#; therefore by (n) and Iscoe (1986),
Proposition 2.3,
lim |x[*7|8, _,k(e™" )(iS)" ()| = 0,

|| = o0

SO

(o) lim |S,_,h(e™* -)(i8$)" " (x)I/8,(x) = 0.
x| = o0
The dominated convergence theorem can be applied due to (m), hence (o) implies
ge € Cp,O(Rd)' O

Proor oF LEMMA (5.3.5). It follows from the proof of (5.3.6) that (1 +
|¢|2)?|g(x) — g(x)| is uniformly continuous on R? uniformly in e. Hence, to
prove the lemma, it suffices to show that (1 + |x|?)?|g(x) — g(x)| = 0, m ae.
for fixed x € RY and therefore it is enough to prove that g(x) — g(x) = 0, m
a.e. for fixed x (the exceptional set may depend on x, but only countably many x
are needed).
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From (j) we have, with f, = (iS,¢)! "5,

8(x) = 8(x) = ['[ (A(e™) = A)(2)Pr-( ~ x) dyds

= gdj:j;zd(h(z) - h)f,(e2)p,_,(ez — x) dzds.

Hence

lg.(x) = g(x) = &) [ ((2) = B)6(e2) ez,

where
6(z) = fo’ps(z ~ x)f,(2) ds.

Note that 6(z) > 0 and [z« 0(2)dz = 7.
Now,

Ed

[ (#(2) - B)oe2) dz‘ <A +B,

where

Ae = Edelh(z) - ﬁ|0(82)1{|ez|>a} dz’

B=d

€

j;zd(h(z) - Z)0(32)1“545@;) dz’,

and a > 0 is arbitrary.
Given arbitrary § > 0, taking a sufficiently large, we have

A, < 2[Rd0(y)1(,y,2,,} dy < 8.

1105

Define F: H - R by F(h) = (h(0) — k). Hence F(T,h) = (h(z) — h), where

T, is the translation by z on H. Thus

B, = ededF(Tzh)0(82)1(|€z| <a)d2.

The function 8(y)1,, ., satisfies the conditions of Tempel'man’s individual

ergodic theorem [Tempel'man (1972), Corollary 7.2]. By this theorem,

B, - Ldo(yn(lylsa) dyF(h)

as ¢ = 0 for m a.e. h. Since m is ergodic with respect to T,, then F is constant

on H, and we have F=o.
Since 8 is arbitrary we have the desired result. O

The proof of Proposition (5.3.1) is finally complete. O
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(56.3.7) CorOLLARY. The distributions of the limit random vectors
(Y, (¢0), Y (01), ..., Y,($,)) in Proposition (5.3.1) satisfy the relations

Eexp{—i 5 16,(¢,-)}

Jj=0

n—1
(i) = EeXp{—il Z Y;,(‘Pj) + lc,,_l(st,,—z,,_l‘i’n)]

Jj=0

+ <Atn—l, sztn Stn_r(iSr_tn—l¢n)l+ﬁ dr>}
tn—l
and
E[exp{ _thn(¢n)}|Yto(¢0)9"-’ Ytn_1(¢n—1); 4)0"' R ¢n—1 € Cp(Rd)]
(ii) = exp{—iY,n_l(S,n_,n_pn) + <At,._1’ le/tn St,,—"(iS"—tn_l n)1+B dr>},
tn—l

¢, € C,(R?).

Proor. (i) follows directly from the argument before Lemma (5.3.4). (i)
implies that Y,(¢,) — Y, (S, -, ¢,) and {¥,(¥),...,Y; (¢,_,)} are indepen-
dent, which yields (ii). O

(5.3.8) REMARKS. 1. Expression (i) in the proof is the law of large numbers
for N¢ (Corollary 4.8).

2. According to Proposition (5.3.1), the finite-dimensional distributions of Y®
converge if and only if the initial fluctuations converge.

3. For Proposition (5.3.1) the assumptions E(Nj, ¢,) < o and E(Xg, ¢°) = 0
if ¢¢ — 0 are not needed.

4. A weaker form of Lemma (5.3.5), namely mean square convergence, can be
proved using a statistical ergodic theorem [Tempel’man (1972) and Fleischmann
(1978)]. This suffices for the proof of assertion (a) of Theorem (4.5).

5. Once it is proved that Y* = Y in Dy, ge, (Section 5.4), we can assert that
the finite-dimensional distributions of the process Y satisfy

(Y $0)s -5 (s 009) = (Yil(0)s - -, Vi)

in distribution for 0 = ¢, < t, < -+« < t,, ¢¢,..., 9, € L(R?), and therefore we
may write (5.3.7) (i) and (5.3.7)(ii) with Y;(¢,) replaced by (Y,j, ¢,). Note that
(5.3.7)(ii) implies the Markov property of Y, and therefore we have (4.6), where
the meaning of (Y,, S,_,¢) has been explained in Remark (4.7).

H.4. Tightness and convergence in Dy s, [ Proof of Theorem (4.5)]. In this
section we complete the proof that Y* converges under P in Dy ey as € = 0 to
an %’(R%)-valued process whose finite-dimensional distributions are given by
(5.3.7). Since (5.3.1) yields the uniqueness of subsequential limits, it suffices to
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establish the tightness of {Y*}, in Dy e, for e, » 0. By Mitoma (1983) it
suffices to prove that the sequence {(Y*, ¢}, is tight in Dy for each ¢ € #(R?).
According to the criterion of Aldous (1978), to prove the latter, it suffices to show
that

(i) for each fixed t, {(Y;, ¢)}, is tight inR,

(ii) given stopping times 7, bounded by T and 8, > 0 as n — oo, then
(Yir5,9) — (Y;», &) — 0 in probability as n — co.
Condition (i) follows immediately from the convergence of finite-dimensional
distributions [Proposition (5.3.1)]. Condition (ii) is established in Proposition
(5.4.8) below.

We will recall first some general facts. Let X be a random variable and
0<60<oco. If [r°P[|X|>r]dr<c for an arbitrary 0 < K < co, then
E|X|'*% < o0 and

E\X"™ <K'+ (1+6) [ rP[IX| = r]dr.
K
If fy denotes the characteristic function of X, then
(5.4.1) PX|>r] < Crfl/r[l — Refy(N)] dA,
0

where C is a constant [see, e.g., Breiman (1968)]. Therefore in order to show that
E|X|'*® < 0, it suffices to prove that

(5.4.2) jK°°r1+0jl/’[1 — Refy(\)] dAdr < w
0

for some K, and combining (5.4.1) and (5.4.2), we have
(5.43) E|X|"? <K'+ C(1+6) [ '+ [V'[1 - Refx(A)] dAdr
- K 0

for arbitrary K. These results hold also for conditional expectation (with condi-
tional characteristic function).

In order to apply Aldous’ tightness criterion we need the following lemmas.
The constants 7, L and ey, ;, are those of Section 5.1.

(54.4) LEMMA. For ¢ € C(R?), e<ep ,0<t<T, K>21/L,0<0<8
and h fixed, .

E,[IKYz, o)1 *01X¢]

® <K' + const. K*~#[(X¢, S)¢|) + H(9)],
where
(i)  H; = supA~*AY(1 — cos(Yy, SN ) = Kl(Ys, SpyI'*7,

A>0
K, is a constant depending on B, and

(i) E,[(X7, 0311 X¢]
< K'*® + const. K®~#[e(X¢, S)o|) + Ji(e%)],
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where

JE(¥) = supA~FA[1 — cos((Ys, ¥) + (A, e ))A]
(iV) A>0
= Kgl{Y5, ¥) + (A, e ")F, ¢ e C(RY).

ProoF. Let f(A) = E,[exp{iA(Y/, )}|X{], A > 0. Then, using (5.2.1) and
proceeding as in Section 5.3 [see (5.3.2) and (5.3.3)], we have

(a) f(A) = exp{(X5, e “log[1 — e?~*u,(t, —¢N)]) — iNe™*A,, S,6)},
where u(t) = u(t, ), ¥ € C,(R?), satisfies
u(t) = S,[¢*7 (1 — exp{ —ie?"my})]

(b) V[, [h(e™ JulH(s)] ds.

We can write (a) as

(c) f(A) = exp{{ X5, A(A) + B(X) + C(7))}exp{iDA},
where
A(N) = e 9log{1 — e?Fu(t,—N)} + e¥Fu(t, —o))],

B(A) = —s-"{ue(t, —9N) = iS(= M) + eV ['5, [h(e7 )(~iS9)"] ds}

C(A) = V/OtSt_s[h(s‘l N(—iSeN) 7] ds,

D, = (Y5, S,9).
Hence f(A) =1+ Z)1 + W)=1+4 Z(1 + W) + W, where
Z = exp{(X;, A(N) + B(A) + C(A))} -1, W=exp{iDA} -1
and therefore
(@ 1-Ref(A\)=—-ReZ(1+ W) — ReW
<|Z||1+ W) — ReW < |Z| — ReW.

We will now estimate |Z| and —Re W.
By (a) and (c), |exp{(X0, A(7\) + B(A) + C(A))}| < 1. If £ is a complex
number such that |ef| < 1, then |ef — 1| < 2|£|. Hence

(e) 1Z] < 2( X5, |A (M) + IB(A)] + |C(A)]).
Now, by (5.1.2) and (5.1.4), ‘
(X5, 1A(M)]) < const. e %X =M X5, u(¢, —pA)|*)
X < const. e?72k¢ X¢, (S)9IA)%) < const. e?~24( XE, S,|6| )N *A,
w1th A < L; recall that d > 2k. By (5.1.6),
(X5, IB(A)]) < const. 7" DA(X¢, Sg| )N +4,
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where y > 1. Finally,
(X¢,IC(N))) < <X5, VftSt_SISs(;bIHB ds>)\1+B
0

< const.||¢]|5( X5, S¢| )N *£.
Putting these results into (e), we obtain
|Z| < const.(X¢, S|¢|)N A with A < L.
For Re W we have
—ReW = —Reexp{iDA} +1
= —cos DA + 1 =N*"A(1 — cos DA)/N*# < HY(p)N*5,

where Hf(¢) is given by (ii).
Taking these inequalities into (d), we obtain

1 — Re f(A) < const.[(X¢, Sl¢|) + Hi(¢)]N+E.
Therefore, by (5.4.3), for 0 < 8 < 8 and K > 1/L (so that A < L) we have
E,[IKYy, 031" X5]
1+6 3 3 *® 1+6 1/"1+ﬁ
< K'** + const.[( X5, Sjely + Hi(#)] [ r'*? [N+ dNdr
K 0

= K'*% + const. K*~#[(X¢, S)¢|) + Hi(9)],

which proves (i).
(iii) and (iv) are obtained similarly to (i) and (ii), using

E [exp{i( X}, $)}IX5] = E [exp{i(("s, €% + MN(A,, ¢)) }I1X¢]- O
-~ (54.5) LEMMA. Let ¢* € C,(R%) and assume ¢* > 0 as ¢ > 0. Then for
0 < 6 < B the following limits hold in L'(H, m):
(i)  sup E,[|K¥5, ¢)'*°)X] = 0 inprobability (P*) ase — 0
T

0<t<

and
(i) sup E,[IKX:, ¢)'*0|XE] = 0 in probability (P?) as e — 0.
0<t<T

PROOF. Let & > 0. By (5.4.4)(i) and (5.4.4)(i), (3.2) and (4.1),
J B | sup Bl #3111%3] > 8 m(an)
H t<T

</ Pj‘{K”" + const. K"-B[<X5, sup S|y + supH;(¢e)] > S}m(dh)
H

t<T t<T
< Ligvongy + PP KOA(XE, |6]) > 8]

+am[K“-BsupH:(¢f) > 63],
t<T
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where §,, §, and J, are some positive constants. Now,
(X§,1¢°) <0Xg0_,0¢0,, OXfO_,=0A0 , and O¢T, > 0

by assumption; hence P"[K°?~#(X¢, |¢°]) > 8,] > 0. Since

su;T>H;(¢€) < const OY;0 P00, A and DYyO_, = OY,0_,

t<
then

P KO# sup Hi(¢°) > 83] 0.
t<T

Hence assertion (i) will be proved if we can let K — 0.
Recall that the results we have used were proved for fixed ¢ € C( R9),

(a) e<1/(VBTI$IELA)"" and e, < const./(VT|g|ELE)"*

[see (5.1.3) and (5.1.4)], and K > 1/L. If we now let ¢ = ¢° depend on &, we may
also let L = L, depend on ¢ in such a way that conditions (a) are not altered.
For example, we may define L, = |¢?|;,'. Now, since ¢* > 0 in Cy( R%) implies
l9°llc — O, then L, —» oo and therefore we may let K — 0 as desired.

Assertion (ii) is proved similarly, using (5.4.4)(iii) and (5.4.4)(iv). O

We will need the following result, which can be proved from (4.2): If ¢ is a
sub-o-algebra of the basic o-algebra, then for any A € ¥,

(5.4.6) fAE[W] dP = fHLE,,[.w]dghm(dh).

(54.7) LEMMA. Let ¢* € C,(R?) and assume that ¢ is in the domain of A,
A € C(R?), ¢* > 0 and Ag* > 0 as ¢ > 0. Then for T >0 and 0 < § < B,

(i) E[ sup (Y, ¢‘)|l+9|X5] — 0 in probability (P™) as e > 0

0<t<T
and
(i) E[ sup |<X;,¢e>|l+"|xg]—>o in probability (P™) as & — 0.
0<t<T

ProOF. First we will estimate E[sup, ., 7|(Y5, ¢)|' % X&), ¢ € #S(R?). We
start by showing that

(a) <Yte’ ¢> - j:<y;s’ Aa¢> ds’ >0,

is a P™-martingale. By (4.3) and (4.4),
(Y7, 9) = (&9 Ny-ap, d(e+)) — (e7*Ag, S,9)

- AN p(e D) = [N (B )6(e ) as

+£d_k~/:_at<lvs’ (Aa)¢(8')> ds — <£_kA0, _/(;tssAa‘P dS> - <£_kA0’ ¢>’
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where we have used d/ds(S,) = S,A,. Since the term in brackets is a P’
martingale for fixed A because of (5.2.4), and the last term is independent of ¢,
we have that the difference of the remaining terms constitutes a P”-martingale.
Since e”%(A,)¢(e - ) = (A$)(e - ) [this follows from the self-similarity of p,(x)],
then

ek [N, (8,)(e )ds - <e-”Ao, [s.8s ds>
= e [Ny () (e )y ds - <8"‘A°’ fOSsA““’dS>

= [ 88)as,

and therefore (a) is a P*-martingale for each A. Using (5.4.6), one can then show
that (a) is a P™-martingale.
Applying the conditional form of Doob’s inequality to the martingale (a), we
have
E| sup (¥ et

O<t<

sup
0<t<T

Yoo - [ Yz, A ) ds

1+6
d

1+6

1+6
T .
[<Y;,¢> - fo (Ye, A ) ds nxs]

+E[( [i¢ve ) dS)HolXé]}

< const.{E

+E

sup
0<t<T

[<¥:, 9y ds

< const.{E

< const.{E[I(wa )11+ X¢]

+E[( / T|<nf,‘Aa¢>|ds)w|X5}},

and, using Holder’s inequality we obtain

E[ supT|<lcz¢>|“"|X5]

0<t<

< const.{E [i<¥2, o)1 1%5] + [ "E[I(Yz, A )1 0X¢] ds}
0

< const.(E[I(¥5, #)I'*1X5] + sup_ E[I(¥z, A,9)1'+1Xg] ).
0<t<T
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Therefore assertion (i) will follow if we show that
sup E[[Y, 49"+ X5] - 0
0<t<T

in probability as ¢ — 0, where y* — 0 in C,(R?).
Let 8 > 0. We have

P{supE[l(Yt‘, ¢€>|1+0|X5] > 8} = P[sup d[.l.st/dP > 8],
t<T t<T

where pf is the measure
W) = [ [ B[ o)1 01X;] dPPm(d)
Y.
[see (5.4.6)] and dp’/dP in the Radon-Nikodym derivative. Now,
wi(-) <) = /H ] sugEh[KY:, YOI\ X5] dPm(dh),
i<
and, using (5.4.4)(i) and (3.2), we obtain
ve(:) < fconst.(K”o + K"‘B[<X(§, ey + supH;(zp‘)]) dP.
. t<T
Hence du$/dP = (dpi/dv)(dv®/dP) < dv®/dP. Therefore
P(sup E[(Y;, 41" 1X5] > 8} < P(4),
t<T
where A = [dv¢/dP > §]; so
vi(A) = f (dvt/dP) dP > 8P(A),
A

and, using the previous results, we have

P{sup E[I(%;, 491" 15] > 8

t<T
<& w(A)
<é&! const.{K”" + K"‘B[E<X(§, ey + EsupH;(zV)]}.
t<T

Since y* — 0, by assumption we have E{(X§, [¥¢) = 0. Also, E sup, . H(y*) —
0 since
sup Hy(¢°) < const.0Y;OL A0y 0L"? and sup EOY;OMF < co.
t<T 3
Finally, we can let K — 0. Assertion (i) is proved.
Assertion (ii) is proved similarly, using (5.4.4)(iii), (5.4.4)(iv) and (5.4.5)(ii). O

o

(5.4.8) LEMMA. For 0 < e <1, let 7, be stopping times bounded by T with
respect to the filtration (o{X:, s < t; h}),,,, and §,> 0 such that §, > 0 as
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¢ = 0. Then for each ¢ € #(R?),
(Yiis,0) — (Y5, ¢) = 0 inprobability (P") as &€ — 0.
ProoOF. Recall we denote P = P/" and E the corresponding expectation. Let
T=r1,8=4,n>0.Since
P[|<Yf+8, o) — (Y5, )| > "7] = E(P[I<Yr€+8’ o) — (Y7, ¢)| > nlXg, h])
= E(PM(Yy,5,6) = (Y5, 0)] > miX5]),
by dominated convergence it suffices to prove that
(a) P[I(Yf5,0) — (Y5, ¢)| >nX{] —» 0 in probability (P) as & — 0.

As a consequence of (5.2.3) the process (Y*, h) = {(Y, h), t > 0} is strong
Markov with respect to the given filtration; hence we have

(b) PH[I(YE 5, 6) — (Y2, 6] > mIX¢]
= E4[PMIYrrs, 0) = (X5 00| > miX2] 1 X¢].
Now, by (5.4.1),
() PA[(¥s #) = (¥5,9)] > miXe] < Cn ["[1 ~ Re f(V)] dA,
where
f(A) = E,[exp{iNYf,5, 0) — (Y5, 6)}1X7].

Proceeding as in Section 5.3 [see (5.3.2) and (5.3.3)], with the strong Markov
property, f(A) is given by

F(A) = exp{ —iN(YE, ¢) + (X7, e % log[1 — e *u (8, —o))])
—iNe ", S},
where u(t) = u(t, ¢), ¥ € L(R?), satisfies
u(t) = S,[e# %1 — exp{ —ie? Hy})]| — :3’*V'{)tSt_$[h(t‘:‘1 Jul*E(s)] ds;
in particular, u (0, y) = e*~%1 — exp{ —ic?"*)}), and therefore
log[1 — &% *u (0, —¢A)] = ie? *oA.
f(\) can then be written as
f(A) = exp{i(Y;, Syp — ¢)A + (X}, af(A) - aE.(A) —a3(A))},
where
af(X) = e~(log[1 — e *u (8, —p\)] + e *u (8, —¢))},
as(\) = e %log[1 — % *u,(0, —SpA)] + e?"*u (0, —SpA) ),
aj(A) = e *[u(8, —oX) — u (0, —Sd)].
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By (a), (b) and (c) we have to show that
[t = E4[Re f(A)X§]) dA - 0 in probability (P) as ¢ - 0,
0
and since f(A) is bounded, it suffices to prove that

() E[ sup |(Y¢, Syb — ¢>|1+0|Xg] -0 in probability as e — 0,
T

0<t<
(e) E[ sup sup [{X}, a}(}\))|1+"|X(§} — 0 in probability as ¢ = 0,
0<A<1/90<t<T
for j = 1,2,3. (d) holds by (5.4.7)(i) since Ssp — ¢ — 0 and A (S;¢p — ¢) — 0 in
C,(R?). Indeed, ¢ € #(R?) implies A9 € C, (R%) [Dawson and Gorostiza
(1988)], and A (Sz¢ — ¢) = S;A, 90— A — 0 as § = 0 by (3.3). For (e) with
J =1, proceeding as in the proof of (5.3.4), we have
e'd{log[l — %Ry (t, —qh}\)] + e ku (¢, —<;b}\)} < const. &% 2%S,|p|A
< const. e 248,y

where y € #(R?), is such that |¢| <¢ and A <1/n. We can now apply
(5.4.7)(ii) with ¢* = e?~24S,y, hence (e) holds for j = 1, since d > 2k. The proof
for j = 2 is similar. For j = 3 by (5.1.6) we have

las(A)] < e *|u(8, —oA) + iSoA + skV/SSB_s[h(s_l N(—iSr) ] ds.
0

+V fo %S, _ISoA" B ds + e — iSyph — u(0, SoM))

< const.{ e VAG N + 8S,|¢IN+E + e92k(S|9])"A2)
< const.{e0V"VES,y + 8S;¥ + ¥ 2S5y},

where { is as above and A < 1/n. Again we can apply (5.4.7)(ii) since y > 1,
d>2kand § - 0.0

5.5. Properties of Y [ Proof of Theorem (4.9)]. We have already mentioned
that (4.9)(i) is proved in Dawson and Gorostiza (1988) [ Remark (4.10.6)].

The results (4.9)(ii) and (4.9)(iii) are straightforward. We will give only an
outline of the proofs.

The form (4.9)(ii)) of the stable characteristic function is standard [see
Mijnheer (1975)], and it follows easily from (4.6).

If Aydx)=>Adx, A>0, it is easy to verify that (A, S,_(iS¢)'*#) =
(A, (iS,¢)' *#). The translation invariance of the stable distribution implies
that (A, (iS,¢)'*#) is invariant under translations of ¢. By (4.6) this yields the
spatial homogeneity of Y, — S}Y,,.

Now suppose that Y, — S,Y, is spatially homogeneous. Then, denoting ¢, =
é(h+ ), h € R% by (4.6) we have

'/(;t<>‘0’ St—r(isr¢)l+ﬁ> dr = ‘/:<A0’ St—r(isr¢h)l+ﬁ> dr;
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and by the translation invariance of the stable distribution,
[0S (i88) "y dr = [(Ao, - (i8:8)" ") dr,
0 0

where A, ;(dx) := A(dx — h). Differentiating the latter expression at ¢ =0
gives (A, (i)' *B) = (Aq 4, (i9)' *#). This implies that A, is invariant under
translations, and hence is of the form A (dx) = Adx, A > 0. ‘

For Ay(dx) = Adx, Y, = 0and B = 1, from (4.6) we have

E(Y, )" = 2\VA['[ (86(x)) dedr= [ [ 6(x)6()kd(z, ) dxay,
where
k(x,y) = 2}\V71]0tp2,(y —x)dr,
and p,(y) denotes the stable density. The spectral density is given by
o,(x) = '/Rde"'x'ykt(O, ¥) dy = AVh|x| ~%(1 — exp{ —2t|x|*}).

To prove (4.9)(iv), since #(R?) is a countably Hilbert nuclear space, by Hida
(1980), Chapter 3, Theorem 3.1, it suffices to show that for all ¢ > 0, the
characteristic functional of Y, — S} is continuous in some norm || - ||,,- By (4.6)
it suffices to prove that [ A,, S,_,(S,$)'*#) dr is continuous in ¢ in some norm
I 1l.- By (3.2) and (A, ¢,) = OA,O_, (Section 3.1),

(Ao, 1S, (S9)'F) < lloliE( Ao, Siol)
< const.||¢||0¢0,( Ay, ¢,)
= const.D)\OD_p||¢||£D¢Dp

< const.|||¢[[|LF5,

for some m > 1, because |¢||,, = ll¢llp and TO¢O, < [l|¢|ll,, for m > p. This
yields the assertion for some n > m (see Section 3.2). O

Acknowledgments. We thank a referee and an Associate Editor for com-
ments and suggestions which improved the exposition.
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