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ON THE ONSAGER-MACHLUP FUNCTIONAL OF DIFFUSION
PROCESSES AROUND NON C2 CURVES!

By OFER ZEITOUNI

Massachusetts Institute of Technology

The Onsager—Machlup function, namely the fictitious density of diffusion
paths in function space, is considered, where the density is evaluated around
non C? curves, thus extending earlier results. The extension holds also for the
case of diffusions evolving on a manifold.

1. Introduction. Let w. be a standard n-dimensional Brownian motion and
let x. be an n-dimensional diffusion which is the solution to the stochastic
differential equation

(1.1) dx, = f(x,) dt + dw,,

where f, € C(R"™), i = 1,..., n. We are interested in computing the asymptotic
behavior of

P(ll¢p — x|l <e)
(1.2) TPl <o) J(9,¢)

as ¢ — 0, where ¢ is a deterministic n-dimensional continuous function on [0, T']
and, for any ¢ € C([0, T] —» R"™),

(1.3) )l £ tggg!;}lal/(t)l

and | | denotes the Euclidean norm in R".

This problem was investigated by physicists in the context of statistical
mechanics and quantum theory [4, 6]. A rigorous mathematical treatment was
initiated by Stratonovich [9] and carried out by Ikeda and Watanabe [5],
Takahashi and Watanabe [12] and Fuyjita and Kotani [3] in various degrees of
generality. In particular, the two last references treat the case where (1.1) is a
general SDE (i.e., with state-dependent diffusion coefficients) and the diffusion
evolves on a manifold.

The analysis above was restricted to the case of ¢ € C? (C* in [3, 12];
however it seems that their technique can be pushed through to cover C?). In
that case, it was shown that

J(¢)exp((—lI4ll - 1)K (e)) < I($,¢)

(1.4) . o
< exp((IIgll + 1)K () + $lle) J(#),
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where K(¢) — 0 and
J(¢) = limJ(¢, ¢)

= exp — [ INCIORCONIERSYRCO) ds]

In the context of the estimation of trajectories of diffusions, there was a need
to evaluate (1.2) for certain ¢ which are not necessarily C2. For a specific class of
random ¢ [which correspond, roughly, to ¢(¢) = ‘v, ds, where v. is a Brownian
motion which is independent of w.] it was shown by probabilistic methods in
[13] that still J(¢) = lim J(¢, ¢) a.s. P,.

Our goal in this paper is to evaluate lim J(¢, ¢) for ¢ which are not in
C?[0, T']. That will allow, in the estimation problem considered in [13], inclusion
of feedback in the observation model. The main result is collected in the theorem
below.

(1.5)

THEOREM 1.1. For ¢ € C'*%, a > 0, deterministic, lim J(¢, €) = J(¢) where
J(¢) is defined by (1.5).

We remark that, in the case of a diffusion evolving on a manifold (or, more
specifically, in the case of state-dependent diffusion coefficients), the functional
J(¢) involves an additional term, related to the scalar curvature. However, the
result J(¢, ) — J(¢) still holds; cf. the remark in the end of Section 3.

We note that Takahashi ([11], Remark 1, page 379) has claimed a stronger
version of Theorem 1.1 and its converse. However, no proof is given, nor has one
been published since. We did not succeed in proving the theorem in the stronger
form appearing in [11].

We conclude this introduction with a “cheap” proof of our results for ¢ € C1*¢,
“a > 1, and of a converse result when ¢ € A%* where A%*® denotes the fractional
Sobolev space (cf. [8]), a < , and with some notation conventions. Section 2
includes a description of the problem in terms of a PDE approximation problem
and Section 3 includes the proof of our main theorem.

Let ¢ € C'*% 1> a > 1, and let ¢*® denote the mollification of ¢ by a
8-mollifier. By extending appropriately ¢(¢) for ¢ < 0, let ¢(0) = ¢*(0). Then
(cf. [8]) Il — ¢V|| < c8'*, [|$¥]| < c8°! and

P(l|lx — ¢] < &) < P(lx — 6P| < & + c8'*2)
(1.6) < P([lw]| < & + c8'+*)J(¢®)
X exp( K (e)(JI6P + 1) + cedo?)

but

. Al
(17" Pllwl <v) = K(v, T)exp = 55T,

(

where A, is the first eigenvalue of the Dirichlet problem in the unit ball (cf. [5]
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and also below) and K(v,T) —,_, K. Therefore,
P(jlx — ¢|l <) .
— o < J(¢)exp(K(e)([14] + 1))

P(||lw|| < e)
1 1
MT| 5 - ————— | + ced=1|.
€ (e + c8**%)

By choosing § = ¢, one gets that in order to demonstrate Theorem 1 we need

(1.8)
X exp

1.9a) . ! nd ) ]
. - - =v > ,
(1.9 &€ (e+ ceri+m)’ "7 1+¥a
1

(1.9b) gD 28 0 oy <

1—-a
and, therefore,

3 1
<y<
1+ a l1—-«a

and a solution for vy exists if @ > 3. A similar argument holds also for the lower
bound and the “cheap” proof is completed. Note also that a weak version of a
converse to the theorem holds for ¢ & A%Z®, a < 1, but ¢ € A%*®, all a’ > 0,
where A%* denotes the fractional (p = 2) Sobolev space; cf. [8]. Indeed, let ¢®
denote the mollification of ¢ by a &-mollifier. Again (cf. [8]) [[|¢®|%ds >
c(8%=~1), |1¢®|| < 6272~ %, Substituting as in (1.8), one has that

P(llx — ¢l <€)
P(llwl| <)
To show that the ratio of probabilities in Theorem 1.1 converges to zero as

"e¢ — 0, we need to show that the r.h.s. of (1.10) - 0 for § = ¢". But, similarly as
above, one gets the pair of conditions
1 1
<y<-—
l1-a v o

1
(1.10) < Cexp(—082(“‘1) + AlT(;E) + 88'1_2—“').

which possess a solution for a < 3.

Our goal, therefore, will be to “close the gap” left by the cheap proof. We do
that by reducing the problem to the case of f = 0 (no drift), following [4], and
then transforming the problem to a PDE. This will allow us to get much tighter
bounds on the distance between the “regularized” solution (with ¢/®) and the
solution to the original problem, and that will yield the sharp estimates an-
nounced in the theorem above.

NotaTioN. Throughout, @ denotes the unit ball in R™ and &2 denotes the
ball in R" with radius e. || ||, denotes the kth p = 2 Sobolev norm in &, i.e.,

1/2
u¢nk=( ) /(D“¢)2dx) :

laj<k
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where the domain of the integration (£, é2) will be clear from the function
involved.

v* denotes the transpose of a vector v.

u * v denotes the composition of u and v; cf. Section 3.

|| || denotes the sup norm and | | denotes the Euclidean norm in R™.

2. An associated PDE formulation. In this section, we reformulate (1.2) in
terms of an associated PDE. A similar approach can be found also in [3].
We start by noting, following [5], that, for ¢ € C'[0, T'], x, — ¢(¢) satisfies
(2.1) d(x, — ¢(t)) = —¢(t) dt + f(x, = ¢(2) + ¢(2)) dt + duw,.
By Girsanov’s transformation, one has
P(llx — ¢l <) ( T .
———=F w,+ ¢(t)) — ¢*(2)) di
Bimn <o = Eles| [+ o(0) - (0) d
(2.2)
T .2
—%fo | F(6(2) + w,) = 6(2)] dt)’uwn < e).
Note that
T T T
[ 1ot 9(8)) diog = [(1(8(0)) dua + [wor v *(9(2)) g

+ TO(wZ) dw,,
0

where Vf denotes here the matrix of partial derivatives of f and also

b/(t) dt

T,, o T af®
(23) - [T1(6(6) do, = wif(6(T)) = [T w7
and, by It6’s lemma,

’/(‘)th* vi(e(t)) dw,

- o) - o o aoyrin a

af; .
(2.4) +fOT_Z.(3£)(¢(t))w; du;

= (I1+ 1e1)O(e) ~ 4 [ "7 f(o(2)) at

_/ Z( ) (t))wt dwt:

i#)

where V - f denotes here the divergent ot f. Combining (2.2), (2.3) and (2.4), one
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has
P - <eg T . 2
e A et [ (e = é00) e = 3 79 - (o) |
(2.5) XE(exp(O(e“’)(néu + lloll) + fo TZJ %w(t»wz dw,

+ _/(;TO(Iw|2) dw, — _/(;T‘?S*(t) dwt)

By lemmas of [5], page 451 (see also [12]), which are the main part of the proof,

llwll < 8)-

(2.6a) E(exp chO(|w|2) dw,| ||lw|| < e) 281 Ve,
0

(2.6b) E(expchky(¢)w,i dw/||w|| < e) 231 Ve
0

Therefore, to compute (2.5) we need only compute
T.
B(exp — [6(0) duwl <<
0
and show that it converges to 1 as ¢ — 0. Let us define

A% E(eXp —fOTq!;*(t) dw|||wl| < e)1"(|I10I| <e).

Then, by Girsanov’s theorem,
T ., 2
A= espt{ [Tlo(0)f a | (1w - 91 < o).
Let u(z,t, x, s) be the fundamental solution of

u,=1Au+ ¢(t)vu + %|<f>(t)|2u,
(2.7)
u(z,t,%,8)| = =0,

i.e., the solution of (2.7) such that, for each continuous f(x),
lim [ u(z,t,x,8)f(x)dx=f(2).
t—sVeQ
Such a solution exists and is unique by the maximum principle (cf. [2], Chapters
1 and 2). Then
(2.8) - A= f u(z,T,0,0) dz.
o £Q

Our goal will therefore be to compute bounds on the fundamental solution of
(2.7). It turns out that one can find explicitly the solution to a related equation
[(2.92)] and then by perturbation techniques relate the two. Toward this end, let
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¢® be a & mollification of ¢ (for example, with a Bessel potential or, otherwise,
cf. [8]) and let u®(z, t, x, s) be the fundamental solution of
ul® = LAu® + ¢*(£)vu® + (¢9(¢) — ¢(2))* vu®(z)
+ 12u® — 5@y ®),
(2.9b) u®(z,t,x,5)|,-, = 0.

In the sequel, let j®(t) = ¢¥(¢) — ¢(¢). We will assume throughout, without
mentioning it, that || j®(¢)|| < 1.
Our line of attack will be as follows: We first show below that

(2.92)

f dzu®(z,¢,0,5) .,
e P(|lw| <e)
for ¢t — s > 7, > 0 uniformly in § > 0, i.e., that if in (2.8) one substitutes u(®

instead of u, one has the required convergence (Lemma 2.2). We then show in
Section 3 that
g dz(u®(z, ¢,0,5) — u(z,¢,0,5)) ..,
P([lw][ < ¢) 30~

where 8(¢) — 0 in an appropriate way, thus establishing the required conver-
gence. To demonstrate this last convergence, note that the solution to (2.7) can
be represented by the classical parametrix method in terms of an infinite series
involving the solution of (2.9) (Theorem 3.1). Estimates on u?%(z, ¢, x, s) which we

prepare in the remainder of this section are crucial in obtaining the required
convergence.

We use the following classical result:

© LEmMMA 21. u®(z, ¢, x,s) exists and is unique. Moreover, there exists a c
independent of ¢, 8, such that

c (z - x)?
2.10 Oz, t, x, < — =,
(2102) et o)< s e (c(t— ) )
c (z-x)°

®) [ — | —
(2.10b) |[vu®(z,t,x,5)| < ()7 exp (c(t—s))'
In particular,

c

(2.10c) |[vu®(z,t,x,8)| < = o) — o Vi<p<i,

c

(¢t —s)lfz — x|pt1-2"

(2.10d) |vu®(z,¢,x,5)| <

PROOF. The estimates (2.10a) and (2.10b) are the well known Arronson
estimates. For an easy derivation of them, we refer to [10] and references therein.
(Note that in [10], only (2.10a) is proved. However, (2.10b) follows easily by
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differentiating throughout in the proof.) (2.10c) and (2.10d), which are the only
estimates we will need, follow easily from (2.10a) and (2.10b). A different, more
cumbersome proof of (2.10c) and (2.10d) via the parametrix method appears in
([2], Chapter 1, Sections 4 and 5). Finally, uniqueness follows from the maximum
principle. O

The usefulness of (2.9) lies in the fact that its solution is easily represented; to
do that we need some auxiliary results, which are regrouped in Lemma 2.2(a)—(c)
below. (2.13) is the representation of the solution we will use in the sequel.

LEMMA 2.2. Let (ym(x), A,,) denote the normalized [wrt L*(Q)] eigenfunc-
tions and eigenvalues of the Dirichlet problem in the unit ball in R, i.e.,

(2.11a) WAy, (x) = =N (%), x€Q,
(2'11b) Ym(x)||x|-1 =0.
Then:
(a) There exists a unique eigenvector associated with the minimal eigenvalue
A, and Ay > 0.

(b) The set {\,,} is discrete, and, if N(\) denotes the number of eigenvalues
s.t. A, < A (including multiplicity), then
(2.12) N(A) = KN/2 + o(N*/?) as A > o0.

(©) Yu(x) € Ly(Q). Moreover, ¥ k, ||Y(x)llx < © and |7,(x)| < c(A,,)*/%
Finally, v,(x) spans Ly(Q).

(d) The following limit exists [ pointwise, uniformly in (z, x) for t — s > 7,2,
for all € and in L?(eQ X [0, T1)] and is the fundamental solution of (2.9):

u®(z,t,x,8) = lim u®(z, ¢, x,5)
Jjooo

(2.13) P m‘éioei =P (Am(tz_ . )Y'"‘(i)y"‘(f)
xexp(— (§(£)(2) - §9(s)x))

xew( =1 ({1690 = 16(5)) ar |

Proor. For (a), see [7]. (b) is Theorem 14.6 of [1]. That y,(x) € Ly(Q)
follows from Theorem 16.5 of [1]. To see that ||y,,(x)|| < oo, note that

1>

(2.14) |a%m(®) o = Ml [ &% %(2) g = Nol®.
Therefore, by the Sobolev lemma (cf., e.g., Theorem 3.8 of [1]),
(2.15) [ mllze < Co, (18¥mllo + [¥mllo) < G, w(IAml® + 1) < 0.

Moreover, since WI"/21*1 < C(Q), one has also
(216) )| < G419,
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Finally, we show (d). Note that

® |1 A(t—8) (= x . .
— m 7 — — — (s — .
£ o 0 (2] o - -
xexp( - 5 [(169(0) [ = [6() ) ar
2/
(2.17)
x —A(t—s)
— M a\(n/2+))
< mZ==1 5 exp = X
B2
< — LMy Vexp[ - (j(t - 8)) /€] < e,
Jj=1

where we have used (2.12). Note that the convergence is uniform for ¢t — s > &2,
is independent of ¢ for ¢ — s > ¢’r; and also that it holds even after scaling by
exp — (Ay(¢ — s)/€%). The convergence in L% eQ X [0, T]) is very similar and
will not be used in the sequel.

It is easy to check, similarly, that the convergence holds also for the deriva-
tives of ul®)(z, ¢, x, s) [wrt ¢ (once) and wrt z (twice)] and that lim u{®)(z, t, x, s)
satisfies (2.9). It remains to check therefore that it is indeed a fundamental
solution.

Let f(x) be a C° (on £2) function [and in particular, f(x) = X2 ,v,(x/¢)f;
with ¥ ; /.2 < «]. Let

12

(218) O(t,s,2) & [ u®(z,t,%,5)f(x) dx ~ f(2).
We have then

o —X(t—s

16065, 2)f3 0 E f2lexp ) 1

i=1
Let %, be such that

2 fP<v

i=ky

and 7, such that

AL,
exp( kgo) >1-—y
€

One has then

2

"I®"O,eﬂ < 2Y

for't — s < 7, and, since vy is arbitrary, we have

Ly(eQ)
(2.19) 00

t—s
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Similarly,

i (t - S)
|A*O (¢, s, 2) ”o,esz <K) gik) exp — 1},
i=1

where

Me(x) = Lol Jaik) and Tal(h) <o

As above, one has then that || A*0(¢, s, %)llo, g = 0, which implies by the Sobolev
lemma that (¢, s, z) — 0 pointwise. Therefore, one has that, in the sense of
distributions in D’(eQ),lim u{®X(z, ¢, x, s) is equal to the (unique, by [2], Chapter
2) fundamental solution of (2 9). Since, as is easily checked, for (¢ — s) > 0 both
this limit and the fundamental solution are continuous in z, x, they are equal
everywhere, which concludes the demonstration of the theorem. O

We establish below some estimates which will turn out to be useful in the
perturbation analysis of Section 3.

LEMMA 2.3.

u®(z,t,x,s)

aw) = :AL(;_—S) exp(% L1s(nF =12 df)
[exp((qS(S)(t)z - (8)(s)x))yo( )yo( )+A(z t, x, s)]

where
IA(Z, t’ x’ s)|
—AXN(t - s) '
(2.20b) k exp P if (t—s)> e, AN 2N — A,
- ke”

(t—s)z - x| if (£~ ) <me’, s <p<l,

and k is independent of ¢, 8.

Similarly,
vu®(z,t,x,s)
1 —A,(¢ . .
= v exp e(;( ) [exp — (¢®(8)z - ¢®(s)x)
. 2 . 2
(2210 xex 1[4 =162 ar]

(o ols) - o)

+B(z,t,s, x)],
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where
|B(z,t,x,s)|
—AN(t - s) )
(2.21b) kexp —5—,  if (t=5) >,
= k£n+1

(t—s)"lz_xln+l—2p,? lf (t_S)S7082’%<“<1.

ProoF. The upper bound in (2.20b) and (2.21b) follows immediately from the
representation (2.13) and the method of proof of Lemma 2.2. The short time
estimates [the lower line of (2.20b) and (2.21b)] follow directly from the deriva-
tion of [2], Chapter 1, Sections 3 and 4, or from [10]. O

LEMMA 24. Let C(z,t, x,s), i = 1,2, satisfy
—AN(t - s)

2
kiexp———£2—, t— s> g,

(222) |C| < et h
(- 8)z — xntr

0<t—-s<me’,1>p,>0,n+1>n+y,>0.

Then

< kk.en+Bmvit21-p)) A (n+2)
- 12

(2.23) l[‘fﬂci(z, t,x,s) dxds

(with similar bound when the integration wrt x, s is replaced by an integration
wrt z,t) and

lI>

|C;*Ci(2, ¢, x,5)] M/eszci(z’ t,x',s")Ci(x', s, x,5) dx’ds’}
—AN(t —s)

n+OA(Bi—vi+2(1—p)) A(Bi—v;+2(1—p;
kkikjs Yit 21— p)) A (Bi= v+ 2 % exp 2 ,

2
(2.24) L—s>¢e7,
kkikjﬁﬁi+ﬁj+n_7i—yj_2/“:'—2#,""2

IA

2z — x OV(ty+n)’

2

t—s OV (pi+p;—1)

€

_ 2
t— s < e
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Proor. First, note that

fflC(ztxs)Idxds<kft wf (_A_}\(t—_s))
et B

t
+k; - dsdx
",/;_1,082/;9 (t - s)”‘|z - x|"+"i ’

< kk;e"*t? + kk gt Pt 20-m) -y

from which (2.23) follows.
Considering (2.24), let first (¢ — s) < &%r,. One has then

|L(t—s)| & fs‘fglc,.(z, t,x',s")||C(x', 8", x, )| dx’ ds

(2.25) : dg’ EBL+Bj+n_Yt—‘YJ
t
< kk; - = 5 dx’.
i .1_/; (t_ s/)/"’t(sl _ s)/"’jjs; 2 , +7v, , x +v;

-—-x x' - -
€ €

We recall (cf., e.g., [2], page 14)

dx’ kla—b" B ifn<a+f
2.26 < ’ ’
(2.26) f|a—x'|“|x'—b|/’ {k, ifn>a+p.

Applying (2.26), one has from (2.25),
BB +2n

I(t - k
(2.27) IL(t = 8)l < Rk, (= s)tT |z = x

fy,+v,+n>0,pu+p;>1,t—s < e,
_ with similar bounds for the other cases of ¢ — s < ¢?7,. We consider therefore

now ¢ — s > &’r,. In this case, we get
8n+Bj

_ s+€2"'0 _ ot 2 ’ ’
It =)< [0 [ hhienpl(=Ne = ) /6] oy

o ~AN(t - s)
(2.28) + °| k;kjexp ———— dx’ds
s+elny e
—AN(s" - s) enth:
+ kik; , .
-/ —¢? ‘r'/;  OXP £2 (¢t =8Nz = x/|v*tm
Using (2.22), one gets
AA(E—s)
|L(t—s)| < kk;k; exp————
(2.29) X(Sn + 8(n+2)/\(n+B, y‘+2(1—;L,))/\(n+ﬁl—yj+2(1—;l.j)))

< kk;k,exp M( €7 O A B+ 20 A (8142011,

and the lemma is proved. O
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3. A solution to the original PDE. In this section, we construct, by a
perturbation method, a solution to (2.7), based on u®(z, ¢, x, s).
Let L denote the operator

(8.1) L, (2t x,8) 2 —jO(t)*vo(z, t,x,8) + 26(t)o(z, ¢, x, 5).
As before, let * denote the composition of two functions in the form
(8.2) fiz,t,x,8)*fy(2,tx,8) 2 /t/ fi(z, t,x", ") fo(x', 8", x, 8) dx’ ds.
s YeQ

Define

(3.3a) L; su®(z,t,%,8) £ L, u®(2,¢,x,5)
and
(3.3b) Ly su®(z,t,x,8) & L, ju®* LE3u®.
Let
J
(34) ul(z,t,x,5) £ u®(z,t,x,8) + ) u®(z,t,x’,8)* L, su®(2,t,x,s).
i=1

Finally, assume that &||¢‘®]| < 1 (which is possible if & is chosen not too small).
We will show that:

THEOREM 3.1. (a) For any t — s > 0, u’(z, t, x, s) converges (uniformly in
2,x € Q) to a imit u(z, t, x, s).

(b) u(z, t, x, s) is the fundamental solution of (2.7).

(©) Let y(e) = €l|¢®]| =, 0 and let || j®X(¢)|| = O(&) for some x > 0.

Then, for any 7,> 0 andt — s > 7,

Ao(t—s =
(3.5) exp "_ng—)enlu(zy t} x,s) - u(8)(z, t’ x?s)l =3 0
£

uniformly in z, x € €Q and the rate of convergence is controlled by

) 6@ — ||/ Adr,
(3.6) eu¢<8>n+exp( — — =R, h<p<@ X

€

ProOF. (a) Note that, by Lemma 2.3,
L, ;u®(z,t x,s)= e_"exp(—(d')(s)(t)z - é(a)(s)x))exp[(—}\o(t - s))/£2]

X [&l(t, z)yo(g)vo(g) + ,El('t)vyo(z)yo(;)]
X exp (—21:_/:‘(](#(7)'2 B l‘i’(S)(")IZ) dr)

—A(t—s
+exp ——082—)—El(z, t,x,s),

(3.7)
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where
(3.8a) & < ellgD + 6D )@ £ 1® =5 o,
)
-0
(3.80) =52
Kk®
, t— 1 < 182,
(3.80) E,| < (t - s)”|z _ x|n+1—-2p, 0
") K —AXN(t - 7)
(] 2
—7 €Xp 3 k), t— s> 1y€%,
€ &
where

e—0

. )
RO 2O + 1§ 3 0

by our assumptions.
Using Lemma 2.4, one obtains

Lt, su(s) * Lt, 8u(8)

p(—(Ay(t —s))/e 1 . .
=%((°;S»Eumb[WhW%W%WMJ
(3.92) xexp(—($®(¢)z — ¢(s)x))
ol a2l o
+exp —10(:2—_-2E2(z, t,x,s),
where
(3.9b) &, < (K'KI®)?,
-8
(350) s (e 22|
(3.9d) 17, < || /°(2) |K '&®,
|E2(z, l,x, s)l
K'KE®\*exp[(—AN(2 — 5))/e2] ,
(3.9€) ( . ) - ; t—s> e,

1

(t _ 8)2"_1|z _ x|n+2(1—2/.t) ’

(K'Kk®)*

2
t — s < gy,

Since 2 > 2u > 1, the singularity in (3.9¢) is weaker than that of (3.8c). By the
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same reasoning, one obtains that there exists a %k, such that

Lisu®(z,t,x,s)

- e~ (§7(0)2 - s9()) e (5 [(16) = 169(n) ) ar |
(8.10) Xexp(— ————AO(Z; ®) )[&koyo(z) + BkOVYO(z) + %]
+exp(— é2(‘22_—'5))exlf’ - (W)Eko’

where
(3.11a) &, | < (K'KI®)* 28 o,

@ £y 11k
(s110) i =m0

with [|m®|| <=3 0, at least as fast as £®,
(3.11c) || < n®(K'K )k, with [n®|| <=3 0 at least as fast as £®

and

€

K'KE®\* 1
(3.11d) E, | < —( ) —
o T g ko

Therefore, by the same argument as in [2], Chapter 1, (4.7), one has that, for
k >k,

Lf, s(u(‘”(z, t,x, s))

- e = (#(0)2 - #9s)x)emp( 5 (60 -89 ar |
(3.12) X exp ‘_'}\ (£~ 9) [“kYo( ) + EkaO(g) + 7k]
+exp 2 P o2 3
with
(3.13a) ld,| < (K'KI®)*,
(3.13b) 1B < (1) K)*,

~ , , k
(3.13¢) 19l < (I17°(2)I| K"Kk ®)
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and

(1 -p)e+1) e

€
By computing u®(z, t, x, s)* L? (2, ¢, x, 5), the §, term drops out due to the

integration
f d X X dc
aniyo(e:)o(e:) i~ 0

&

(K'E(t-s) )" ( km)’” 1

One has, therefore, for t — s > 0,

Z u(8) * Ltj,'8u(8)(z’ t’ X, S)
J=kg
o —A(t—s
(3.14) < K exp —%
s . —AXN(t - 5) b’
X a(e)’ + ex - )
£ [eter s e =

where |a(e)] < kD + 1% > __ 0, |b] < (j®/e) and (3.14) is easily seen to
converge, uniformly in 2, x.

(Remark: A similar proof holds also for the first two z derivatives of u. For
details, cf., e.g., [2].)

(b) The proof is identical to the one given in Lemma 2.2, due to the fact that
u® Lt u® has a weaker singularity in the origin than u‘®. We omit the
detalils.

(c) By (3.10), (3.13) and the fact that by comparing with uz®, the ,8~k term
- drops from (3.10) and (3.12), one has that, for ¢ — s > 7, and ¢, § small enough,

|u®(z,t, x,8)% Lt (u®(2,t,x,5))]|

1, =Ao(t—s
< —(K(k® + l“”))kexp _0(_2_)
€ €

—Ao(t—s) AN(t - s)
+exp——82—exp— 2

VTKY'Nu—;m+1J'

Ao(t—s
e|u(z,t,x,8) —u®(z,t,x,5)|exp ——0%

Therefore,

AXN(E - s) )( (j‘s)K/s)"‘/“'“)))}

[oe]

(3.15) < X

k=1
—AMr Ei® 1/(1—p) j(,s)
< (I® + k®)K + exp( 5 0)exp( Js ) (———)
€

~ k
(R(k® + 19)) jl-exp—( - 2

€
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By our assumptions,

17
€
Let 3 < p < (1 + x)/2. In this case, the r.h.s. of (3.15) is bounded by
® —AA7, K
(3.16) (I + kMK + (] )exp( 0)exp( 2—q)’ q > 0.
€ €

Therefore, (3.5) holds and moreover the rate of convergence is controlled as in
(3.6). 0

=0(ex7),  x>0.

COROLLARY 3.1. Assume ¢ € C'*%, a > 0. Then Theorem 1.1 in the Intro-
duction holds.

PROOF. Let 0 <y <1/(1 —a) and 8 =¢". Then [ed®| < kes* ! -, 0
and
6% — ¢l < Ke,
so that the conditions of Theorem 3.1 hold. By (2.5) and (2.8), one has
P(llx — ¢|l <)
P(|w|| <€)
J(¢)exp(O(*) (Il + lIll) + K (e))/qu(z, T,0,0) dz
P(|lw|| <€)
(3.17) J(¢)exp(O(e*)(lloll + lI6l]) + K(e))/.qu®(2, T,0,0) d
P(||lw| < ¢)
+J(¢)exp(O(e?)(I1ll + lI$]]) + K(¢))

X /Q(u(z, T,0,0) - u®(2,T,0,0)) dz/P(||w|| < ).

Note that
Jau®(2,T,0,0) dz eso Javo(2) dz v(0) _
P(||w| < ¢) Javo(2) dz v,(0)
Combining (3.17) with Theorem 3.3 yields the corollary. O

REMARK. We remark briefly on the case of diffusions evolving on a manifold
(or, more specifically, diffusions with state-dependent diffusion coefficients).
In that case, [12] proved that

7(8) = exp — |4 [7160) 100" -+ & [Taiw f(o(2))
& ["Ro(0) dt]
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where R(x) is the scalar curvature at the point x, the divergent is taken on the
manifold and | | denotes the Riemannian metric associated with the diffusion.
We refer to [12] for the definitions involved and we point out where [12] used the
assumption that ¢(#) existed and how that can be avoided.

We recall some notation from [12]: A system of normal coordinates is defined
around ¢(¢) and, in this system,

(3.18) o'(t, x) = 8 + §R,,,;(t,0)x™x" + O(x?)
and we define the y process
n
(3.19) dy, = Z otk(t, %) dwtk + (¢, ) dt,
k=1

where |yi(¢, y,)| = O(y,) and the exact form of y is unimportant to our current
needs. We recall again that, by [5], page 451, if |g,| = O(&?) under the condition-
ing ||w|| < e is an adapted process, then

(3.20} E (exp c / qu dw,
0

0
[EZA[RS e) 51, Ve

Referring now to the proof in [12], we note that the only place one needed the
existence and boundedness of ¢ was while attempting to use Theorem 2.2 (page
442): Using their notation, one has to compute

(3.21) AL E(exp CfI*}(t) dw,

Iyl < s),

where F(t) = f(t,0) — ¢(t) and f(¢,0)is in C! wrt t. Assuming also that ¢ is in
C', [12] used the estimate

ATF*(t) dw, = ATF*(t)U_l(t: yt)(dyt - (t, yt) dt)
(3.22) = fOTF*(t)o“(t, %) dy,

_/OTF*(t)o‘l(t, y)v(t, ,) dt

and since |y(t, 3,)| = O(|y,]) = O(¢) under the conditioning, the contribution of
the second integral is negligible. Considering the first integral, note that in the
normal coordinates,

(3.23) o7 (t, %) = I+ 0(»?).

By (3.20), the contribution of the second term is again negligible and, there-
fore, we are left with

E(exp(c [ an ) 1511 < e).

In the case that F*(t) is C' [which results from the assumption ¢(¢) € C?],
an integration by parts yields the pathwise convergence (under the conditioning
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||l < e). In the general case, however, (3.21) reduces to show that

(3.24) B4 E(exp(c fo '6%(2) dz)

17l <e) 289, ve,

where
dy, = (I + c(yt)) dw, and c(j;t) = 0(82)-

The procedure which led to our estimates for the case ¢ = 0 can be repeated,
where now the operator L includes in its first order term an additional term of
the form ke%(¢®)2 which turns out to be negligible. There is an even more
direct way to see that based on Lemma 2.1 of [12] or again on a version of (3.20)
(cf. [12], page 449). We omit the details here.
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