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THE ASYMPTOTIC BEHAVIOR OF THE REWARD
SEQUENCE IN THE OPTIMAL STOPPING
OF LI.D. RANDOM VARIABLES

By DoucLas P. KENNEDY! AND ROBERT P. KerTz2

University of Cambridge and Georgia Institute of Technology

Let X;, X,,... be integrable, i.i.d. r.v.’s with common distribution
function F and let {v,}, . ; be the sequence of optimal rewards or values in
the associated optimal stopping problem, ie., v, = sup{E(Xp): T is a
stopping time for {X,,},,.; and T < n} for n > 1. For distribution func-
tions F in the domain of attraction of one of the three classical extreme-
value laws Gy, G§; or G, it is shown that lim,, n(1 — F(v,)) = 1,1 — a™},
or 1+a7lif Fe 2(Gy), Fe 2(Gf) and a > 1, or F € 2(Gfy) and
a > 0, respectively. From this result, the growth rate of {v, }, » ; is obtained
and compared to the growth rate of the expected maximum sequence. Also,
the limit distribution of the optimal reward r.v.’s {Xrx}, . is derived,
where {T,*}, . , are the optimal stopping times defined by Tr*=1lifn=1
and, for n =2,3,..., by T*=min{l <k <n: X, >v,_ k}lfthlssetls
not equal to & and equal to n otherwise. This tail-distribution growth rate
is shown to be sufficient for any threshold sequence to be asymptotically
optimal.

1. Introduction and statement of results. Let X, X,,... and X be
integrable, i.i.d. random variables with common distribution function F. The
solution of the optimal stopping problem associated with these random vari-
ables, as described by Chow, Robbins and Siegmund [2], centers around the
sequence of optimal rewards or values

v, = sup{ E(X;): T is a stopping time for {X,,},,.,and T < n},

(11
(11 n=12,....
The recursive representation of this value sequence {v,}, . ;, given by
(1.2) v, =EX and v,,,=E(XVuv,) forn=12,...,

identifies these numbers as thresholds which target when to stop using
optimal stopping times {T}*}, . ; for (1.1); that is, v, = E(Xy,) for n > 1, with
the stopping times defined by T';* = 1 and by
Tr¥=min{l <k <n:X,>v,_,}

if this set is # &, and = n otherwise,
for n=2,3,.... In this paper, the limit behavior of the value sequence

(1.3)
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{v,}, »1 and the optimal reward r.v.’s {Xr.}, ., are determined, for a large
class of distribution functions.

This limit behavior clearly depends on the distribution function F and, in
particular, on the form of the upper tail of F. In this paper, the distribution
functions considered are those with (extended) regularly varying upper tails;
that is, the distribution functions of extreme-value theory (cf. e.g., the books
by Galambos [3], Leadbetter, Lindgren and Rootzén [10] and Resnick [13]). If
we denote x5 = sup{x: F(x) < 1} and M, = max,_;_, X, for n > 1, then we
will assume that the distribution function F satisfies the following property:

There exist sequences of constants {a,}, ., with ¢, > 0 and
(14) {b,}, ., for which a, (M, — b,) converges in distribution to
some nondegenerate distribution function G as n — «,

which implies that for each 0 < n < », there exists a sequence of numbers
{u,}, . for which lim, n(1 — F(u ,)) = 7.

A distribution function F which satisfies property (1.4) with distribution
function G is said to be in the domain of attraction of G for maxima, and we
write F € 2(G) in this case. The extremal types theorem ([10], Theorem
1.4.2) states that any limiting d.f. G of (1.4) must be of the same type as one of
the extreme-value distributions G, G§; or G§; for some a > 0, where

G(x) =exp(—e ™) for —o <x < o,
f(x) =0 forx <0,
(1.5) =exp(—x"%) for0 <x,
G¢y(x) = exp(—(-x)%) forx <0,
=1 for0<x.

Appropriate constants which yield convergence in (1.4) to these three limiting
distributions are

a,=(g(v,))"  and b,=y, ifFe (G,
(1.6) a,=1v,"! and b,=0 if Fe 2(GY),
a,=(xp—7,) " and b,=x, if Fe 2(G%),
where v, = inf{x: F(x)>1-n"1 and g(t) = [**(1 — F(u))du/(1 — F(t))
for ¢t < xp. In this paper, the norming constants of (1.6) are used throughout
(by Khintchine’s theorem [10], Theorem 1.2.3, there is no loss of generality).

It is immediate that the value sequence {v,}, . increases to x as n — .
How does {v,}, »; grow? What is the rate at which {v,}, ., converges to x;? A
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key result toward answering these questions is given in the following main
theorem of this paper.

TueoreM 1.1. IfF € 9(G)p), F € 2(G§) and o > 1, or F € 2(Gyy) and
a > 0, then, respectively,

(1.7 limn(l - F(v,))=1,1-a torl+a %

The proof of Theorem 1.1 is given in Section 2. Examples and numerical
calculations for specific distributions F, giving special cases of (1.7), are found
in Gilbert and Mosteller [4], Kennedy and Kertz [7] and Petrucelli [11]. For
classifications of specific distributions by their domain of attraction for max-
ima, see [3], [10] and [13].

A direct description of the growth of {v,}, . ; follows from Theorem 1.1. For
this description, denote the rate functions and inverse rate functions associ-
ated with the extreme-value distributions G, G§; and Gy, respectively, by

R(x) =e™™ for —o <x <o,
g(x) =x"* for0 <,
R (x) = (—x)° forx < 0;
(1.8) forx>0, Ri!(x) = —logx,
(Rf) '(x) =z,
(Rfy) "'(x) = (~D)a¥/e

and write G, Ry and Ry! for the extreme-value d.f., associated rate function
and inverse rate function, linked to F [i.e., F € 2(G)]. To find the growth
rate of {v,}, . 1, use Theorem 1.1 and the result that

foreach0 <x < », limn(l — F(u,))=x ifandonlyif
n

(1.9)

lima,(u, —b,) = RF'(x).

[To see (1.9), use, for example that lim, n(1 — F(a, 'y + b,)) = Ry(y), which
is part of Theorem 1.1 of [7].] This yields the following theorem.

TueoREM 1.2. IfF € 2(Gp, F € 2(GY) and a > 1, or F € 2(Gfy) and
a > 0, then, respectively, .
1/a

(1.10) lima,(v, —b,) =0,(1 —a"1) "or (1)(1 +a"1)"",

for the sequences {a,}, ., and {b,}, . of (1.6).
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The limit of (1.7) draws a comparison between optimal stopping and ex-
treme-value probabilities, through the representation

(1.11) limn(l - F(v,)) = limP(X>v,)/P(X>M,).
For comparisons between the value sequence {v,},.; and the expected partial
maxima sequences {m ,}, ., with m, = E(M,), we recall growth properties of

the sequence {m ,}, ., from Pickands [12], Section 2.1 of Resnick [13] and page
946 of Gradshteyn and Ryzhik [5] and use (1.9) to obtain,

if Fe 2(Gy, Fe 2(Gf) and a > 1, or F € 2(G§y) and
a >0, then, respectively,

o
’

(1.12) limn(1 - F(m,)) =, (I(1 —a™)) °, or (I(1 +a™ %))
lima,(m,-5b,) =7, (1 —a™'),or (-DI(1 +a7 1),
where y = Euler’s constant = 0.5772... and I is the gamma function. Ratio

and difference growth comparisons between {v,}, ., and {m ,}, . ;, which follow
from Theorem 1.2 and (1.12), are given in Theorem 1.3.

THEOREM 1.3. (i) For F € 2(Gy), lim, m,/v, = 1,
lim(m, = v,)/(v, = v,) = +
and
lim(m, —v,)/8(v,) = Im(m, = v,)/(n(Yns1 = 7)) = 7-
(i) ForF € 2(G{) and a > L, lim, m, /v, =1 —a HDV*TQA — a ') and
lim(m, = v,)/v, =T(1-a ) = (1-a) "
(iii) For F € 2(G§y) eand a > 0, lim, m,/v, = 1,

Hm(xp—m,)/(xp—v,) = (1 +a 1) 7T(1 +a?),

lim(m, —v,)/(xzg—7v,) =(1+ afl)l/a -T(1+a).

Comparisons of value and expected maximum over a given class of stochas-
tic processes, taking the form of sharp inequalities or regions, can be found in
the literature on prophet problems; for the class of i.i.d. r.v.’s, see [6] and [8];
for a survey on prophet problems, see [9]. We emphasize that in this paper the
sequence of integrable, i.i.d. r.v.’s {X,}, ., and d.f. F is fixed.
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As another application of Theorem 1.1, use the representation

n—l k—1
P(Xps <2) = % (nm » )(F<x) Fon ),

E=1\J=1
+("1:11F(vn_j>)F(x,,>
j=1

for n > 1 and a straightforward limiting argument to identify the distribu-
tional convergence of the normalized optimal reward r.v.’s as follows.

TueoreM 1.4. IfF e 2(G)), F € 2(G§) and a > 1, or F € 2(Giy) and
a > 0, then the sequence {a (XT* b,)}, » 1 converges in distribution, with the
limiting distribution given, respectwely, by

Hy(x) = (3)e* ifx <0,
=1-(3)e™™ if0<x;
Hg(x) =0 ifx<0,

—@2—a ) @ -ae ] Y ifocx<(1-ah)
1.13
(1.13) —1-2-a V) 2 if(1-at) " <a;

1+(1/a) 1/a

or He(x)=(2+a ) [(1+a)(-2)7"] ifx< —(1+a1)"",

—1-C+a ) N(-2)" if —-1+a D" <xx0,
=1 if 0<x.

Theorem 1.1 may also be combined with Theorem 3.3 of [7] to obtain the
limiting joint distribution of {(Xrx, M)}, 1.

In Section 3, we show that any sequence of thresholds with the same
tail-distribution rates of growth as those of (1.7) will be ‘“asymptotically
optimal.” Specifically, for any sequence of real numbers {u,},.;, define
threshold stopping times {T,}, ., by T; = 1and for n = 2,3,...,

T =min{l <k<n: X, >
(1’14) n ln{ n k un—k} )
if this set # & and =n otherwise.

THEOREM 1.5. Let {u,},., be a sequence of real numbers and F be a
distribution function satisfying lim,n(1 - F(u,)=0,1-a'or1+a”
for F e 9(G)), Fe 2G%) and « > 1, or Fe .@(Gm) and a > 0, respec-
tively. Let {T ' >1 be the threshold stopping times associated with {X,}, .,
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and {u,}, .. Then
(1.15) limanE(XT’;g - XTn) = 0.
n

Indeed, a more general result is proved in Section 3, which also shows that
the tail-distribution rate of growth of (1.7) is in a sense necessary for a
threshold sequence to be asymptotically optimal.

2. Proof of Theorem 1.1. In this section, Theorem 1.1 is proved. First,
assume F € 2(G{y) and a > 0. In this case xz <® and 1 — F(x, —x~ 1) =
x°L(x), where L(x) is slowly varying at infinity. Denote G(x) =

Fr(1 — F(y)) dy and obtain v, = v,_; + G(v,_,) for n > 2 from (1.2).

The proof rests on properties of the auxiliary function H(x) =

(x5 — x)/G(x) for x < xp. First, we claim that

(2.1) lim H(x)(1 - F(x)) =a + 1.
xTxp
This follows from the representation
H(=)(1 - F(x)) =y~ @*L(y) / [ DL (2) de,
y
where y = (xz — x)71, letting x — x (and y — ) and applying Proposition

1.5.10 of [1]. Next, we claim that
(2.2) lim (H(v,) — H(v,_,)) = e.

This follows from the representation

H(v,) = H(v,_,) = H(1,)(G(v,-1)) (G(v,,) = G(v,)) — 1,
from the inequality

H(vn)(l - F(vn)) < H(vn)(G(vn—l))_l(G(vn—l) - G(Un))
< H(v,)(1 - F(v,_,))

and the limits (2.1) and lim (1 — F(v,_,))/(1 — F(v,)) = 1. Now, the conclu-
sion follows in this case by observing that lim, n"'H(v,) = @ from (2.2) and
using this and (2.1) to obtain lim, n(1 — F(v,)) = 1 + o~ ..

In the case of F € 2(G{p) and a > 1, define H(x) = x/G(x) for x < x = oo,
observe that lim , _, , H(x)(1 — F(x)) = @ — 1 and proceed as above. Finally, in
the case F € 2(Gy), define H(x) = [F*G(y) dy/(G(x))? for x < x and ob-
serve that H(x) < » and lim,,, H(x)(1 - F(x)) =1 from Lemma 1.8 and
Proposition 1.9 of [13]. The argument is then analogous to the above one.
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3. Expectations of threshold-stopped random variables. The main
result of this section describes the rate of growth of expectations of threshold-
stopped random variables. Theorem 1.5 follows as an immediate consequence
of this result and Theorem 1.2.

THEOREM 3.1. Let {u ,}, ., be a sequence of numbers satisfying
' limn(l - F(u,))=n
n

for some 0 <n <« and let {T,}, ., be the threshold stopping times associated
with {X,},., and {u,},.:. If F € 2(G)), Fe 2(Gy) and a> 1, or F €
2(Gfy) and a > 0, then lim, E{a (Xp — b,)} = fi(n), fu(n;a) or fiy(n; @),
respectively, where

fi(x) =1-x"1'—-logx for 0<zx,

fulsie) = (1 —a) 0100+ )

(3.1) for 0 <xand1l < a;

for a>0, fm(x, a) !

—o for0<x<a ',

(=1)(1 + @~ 1) gl @/a(y — g=1)7?

fora™l<x.

Proor. Let {u,},.;, 7 and {T,},.; be numbers and r.v.’s satisfying the
hypotheses. Theorem 3.1 is an immediate consequence of results (3.2)
and (3.3).

Foreach 0 <¢ < 1,

li’llnE{an(XTn - bn)I(Tnsn—[na])}
=fi(n)(1 —&") + (~loge)e” if F e 2(Gy),
(3.2) =fu(n;a)(1 — et /™) if Fe 2(G¢) and a > 1,
= fﬁ:(n;a){(l - gn_(l/a))l(naéa_l) + (—log S)I(n=a—1)}
if Fe 2(G¢;) and a > 0,

where
f(x;a) =(-1)(1 + a_l)'_lx“(l/“)(x - a_l)_1 forx # a1,

= (-1 +a 1) Tglr@/® forx = a1
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(3.3)(d) Let F € 2(G/). For any 0 < § < 7, there is a sufficiently
large integer M for which

lim sup lE{an(XTn - bn)I(n—[ne] <T,<n —M)} l
n

=0(e"°loge ') ase|0,
and limE{a,(Xy, —b,)I, p<r,} = 0.

(3.3)(ii) Let F € 2(Gf)and a > 1. Forany 0 < § < + a1, there
is a sufficiently large integer M for which

lim sup IE{an(XTn - bn)I(n—[ne]<Tn sn—M)}l
n

= 0(87;-6-(1/“)_6) as 81'0’
and limE{an(XTn - bn)I(n—M<T,.)} =0.

(3.3)(iii) Let F € 2(Gfy), 0 <a and a ' < 7. For any 0 < § <
n — a” !, there is a sufficiently large integer M for which

lim sup l E{an(XTn - bn)I(n—[ne]<Tn sn—M)}l

=0(e"?loge™!) ase|0,
and limE{a,(Xy —b,)I,_py<r,)} = 0.

. In the three cases of F € 2(G)), F € 2(G¢)and a > 1, and F 2GSy,
and a > 0, the proofs of both (3.2) and (3.3) are similar. We give here the
proofs for F € 2(Gp) and « > 0. In this case, x; < @ and 1 — Flxp —x1) =
x~“L(x), where L(x) is slowly varying at infinity. The norming constants are
a,=(xp—v,)"" and b, =x; for n > 1. The sequence {a,}, ., satisfies
lim, a,(u,s; = b,) = (=1)(n/s)/* for each s> 0 and is regularly vary-
ing with exponent a”' with representation a, = nl/%, exp(L7_,5 2/ k),
where {c,},, are numbers satisfying lim, ¢, = ¢, for some ¢y € (0,») and
lim, 8, = 0. (For reference, see Chapter 1 of [13] and Sections 1.5, 1.9 and
8.13 of [1].) Also, let {B,},, . ; be numbers satisfying log F(x,) = (-7 + B,)/n
and lim, B, = 0.
To prove (3.2) in this case, first use the representation

E{(xF - X)I(X> u}}

C= = (1= F@) = (= ) [ = Flap - 2~ ) d
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and the dominated convergence theorem to obtain
(3.4) limnB{a,(X = b,) Ixs ) = —(1+ah) gt/

Next, let £ > 0, denote s,(x) = E{a (X — b,)Ix. ,)} and calculate as follows:
For all n, ,

E{a,(Xr, = b,) iz, < nnep)

n—[nel

= kgl E{an( X, - bn)I(T,,=k)}
n—[nel n—
= Z anE{(X - xF)I(X> un_k)} ]._.[ F(ur)
k=1 r=n—k+1
(3.5) » n—[ne] n
R [ (R R s g S

I
S

_ln—[nE]( n )1+(1/a)( c, )((n k)s, w(u,_p))

Cr—t

n_1 -n+B,+38, 8,
Xexp{ Yy (%—)+7},

r=n—k+1

where lim , ¢, = ¢, € (0,) and lim, §, = 0 = lim, B,. Now let n — o in (3.5)
and use (3.4) to obtain

li,ILnE{an(XTn - bn)I(T,l < n—[nSD}

=/1—s s)” <1+<1/a»( 1)(1+a1)” -1 it/
0

Xexp{—nfll_ x‘ldx} ds,

and (3.2) is proved for this case.
- Next, (3.3)(iii) is proved. Let 0 <e <1 and 0 <6 <7 — a~ . Choose an
integer M sufficiently large so that §,, + B,, <& and ¢,, > 0 for all m > M.
Note that M depends on § but not on e. Also let K > 1 be a constant for
which |ms,(u,)| < K/ for all m > 1 and (¢, /c,,) <K'2 forall n > m >
M. For the ﬁrst part of (3.3)(iii), obtain the following inequality for all n
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sufficiently large:

IE{an(XTn - bn)I(n—[na]<T,,sn—M)}|

n—M

=|n"t Z (nan/((n - k)an—k))((n - k)sn—k(un—k))

k=n—[ne]+1

n—1
(3.6) X n F(u,)

r=n—-k+1

n—M
<Kn! Y (1= (k/n)) 10/

k=n—[nel+1

n-—1
><exp{n‘1 Y (—n+5)(r/n)_1}.

r=n—k+1

Then take a limit in (3.6) along the appropriate subsequence to obtain

lim sup l E{an(XT,, - bn)I(n—[rw:]<T,l sn—M)}l
n

< Kfl (1- s)_l_(l/“)exp{(—n + 6)[1 x‘ldx} ds
l-¢ 1-s

= K(n-8-(1/a)) len 27/,

For the second part of (3.3)(iii), obtain the following inequality for all n
sufficiently large:

IE{an(XTn - bn)I(n—M<Tn)}|
<a,E(xz—-X) Y P(T,>k-1)
k=n—-M+1

<Ma,E(xz—X)P(T,>n—-M)

< Ca, [1F(x,)

r=1

- Cntrec, exp| 1 (=n/m) fesn{ £ (@, +‘Br)/r}

r=1 r=1

(3.7)

= Cn'/*c, exp{—nlogn — n(y + pn)}eXp{ 2 (5, + ﬁr)/"}

r=1

< Dn—(-Q/ay eXp{ 2 (5r + B,)/r},

r=1
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where C and D are positive constants, lim, ¢, = ¢, € (0,), 0 =lim, §, =
lim, B, = lim, p, and vy is Euler’s constant. The second part of (3.3)(iii) now
follows by letting n — « in (8.7). O

REMARK. We note that it is possible to provide an alternative proof of
Theorem 3.1 (and indeed give a slightly stronger result). First, one establishes
the analogue of Theorem 1.4 for general threshold sequences {,} and their
associated threshold stopping times {7',}. Second, by verifying a further condi-
tion of uniform-integrability type, viz.

(38)  lim limsupE(|a,(Xy, = b,)[I(|a,(Xy, - ,)|> L)) =0,

Lo n—o

one shows that a,(EX; — b,) converges to the appropriate limit. The verifi-
cation of condition (3.8) may be modelled on arguments within the proof of
Proposition 2.1 in [13]. The argument for type II follows easily [because in this
case a,(Xy —b,) is dominated by a, (M, — b,) to give a right-tail estimate
and the left-tail essentlally plays no role] The arguments for types I and III,
however, require estimates analogous to those in (3.6) and (8.7); thus no
substantial shortening of the above arguments results.

Theorem 3.1 can be used to show that the tail-distribution rate of growth of
(1.7) is in a sense necessary for a threshold sequence to be asymptotically
optimal.

CoroLLARY 3.2. Let {u,},.; be any sequence of numbers satisfying
lim, n(1 — F(u,)) =n for some 0 <n < and let F € 2(G)), F € 2(Gy;
and a > 1, or F € 9(G§;) and a > 0. Let {T,}, ., be the threshold stopping
times of (1.14) associated with {X,}, ., and {u,}, - Then if (1.15) holds, it
must follow that n = 1,1 —a"tor 1 + a™! for F € 2(Gp, F € 2(G§) and
a>1,orF e 2(Gfy) and a > 0, respectively.

Proor. The result is an immediate consequence of Theorems 1.2 and 3.1
and the following easily verifiable facts about the functions f;, fi; and fig
of (3.1):

(8.9(1) max,., fi(x) =f(1) = 0and x = 1 is the only maximizer.
(8.9)(Gii) For each a > 1,

max fy(x;0) = fu(l —ala) = (1—a™) "
x>0
and x = 1 — a~! is the only maximizer.
(3.9)(Giii) For each a > 0,
max fi(¥;a) = fn(1 +aHa) = —(L+a )"

and x = 1 + a ! is the only maximizer. O
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REMARK 3.3. For simplicity in statement, convenience in proof and analogy
to theorems in extreme-value theory, the statement of Theorem 3.1 is the
appropriate one. However, Theorem 3.1 can be restated in terms of a rate of
convergence on thresholds implying a rate of convergence on expectations of
threshold-stopped r.v.’s as follows:

8.100() If Fe 2(Gp and lim, a,(u, —b,) = v with —o < » < o, then
lim, a (E(X;) - b,) = fl((RI ().

(3.10)(ii) IfFe,@(G ), @ >1landlim,a, (u, —b,) =v with 0 <v <,
then lim, a,(E(Xy ) — b, ) fu((RfD~ (v) a).

3. 10)(111) If Fe .@(Gm) a > 0 and lim, a,(u, —b,) =v with —o <v <
0, then hmn a,,(E(XTn n fIII((RIII) (V), a)-

The constants {a,},.; and {b,},.,; are those in (1.6), the inverse rate
functions Ri!, (R%) ™! and (Rg;)~! are defined in (1.8) and the functions fi,
fu and fy; are defined in (3.1). For the value sequence {v,}, . ;, the number
lim, a,(v, — b,) = v* of (1.10) is a fixed point of g;(x) = f.(R; (x)), and the
unique maximizer and maximum of g;, for each i = I, II and III. Uniqueness
and identification of the maximizer follow from (8.9).

Acknowledgment. The authors thank a referee for the main ideas in the
proof of Theorem 1.1 given here; the original proof was much longer and relied
on use of Theorem 3.1.
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